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Abstract. Stationary flows of viscous fluids with a static or moving contact line are considered.
Contact line separates three phases: vapor, liquid and solid. No-slip condition on the solid-
fluid surface and ordinary conditions with account constant surface tension for the fluid-vapor
interface are supposed to be fulfilled. The flows presented in the report are induced by some
physical mechanism concentrated in the very small region near the contact line. Such contact
line is the origin of the flow and treated as a hydrodynamics singularity. As an example the
flow in a two- dimensional viscous fluid drop which rests or steadily moves along a horizontal
solid surface is considered. Motions of this type can be observed in experiments if the solid-fluid
surface wettability is non-uniform. A sequence of solutions for the velocity field and the free
surface shape with the successively increasing applicability region near the static or moving
contact lines is obtained. At first stage the solution of the problem is found in the case when
the distortion of the free surface of the drop during motion can be neglected. The problem is
then reformulated using functions of a complex variable and expanded variables are introduced.
In the new variables a more accurate solution of the same problem is found, with a much more
narrow inapplicability region near the contact lines. Asymptotic behavior of the flow near the
contact lines is discussed.

1. Introduction
There are many works devoted to describing the viscous fluid flows near a moving contact line
[1]. Moving contact lines often appear in practice, for example, as a drop moves under gravity
along an inclined plane, as a viscous liquid volume spreads over a horizontal surface, or as
films of chemical species is deposited on a rigid substrate. The solution of these and similar
problems meets serious mathematical difficulties in the formulation of boundary conditions on
the unknown boundary, the free surface of the fluid. In practice, however, the consideration is
often restricted to the case of small fluid velocities when the free surface shape can be assumed
to be the same as at rest. The corresponding criterion is formulated as the smallness of the
viscous forces that arise as the fluid flows as compared with the surface tension forces, that is,
the capillary number Ca is small. The known boundary shape makes it possible to significantly
simplify the problem formulation. However, the solutions obtained within the framework of this
approximation have an important shortcoming: they are inapplicable near the contact line. No
matter how slowly the contact line may move, near the moving line there is a region where the
viscous forces are comparable with the surface tension forces and, hence, the shape of the free
surface must considerably differ from that under static conditions [13]. The interest in the flow
region adjacent to the contact line is also related with the fact that this region substantially
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determines some physical quantities. For example, within the framework of the models available,
the friction force between the liquid and the rigid surface has the form of a divergent integral.
It is now unknown how to overcome this deficiency in full measure. One of possible practical
ways out is based on the hypothesis that the inapplicability region is so small that in this region
fundamentally novel physical mechanisms begin to work, which leads to changes in the boundary
conditions or in the system of equations. For example, some authors assume that on the rigid
surface there is slipping [2 - 11] or that on the liquid a body force exerted by the rigid body
acts [12, 13]. However, all these approaches assume that the size of the region within which
the novel mechanisms work is greater that that of the inapplicability region and is comparable
with the characteristic dimension of the problem. In this study we consider the problem of the
spontaneous motion of a viscous fluid drop over a horizontal rigid surface. This motion may
arise if the surface wettability is nonuniform. We call the wettability nonuniform if the contact
angle at the line of separation between three phases, liquid, air, and solid, is nonuniform. From
the hydrostatic equations it follows that on a horizontal plane rigid surface the stationary drop is
symmetric, with the same contact angle at all its boundaries. Therefore, the drop with different
contact angles at its boundaries must begin to move. Such spontaneous motion was observed in
experiments [14]. The wettability inhomogeneity was created by the nonuniform deposition on
a rigid surface of a certain species.

2. Formulation of the problem
Consider a two-dimensional volume of a viscous incompressible fluid on a horizontal rigid surface
in the absence of gravity and other external body forces. The gravity force can be neglected if
the drop diameter is small as compared with the capillary length. In this case, the cross-section
of the free surface of the drop has the shape of a circular segment. The free surface of the drop
forms with the rigid surface a static contact angle θ . Assume that in a very small neighborhood
of the contact line there is a mechanism that creates the steady-state motion inside the drop.
We consider two cases: the contact lines remain fixed and contact lines move along the rigid
surface. It is natural to anticipate that the flow that arises within the entire drop volume is
independent of the details of this mechanism if it is sufficiently small. We will use the reference
system tied to the drop. The liquid flow can be described by the continuity equation and the
stationary Stokes equation (the Reynolds number is assumed to be sufficiently small).

div v = 0;−∇p+ µ△v = 0 (1)

Here, v is the liquid velocity, p the pressure, and µ the dynamic viscosity of the liquid. We
assign on the rigid surface the no-slip and impermeability conditions. On the free surface the
usual conditions for the pressure jump created by the constant surface tension are to take place.
The air pressure is assumed to be constant and can, without loss of generality, be set equal
to zero. We will also assume to be given the two-dimensional volume of the drop or its cross-
sectional length 2L, the distance between between the two opposite contact lines. The system of
equations and boundary conditions (1) is incomplete. In statics, the contact angle between the
free surface of the liquid and the solid on the separation line of the three phases is specified. In
dynamics, the free fluid surface may behave near the contact line in a special way and we cannot
hope that this condition can be satisfied. The flow pattern and the drop shape are independent
of the drop volume and are conserved as the scale varies. Introduce the Cartesian coordinate
system so that the x and y axes be directed along the rigid surface and perpendicular to it and
assume that the points x = 1 and x = 1 on the x axis correspond to the contact lines.

The continuity equation for plane flows makes it possible to introduce the stream function
Ψ, which obeys the biharmonic equation △△Ψ = 0. On the free surface Ψ = 0 and for the
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tangential and normal stress tensor components the following conditions must be satisfied:
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Here nx and ny are the components of the unit normal to the free surface Ψ = 0 with a curvature
κ and surface tension σ. The pressure p is determined by the stream function.

3. Flows in droplets with a non-distorted circular shape
3.1. Quiescent droplet with internal flow
The problem set above is very complicated due to unknown shape of the free surface. We begin
with a common assumption that the flow is weak and the free surface distorted slightly. This
may be justified for the main volume of the droplet, but is not applicable to the vicinities of
the contact lines where the sources are located. Keeping in mind this circumstance we suppose
that the free surface of the droplet is an arc of the circle and can be described by the following
equation 1 − x2 − y2 = 2y cot θ, where θ denotes static contact angle. The second boundary
condition (2) is discarded. Solution of the problem follows the method using complex variables
and developed in the work [15]. The general solution of the biharmonic equation can be presented
in the form:

Ψ = Re

[
i(1− z2)P (z)/2 + y

[
−iF (z) +

d

dz
(1− z2)P (z)/2

]]
(3)

Here F (z) and P (z) are analytical functions of the complex variable z = x+ iy. The boundary
conditions on the solid plane are fulfilled identically if these functions are real on the segment
[-1,1] of the real axes. The solution sought in the form

F (z) = Aeλζ +Aeλζ , P (z) = Beλζ +Beλζ , ζ = ln
1 + z

1− z
(4)

The bar over complex constants A,B, λ means complex conjugation. To satisfy the boundary
conditions on the free surface the constants should be related by the equations

A = B(cot θ)− λ cot(λθ)), sin(2λθ) = λ sin(2θ) (5)

The equation for λ has an infinite number of complex roots for any θ. As a result an infinite
set of solutions is found. Moreover, due to linearity of the problem any algebraic combination
of solutions is a solution too. An example of the flow is depicted schematically in Fig. 1.
Streamlines of the flow are closed. An infinite vortex array can be seen.

3.2. Flow in the slowly moving droplet
We will use the reference system tied to the drop. The rigid surface then moves at a constant
velocity V . To satisfy the no-slip condition on the solid plane the term V y should be added in
the equation (3) for the streamline function. One solution of the problem is found in the work
[15]. Streamline function has a form

Ψ = Ca y +
Cay sin θ

θ − sin θ cos θ

[
cos θ −

(
1− x2 − y2

2y
cos θ + sin θ

)
arctan

2y

1− x2 − y2

]
(6)
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Figure 1. Streamlines of the flow
in the quiescent droplet.

Figure 2. Streamlines of the flow
in the moving droplet.

Distortion of the free surface droplet is neglected. It is valid in the main volume of the droplet
if the capillary number Ca = 2µV/σ is small. The streamlines of this solution are depicted in
the Fig. 2. It may be noticed that near the advancing x = 1 and the receding x = 1 contact
lines the solution obtained goes over asymptotically into the known solution [1] for the liquid
flow inside the angle θ. But this solution is not unique: we may add an arbitrary solution for
the quiescent droplet due to linearity of the problem. Resulting flow involves many vortexes and
looks very complicated. Thus we found an infinite set of flows in the moving droplet.

4. Approaching the contact lines
Now consider the problem of accuracy of the solutions obtained. Discarded condition (2) for the
normal stress jump allows to evaluate applicability of solutions found above. It is easy to see that
the error (residual) is small in the main volume of the droplet for sufficiently small A,B, V but
grows with approaching contact lines. Thus in the small vicinities of the contact lines distortion
of the free surface becomes significant and the flow changes radically. To overcome this difficulty
we introduce extended variable Caζ. The region of the flow in the plane Caζ looks as an narrow
infinite stripe. The values of the variables on both sides of the stripe can be related by Tailor
expansions.

Ψ = ReW,W =
i(1− z2) sinH

2
+ y

[
Ca− i cosH − z sinH +

Ca sin(2H)

2H − sin(2H)

]
(7)

The analytical function H is define by the formula

H∫
0

tdt

sin t
− sinH = Caζ + C (8)

It is encountered in works [10, 18], C is an integration constant. The function H is multivalued.
The branch real on the real axis is used. In addition, we obtain the equation for the shape of
the drop free surface

H

[
arctan

2y

1− x2 − y2

]
=

Ca

2
ln

(1 + x)2 + y2

(1− x)2 + y2
+ C (9)

Consider the obtained solution in the main flow region. It can be seen that the shape of the
surface is close to that of the circle with the contact angle H() = C. In the main volume of
the drop, solution (7) gives a flow pattern very close to that shown in Fig. 2. A difference
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can only be observed in very small regions near the contact lines. Formulas (7,9) show that
the angle of tangent inclination to the free surface (zero streamline) approaches 1800 when
approaching the receding contact line and zero when approaching the advancing one. However,
this change is so slow that it cannot practically be observed at any fixed scale. Thus the dynamic
contact angle changes radically with a scale. More thorough analysis shows that the solutions
found are still applicable as the dynamics angle does not exceeds Ca1/3. Thus the region of
applicability solutions enlarges significantly. Near the the receding contact line solution obtained
is asymptotically applicable.

5. Conclusions and discussion
The obtained solution of the problem of liquid flow inside a moving plane drop allows to
conclude that the assertion formulated in [1, 2, 412] about the incompatibility of the moving
three-phase contact line with the liquid no-slip condition on the rigid surface is at least not
quite correct. Well-known solutions are inapplicable near the contact lines, but we successfully
reduce the region of inapplicability. The methods developed in the work allow to obtain next
approximations which may reduce the region of inapplicability to zero. It seems that the flow
near contact line becomes more and more complicated. Perhaps there is no simple asymptotic
expression.
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