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Abstract. In this study, we proposed the power series method called Residual Power 
Series(RPS)method coupled with Fractional Complex Transform(FCT) to solve the time 
fractional nonlinear gas dynamics equations. FCT is the alternative approach in fractional 
calculus which transforms the fractional differential equationin to integer order differential 
equation making the solution in simple manner.The results reveal that RPS method is simple 
and convenient for similar type of time fractional nonlinear differential equations. 

1. Introduction 
Consider the gas dynamics equation of fractional order in t-domain: 

∂��
∂t� = −

1
2

(v�)� + cv(1 − v) + h(x, t)        t > 0,        0 < � ≤ 1 
(1) 

with initial condition 
v(x, 0) = g(x) (2) 
Wherec is a constant and h(
, �) is a known function. Numerical solution of equations was studied by 
many researchers. Das and Kumar [4] have applied the differential transform method (DTM) to solve 
time fractional gas dynamics equations. Later, the same types of problems were solved by applying 
fractional homotopy analysis transform method by Rashidi et al. [10]. In 2013, Jagdevsinghet al. [9] 
has given the numerical solution of (1) by homotopy perturbation method coupled with Sumudu 
transform. Aminikanth et al. [8] have solved the same type of problems by new homotopy perturbation 
method via Laplace transform. 
In the present study, we proposed a recently developed method namely Residual Power Series (RPS) 
Method coupled with FCT to construct an exact solution of time fractional gas dynamics equations. 
Thismethod was first envisioned by Jordon mathematician Abu Arqub [7] and it has successfully been 
applied to many situations. Linjunwang et al. [15] used RSP method to obtain semi analytic solutions 
of time-fractional WBK equations. Later the same technique has been investigated by FeiXu et al. [14] 
for solving the classical Boussinesq equations. The similar numerical technique was proposed by 
Alguran [11]forsolving fractional foam drainage problems.  

2. Jumaries Riemann-Liouville Fractional Derivatives 
Jumaries fractional derivative is a modified Riemann-Liouvilles derivative of order  ′� ′ defined as 

http://creativecommons.org/licenses/by/3.0
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D

�f(t) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

Γ(−β) � (t − τ)����[f(τ) − f(0)]dτ                   β < 0



�
1

Γ(−β)
d
dt

� (t − τ)����[f(τ) − f(0)]dτ,     0 < β < 1



�

�f (���)(t)�
(�)

,                       m ≤ β ≤ m + 1,    m ≥ 1

 (3) 
 

2.1 Standard properties of modified Riemann-Liouvilles derivatives: 
(i) D


�(k) = 0, α > 0, � is a constant 
(ii) D


�[kf(t)] = kD

�f(t), β > 0 

(iii) D

�t� =

Γ(1 + α)
Γ(1 + α − β) t���, α > β > 0 

(iv) D

�[g(t)h(t)] = !D


�g(t)" h(t) + g(t) !D

�h(t)" 

(v) D

��g#h(t)$� = g%

& #h(t)$D

�h(t) 

 
3. The basic concepts of FCT method 
The fractional complex transform[2,3] is defined as 

T =
kt�'

Γ1 + α�
 

 

(4) 
 

* =
-
./

31 + 4�
 

 

(5) 
 

Y =
my�5

Γ1 + α6
 

 

(6) 
 

Z =
nz�7

Γ1 + α8
 

(7) 
 

where �, -, 9, : are constants and 0 < 4� ≤ 1, 0 < 4� ≤ 1, 0 < 46 ≤ 1 , 0 < 48 ≤ 1.   
 
4. Outline of RPS Method 
Consider the time fractional gas dynamics equation 

D

�v = −vv� + cv(1 − v) + h(x, t)        t > 0,        0 < � ≤ 1,   ? > 0 (8) 

with initial condition 
v(x, 0) = g(x) (9) 
Applying the complex transformation [1] 
D@v(
, A) = −vv� + cv(1 − v) + h(x, T) (10) 
 
According to RPS Method, we expand v(
, A)as a power series about T = 0 in the following manner: 

v(x, T) = B CETE
F

E G �

 (11) 

Let vH(x, T) denotes the kth truncated series of  v(x, T). 

vH(x, T) = C� + B CETE,    k = 1,2,3 …
H

E G �

 (12) 

From Eqn. (9), it is easy to verify initial residual power series solution v�(x, T)is given by 
v�(x, T) = C� = v(x, 0) = g(x) (13) 
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From Eqn. (12), the kth residual power series approximation vH will be obtained by computing the 
components g�, g�, … gH . 
Before computing these components, we define the residual function 

Resi(x, T) = D@v + vv� − cv(1 − v) − h(x, T) (14) 
andkth residual functionResiH(x, T)as 
ResiH(x, T) = D@vH + vHvHJ − cvH(1 − vH) − h(x, T) (15) 
Here, we mention some useful results described in [5, 6, 12] which are essential in RPS method 
(i) Resi (x, T) = 0  
(ii) limH→F ResiH(x, T) = Res (x, T) for all x ∈ I and t ≥ 0 (16) 
(iii) D@

�ResiH(x, 0) = 0,   m = 0, 1, 2, 3, . . k  
Now, we have to find the coefficients g�(x), g�(x), … of the RPS solution (12) as follows: 
Substitute the kthtruncated series in to the Eqn. (15) and calculate the derivative D


N�� of  ResiH(x, T) , 
k =1, 2, 3 …together with Eqn. (16), we obtain the following algebraic system: 

D@
H��ResiH(x, 0) = 0,      k = 1, 2, 3, .. (17) 

From (15) and (17), we have 
�D@v� + v�v�J − cv�(1 − v�) − h(x, T)�

@G�
= 0 (18) 

D@
� �OPv� + v�v�J − cv�(1 − v�) − h(x, T)�

@G�
= 0 (19) 

D@
� �D@v6 + v6v6J − cv6(1 − v6) − h(x, T)�

@G�
= 0 (20) 

D@
6�D@v8 + v8v8J − cv8(1 − v8) − h(x, T)�

@G�
= 0 (21) 

and so on. 
From the above Eqns. (18) – (21), we can easily obtain the following components: 
C� = cC� − g�g�

& − cC�
� + h(x, 0) (22) 

2C� = cg� − g�g�
& − g�

& g� − 2cg�g� + ℎP(x, 0) (23) 
3C6 = cg� − g�g�

& − g�g�
& − g�

& g� − c(2g�g� + g�
�) + h@@(x, 0) (24) 

4C8 = cg6 − (g�g6
& + g�g�

& + g�
& g� + g�

& g6) − 2c(g�g6 + g�g�) + h@@@(x, 0) (25) 
  
5. Numerical case studies 
Example 5.1 Consider the differential equation (1) with c = 1, C�(x) = e��and h(x, t) = 0 
According to RPS method described in section 4, by applying the Eqns. (22) – (25), the first few 
coefficients of power series expansion are given by 

g�(x) = e��,   g�(x) =
e��

2
,   g6(x) =

e��

6
,   g8(x) =

e��

24
, .. 

Substituting the above values in to the Eqn. (12), we have 

v(x, t) = e�� + e�� V
��

3(1 + �)W +
e��

2!
V

��

Γ(1 + �)W
�

+
e��

3!
V

��

Γ(1 + �)W
6

+
e��

4!
V

��

3(1 + �)W
8

+ ⋯ 

which converges to the closed form solution 

v(x, t) = e��^ _`

a('b`)  
(26) 

which is exactly same as the results obtained by DTM[4], NHPM[8], HPM[9], FHAT[10],  NIM[13], 
FRDTM[16] when � = 1. 
Example 5.2 Consider the differential equation (1) with? = -jCo, C�(
) = o�pandh(
, �) = 0 
According to RPS method described in section 4, we are utilizing the Eqns. (22) – (25), the first few 
coefficients of power series expansion are given by 

g�(x) = o��(logb),   g�(x) =
b��(logb)�

2
,   g6(x) =

b��(logb)6

6
,   g8(x) =

b��(logb)8

24
, .. 

Substituting the above values in to the Eqn. (12), we have 
which converges to the closed form solution 
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v(x, t) = b�� + b��(logb) V
t�

Γ1 + β
W +

o��

2!
(logb)� V

t�

Γ1 + β
W

�

+
b��(logb)6

3!
V

t�

Γ1 + β
W

6

 

+
b��

4!
(logb)8 V

t�

Γ1 + β
W

8

+ ⋯ 
(27) 
 

v(x, t) = a�p^ _`

w('b`)           (28) 
which is exactly same as the results by FHAT[10], FRDTM[16] when � = 1. 
 
Example 5.3 Consider the differential equation (1) withc = 1, g�(x) = 1 − e��andh(x, t) = −e��^
 
According to RSP method, we can obtain the values of first few power series coefficients : 

g�(x) = −e��,   g�(x) = −
e��

2
,   g6(x) = −

e��

6
,   g8(x) = −

e��

24
, .. 

Substituting the above values in to the Eqn. (12), we have 

v(x, t) = 1 − e�� − e�� V
t�

Γ1 + β
W −

e��

2!
V

t�

Γ1 + β
W

�

−
e��

3!
V

t�

Γ1 + β
W

6

−
e��

4!
V

t�

Γ1 + β
W

8

− ⋯ 

which converges to the closed form solution 

v(x, t) = 1 − e��^ _`

a('b`) 
(29) 

which is exactly same as the results by LTNHPM [8], FRDTM[16] when � = 1. 
 
6. Conclusion 
In the present study, the RPS method via FCT has been successfully applied to obtain the solution of 
time fractional gas dynamics equationin the closed form. Thiscoupling techniqueneed not require any 
discretization, small perturbation and unrealistic assumptions. We can extend this approach to similar 
type of space time fractional differential equationsalso.Therefore, the proposed method is a promising 
tool for solvingfractional differential equations effectively.  
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