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Abstract. We report firstly a homemade femtosecond laser system (XL-III) developed in our 
institute, which can reach a peak power of 355TW. Then some of our recent results on the fast 
electron generation and transportation during laser-solid interactions, ion acceleration by 
collisionless electrostatic shocks waves are introduced briefly.  

1.  Introduction 
With the advent of the chirped-pulse amplification (CPA) technique, there has been rapid progress in 
the development of high-peak, ultra-short laser systems. To date, Ti:sapphire CPA laser systems with 
peak power of  multi-hundred TW and pulse duration of tens femtoseconds have been constructed. 
These systems are opening new research frontiers in high-field laser-matter interactions, which result 
in numerous potential applications, such as particle acceleration, novel radiation sources, fast ignition 
of fusion targets, high energy density physics, and some fundamental physics, etc. 

Since 1999, we have been focusing our attention on the ultra-intense ultra-short (UIUS) laser 
system construction, particle acceleration and transportation during the interaction of UIUS laser 
pulses with all kinds of materials, such as solid and gaseous targets.  

In this paper, we review some our recent progress in the above aspects. Firstly the homemade 355 
TW femtosecond Ti:sapphire laser system with only three stage amplifiers is introduced. Then we 
discuss the fast electron generation and transportation during laser solid interaction and ion 
acceleration by collisionless electrostatic shock waves, which are related to the fast ignition scheme of 
inertial confined fusion.  

2.  Multi-hundred TW femtosecond laser system: XL-III 
In general, more than four stage amplifiers are necessary to boost the laser peak power to higher than 
100TW, which need large space and a lot of pump resources. Recently, we have developed a compact 
multi-hundred TW femtosecond Ti:sapphire facility with only three stage amplifiers. The final 
amplifier was pumped by an energetic single-shot Nd:glass laser system. With 80J/15ns pump energy 
at 527nm, 700mJ/600ps chirped pulse was amplified to 21J by reducing the effects of parasitic lasing 
(PL) and amplified spontaneous emission (ASE). By spectrum shaping with an acoustic optics 
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modulator (AOM) and chirp compensating with a vacuum compressor, the laser output at 11J/31fs 
was obtained with a corresponding peak power of 355TW.  

 
Figure 1. The schematic layout of 355TW laser system 

 
The Ti:sapphire laser system consists of a home-made Ti:sapphire oscillator, an Öffner stretcher, 

a regenerative amplifier, two multi-pass amplifiers, and a vacuum compressor. Figure 1 is the 
schematic layout. Seed pulses were derived from a Ti:sapphire Kerr-lensing mode-locked oscillator 
pumped by a 5W frequency-doubled CW diode-pumped Nd:YVO4 laser (Spectra-physics Ins.). The 
oscillator generates the train of pulses with 20fs duration at the repetition rate of 82MHz, single pulse 
energy is about 6nJ and operates on 800nm center wavelength with 50nm FWHM bandwidth. After 
passing through a Faraday isolator, the pulse train was stretched by a typical all reflective Öffner-
triplet stretcher. Our stretcher consists of a single 1480-grooves/mm gold-coated grating, one concave 
spherical mirror and one convex spherical mirror. In our design, the large size of optical elements and 
careful alignment could minimize the spectral clipping and spatial chirp in it. The stretched pulses 
were then amplified in a regenerative amplifier, which was pumped by 50mJ pulses of 532nm at 10 Hz. 
The amplifier provided a net gain of approximately 107, which led to 4mJ output with 600ps pulse 
duration (FWHM). To reduce the gain narrowing effect in pre-amplifier, we used a commercial 
acoustic optics modulator (DAZZLER™ WB-800, Fastlite Inc.) to shape the spectrum. In order to 
minimize the prepulse, two good-quality crossed Glan-laser prisms and a pockels cell were used as a 
single pulse selector after regenerative amplifier. Then the beam was enlarged to 14mm and sent into 
the second stage amplifier for further amplification.  

The second stage amplifier is designed as a 6-pass one. In this amplifier, a φ 25x15mm 
Ti:sapphire crystal was pumped from both sides by 2.6J of energy at 532nm, and about 700mJ of 
energy was got with ideal beam quality. Before injected into the final amplifier, the beam size was 
expanded to 60mm with a telescope, which was set in a vacuum chamber. And the design of image 
relay could eliminate the ASE of the chirped laser pulse and restore the original beam quality. 

The Ti:sapphire disk used in the final amplifier has a size of 85x20mm with antireflection coating 
on both surface. In order to eliminate the PL and ASE, the crystal was cut into V shape and held with 
the absorptive polymer thermoplastic (Cargille Laboratories, Inc.) around. The pump source was a 
single shot Nd:glass laser with two outputs, each output beam can supply 50J energy at the SHG 
wavelength of 527nm per 20min. In the experiment, the optimized output energy cannot be obtained 
under full pump energy. We think that the high pump will generate strong PL and ASE, which 
consumed the gain and led to the decreasing of laser output energy. In addition, the injected energy 
was just 700mJ, so the saturated output energy in the final amplifier need more pass amplification. 
After a lot of optimized experiments, the stable output energy of around 21J was obtained with 9 pass 
amplification under 80 J pump energy, and the stability was about 1% for three shots within 1.5hous. 
By replacing the crystal with a thicker one to reduce the PL and ASE, we expect that the output energy 
can be further increased. 

After the amplifier, the output beam was up-collimated with a telescope and sent into the 
compressor. The beam size was expanded to 120mm. The compressor consists of four gold coated 
holographic gratings (Jobin-Yvon Inc.) with groove of 1480 lines/mm, the size of grating 1 and 4 was 
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230x180x30mm, one of grating 2 and grating 3 was 460x210x50mm. The total transmission of the 
telescope and compressor system was about 52.3%, yielding compressed output pulse energy of 11J 
with pulse duration of 31fs, which implied a peak pulse power of 355TW. 

3.  Fast electron generation and transportation 
Fast electron generation and transportation are hot topics in the high field physics for their relevance 
with the fast ignition scheme. In our recent laser solid interaction experiments with a large laser 
incidence angle (>60o) conducted with our laser system XL-II, we find a new electron emission 
direction which is along the target front surface [1]. This observation experimentally demonstrates the 
electron guiding during the cone guided fast ignition scheme proposed by Kodama in 2001 [2].  

 
Figure 2(a) shows the angular distribution of the electrons in one of our experiments. The laser 

pulse is p-polarized with an energy up to 0.6J in 30fs at 800nm, the incidence angle is 70o, the target is 
a 30µm thick aluminum foil, and the diameter of the focus is 10µm. As figure 2(a) shows the electrons 
are mainly emitted along the target surface. This is quite different from the earlier reports, usually in 
the target normal or laser reflected direction. We check the dependence of the surface emission on the 
laser and target parameters and find it can only appears in the condition of large incidence angles and a 
target with short pre-plasma scale length. To explain the new feature of this emission, we have made 
two-dimensional PIC simulations as shown in figure 2(b), where most of the parameters are the same 
as the experiment. We find electrons are really oscillating and moving along the target front surface. 
This is because of the static electric and magnetic fields, which tend to confine some energetic 
electrons at the target surface and make them to do betatron oscillations. Further studies show 
electrons can even resonant with the reflected laser pulse and be accelerated when the oscillating 
frequency is the same as the laser frequency seen in the moving frame of the electrons [3].  
       When we decrease the incidence angle (<60o), four groups of collimated emissions of fast 
electrons along the front and rear target surfaces are observed. This multi-peak characterization is 
found to be independent of the polarization states. Numerical simulations reveal that the electron 
beams are formed due to the deformation of the target surface and then guided by the induced 
quasistatic electromagnetic fields [4].  

4.  Ion acceleration by collisionless electrostatic shock waves 
In recent years, ion acceleration has received extensively attention. This has been motivated by the 
wide potential applications of the ion beams in laser fusion, proton therapy, radioisotope production, 
etc. Usually ion acceleration results from the large space-charge fields set up both at front and rear 
surfaces of the target irradiated by an UIUS laser pulses.  Here we report an ion acceleration 
mechanism related with the collisionless electrostatic shock wave, by which ions can be accelerated 
inside the solid density target and the energy spectrum is monoenergetic.  

(a) (b) 
Figure 2. (a) The angular distribution of the electrons with energies >300keV for the incidence 
angle of 70o; (b) Schematic of 2D PIC simulation and selected electron trajectories along the 
target surface. The inset illustration shows the plasma density profile  along the target normal.  
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Figure 3. (a) Snapshot of the ion density in 2D 
space at t=40T0; (b) The space-time evolution of 
the laser fields. The ion density contour lines of 
45 nc are also overplotted; (c) The longitudinal 
density distributions of the ions and electrons, 
and the longitudinal electric field on the laser 
axis at t=30T0; (d) The space-time evolution of 
the ion density distribution on the laser axis. Here 
the normalized laser electric field is a0=5, and the 
target density is 20nc.  

Figure 4. (a) Two typical trajectories of ions 
accelerated in two colliding electrostatic 
shocks waves driven by two laser pulses from 
two sides. The background shows space-time 
evolution of the longitudinal field. (b) 
Longitudinal momentum distribution of the 
ions at different time. (c) and (d) show the 
evolution of the longitudinal momenta and the 
fields experienced by the ions with the white 
and black trajectories shown in (a), 
respectively. 

 
We have done 2D PIC simulations as shown in figure 3(a)-3d) [5]. Usually when the laser 

irradiates a target, its pondermotive force accelerates the electrons and then ions are accelerated by the 
space-charge field. If the speed of the ion beam in front of the target is larger than the ion acoustic 
speed, shock wave can be generated. When the shock wave propagates in the target, its bipolar field 
can accelerate the ions in front of it to the speed of twice the shock speed.  Parameter scan simulations 
show, shock waves can be formed in a large laser plasma conditions, even the laser intensity is 
1018W/cm2. However it is sensitive to the pre-plasma scale-length, which should be short enough [5]. 

We further studied multiple species of ions acceleration in two colliding shock waves [6].  One-
dimensional PIC simulation shows ions with higher ratio of charge to mass (higher R) can be reflected 
many times in the shock waves composed of ions with lower R. In figure 4(a) we have shown the two 
typical ion trajectories, which show the light ions reflected many times by the two shock waves. 
Figure 4(c) and 4(d) shows the evolution of their longitudinal momenta. As we can see, ion energy 
increases once they are reflected by the shock. This affords a new method to increase the final energy 
by the shock acceleration and such kind of mechanism may also happen in space plasmas.  
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