Local exponents of primitive two-colored digraph with cycles of length s and $2s - 1$

To cite this article: Mardiningsih et al 2018 J. Phys.: Conf. Ser. 1116 022022

View the article online for updates and enhancements.
Local exponents of primitive two-colored digraph with cycles of length \(s \) and \(2s - 1 \)

Mardiningsih\(^*\), Sawaludin Nasution and Syahriol Sitorus

Department of Mathematics, University of Sumatera Utara, Medan 20155, Indonesia

E-mail: \(^*\)mardiningsih@usu.ac.id

Abstract. Let \(D \) be a digraph on \(n \) vertices \(\{v_1, v_2, \ldots, v_n\} \). A two-colored digraph \(D(2) \) is a digraph \(D \) such that each of its arcs is colored by red or blue. An \((h, k)\)-walk is a walk with precisely \(h \) red arcs and \(k \) blue arcs. A strongly connected two-colored digraph is primitive if there are nonnegative integers \(h \) and \(k \) such that for each two vertices \(v_i \) and \(v_j \) there is a \((h, k)\)-walk from \(v_i \) to \(v_j \) and a \((h, k)\)-walk from \(v_j \) to \(v_i \). The local exponent of a two-colored digraph \(D(2) \) at the vertex \(v_i \), denoted by \(\exp(v_i, D(2)) \), is the least positive integer \(h_i + k_i \) over all nonnegative integers \(h_i \) and \(k_i \) such that for every vertex \(v_i, i = 1, 2, \ldots, n \), there is a \((h_i, k_i)\)-walk from \(v_i \) to \(v_j \). For some positive integer \(s \geq 6 \), we discuss the local exponent of each vertex \(v_i \) in \(D(2) \) where \(D(2) \) is a primitive two-colored digraph containing precisely a cycle of length \(s \) and a cycle of length \(2s - 1 \).

1. Introduction

Let \(D \) be a digraph with vertex set \(V(D) = \{v_1, v_2, \ldots, v_n\} \). A walk of length \(\ell \) from a vertex \(v_i \) to a vertex \(v_j \) is a sequence of \(\ell \) arcs of the form \(v_i = u_0 \rightarrow u_1, u_1 \rightarrow u_2, \ldots, u_{\ell-1} \rightarrow u_{\ell} = v_j \). We denote this walk by \(v_i \rightarrow^\ell v_j \). A \(v_i \rightarrow v_j \) walk is open whenever \(v_i \neq v_j \) and is closed whenever \(v_i = v_j \). A path from \(v_i \) to \(v_j \) is a \(v_i \rightarrow v_j \) walk without repeated vertices except possibly \(v_i = v_j \). A cycle is closed path. The distance from a vertex \(v_i \) to a vertex \(v_j \), denoted by \(d(v_i, v_j) \), is the length of a shortest \(v_i \rightarrow v_j \) path. A digraph is strongly connected provided for each ordered pair of vertices \(v_i \) and \(v_j \) there is a \(v_i \rightarrow v_j \) walk.

A two-colored digraph \(D(2) \) is a digraph \(D \) where each of its arcs is colored by red or blue. An \((h, k)\)-walk from a vertex \(v_i \) to a vertex \(v_j \) in a two-colored digraph \(D(2) \), denoted by \(v_i \xrightarrow{(h,k)} v_j \), is a walk of length \(h + k \) consisting of \(h \) red arcs and \(k \) blue arcs. For a \(v_i \xrightarrow{} v_j \) walk \(W_{v_i,v_j} \) in \(D(2) \), \(r(W_{v_i,v_j}) \) denotes the number of red arcs in \(W_{v_i,v_j} \), and \(b(W_{v_i,v_j}) \) denotes the number of blue arcs in \(W_{v_i,v_j} \). The length of the walk \(W_{v_i,v_j} \) is \(\ell(W_{v_i,v_j}) = r(W_{v_i,v_j}) + b(W_{v_i,v_j}) \). The vector \(\begin{bmatrix} r(W_{v_i,v_j}) \\ b(W_{v_i,v_j}) \end{bmatrix} \) is the composition of \(W_{v_i,v_j} \).

A two-colored digraph \(D(2) \) is primitive whenever there are nonnegative integers \(h \) and \(k \) such that for each ordered pair of vertices \(v_i \) and \(v_j \) in \(D(2) \) there is a \(v_i \xrightarrow{(h,k)} v_j \) walk. The smallest positive integer \(h + k \) over all such pairs of nonnegative integers \(h \) and \(k \) is the exponent of \(D(2) \) \cite{2}. The local exponent of a vertex \(v_i \) in a primitive two-colored digraph \(D(2) \), denoted by \(\expin(v_i, D(2)) \), is the smallest positive integer \(h_i + k_i \) over all pairs of nonnegative integers

\(h, k \)
(h_t, k_t) such that for each vertex v_i in D(2) there is a v_i \((h_t, k_t)\) v_t walk. See a similar definition of local exponent on [3].

Gao and Shao [3] discussed local exponent of two-colored Wielandt digraph, that is a two-colored Hamiltonian two-cycles consisting of an n-cycle and an \((n-1)\)-cycle. Mardiningsih et al. [8] discussed local exponent of primitive two-colored digraphs consisting of two cycles whose lengths differ by one. More result on local exponents of primitive two-colored digraphs can be found on [4–7, 9].

For \(s \geq 6 \), we discuss local exponents of two-colored digraph consisting of two cycles of length \(s \) and \(2s-1 \) whose uncolored digraph is shown in Figure 1.

![Figure 1. Two-colored digraphs with cycles of length s and 2s-1](image)

In section 2 we discuss primitivity of two-colored digraph and a way in setting up lower bounds for local exponents. In Section 3, we present our results that show for each \(t = 1, 2, \ldots, n \) the \(\exp(v_t, D^{(2)}) = \exp(v_1, D^{(2)}) + d(v_1, v_t) \).

2. Preliminary Background

Let \(D^{(2)} \) be a two-colored digraph and let \(C = \{C_1, C_2, \ldots, C_p\} \) be the set of all cycles in \(D^{(2)} \). A cycle matrix of \(D^{(2)} \) is a 2 by \(p \) matrix such that its \(i \)th column, for \(i = 1, 2, \ldots, p \), is the composition of the \(i \)th cycle \(C_i \), that is \(M = \begin{bmatrix} r(C_1) & r(C_2) & \cdots & r(C_p) \\ b(C_1) & b(C_2) & \cdots & b(C_p) \end{bmatrix} \). The content of a cycle matrix \(M \) is defined to be zero if the rank of \(M \) is 1, and the content of \(M \) is defined to be the greatest common divisor of the determinants of all \(2 \times 2 \) submatrices of \(M \), otherwise. The following result presents an algebraic characterization of a primitive two-colored digraph.

Theorem 1. [1] Let \(D^{(2)} \) be a strongly connected two-colored digraph with at least one arc of each color and let \(M \) be a cycle matrix of \(D^{(2)} \). The two-colored digraph \(D^{(2)} \) is primitive if and only if the content of \(M \) is 1.

The following lemma present a way in setting up a lower bound for local exponent for two-colored digraph consisting of two cycles.

Lemma 2. Let \(D^{(2)} \) be a primitive two-colored digraph consisting of two cycles \(C_1 \) and \(C_2 \). If \(\det(M) = 1 \) and \(\exp(v_t, D^{(2)}) \) is obtained by \((h_t, k_t)\)-walks, then \(\begin{bmatrix} h_t \\ k_t \end{bmatrix} \geq M \begin{bmatrix} b(C_2)r(P_{v_t,v_1}) - r(C_2)b(P_{v_1,v_t}) \\ r(C_1)b(P_{v_t,v_1}) - b(C_1)r(P_{v_1,v_t}) \end{bmatrix} \) for some paths \(P_{v_t,v_1} \) and \(P_{v_1,v_t} \).

Let \(f_1 = b(C_2)r(P_{v_t,v_1}) - r(C_2)b(P_{v_1,v_t}) \) and \(f_2 = r(C_1)b(P_{v_t,v_1}) - b(C_1)r(P_{v_1,v_t}) \). Lemma 2 implies that

\[
\exp(v_t, D^{(2)}) \geq \ell(C_1)f_1 + \ell(C_2)f_2
\]

for some paths \(P_{v_t,v_1} \) and \(P_{v_1,v_t} \).
3. Results

For the rest of the paper we discuss the local exponents of two-colored digraph \(D^{(2)} \) consisting of two cycles \(C_1 : v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_c \rightarrow v_{c+1} \rightarrow \cdots \rightarrow v_s \rightarrow v_1 \) of length \(s \) and \(C_2 : v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_c \rightarrow v_{s+1} \rightarrow v_{s+2} \rightarrow \cdots \rightarrow v_n \rightarrow v_1 \) of length \(2s - 1 \) as shown in Figure 1. Let the cycle matrix of \(D^{(2)} \) be \(M = \begin{bmatrix} r(C_1) & r(C_2) \\ b(C_1) & b(C_2) \end{bmatrix} \). As a consequence of Theorem 1 it is not hard to show following result.

Corollary 3. Let \(D^{(2)} \) be a two-colored digraph consisting of two cycles of length \(s \) and \(2s - 1 \), respectively. If \(D^{(2)} \) is primitive and \(\det(M) = 1 \), then the cycle matrix of \(D^{(2)} \) is
\[
M = \begin{bmatrix} s - 1 & 2s - 3 \\ 1 & 2 \end{bmatrix}.
\]

By Corollary 3 the two-colored digraph \(D^{(2)} \) either has two blue arcs or has three blue arcs. We first discuss the local exponents for the case where the two-colored digraph \(D^{(2)} \) has two blue arcs. We note, in this case, that the blue arcs of \(D^{(2)} \) are the arc of the form \(v_x \rightarrow v_{x+1} \) for some \(1 \leq x \leq c - 1 \) and the arc of the form \(v_y \rightarrow v_{y+1} \) for some \(s + 1 \leq y \leq n \). Let \(d_1 = d(v_{x+1}, v_1) \) and \(d_2 = d(v_{y+1}, v_1) \).

Theorem 4. Let \(D^{(2)} \) be a primitive two-colored digraph consisting of two cycles of length \(s \) and \(2s - 1 \), respectively. If \(D^{(2)} \) has two blue arcs \(v_x \rightarrow v_{x+1} \), for some \(1 \leq x \leq c - 1 \) and \(v_y \rightarrow v_{y+1} \), for some \(s + 1 \leq y \leq n \), then
\[
\exp(v_t, D^{(2)}) = \begin{cases}
2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t), & \text{if } d_1 \leq d_2 \\
2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t), & \text{if } d_1 > d_2
\end{cases}
\]
for each \(t = 1, 2, \ldots, n \).

Proof. We employ Lemma 2 in order to get the lower bound. We split the proof into two cases where \(d_1 \leq d_2 \) and \(d_1 > d_2 \).

Case 1. \(d_1 \leq d_2 \)

To show the lower bounds, we consider paths \(P_{v_{y+1}, v_t} \) and \(P_{v_x, v_t} \). We define \(f_1 = b(C_2)r(P_{v_{y+1}, v_t}) - r(C_2)b(P_{v_{y+1}, v_t}) \) and \(f_2 = r(C_1)b(P_{v_x, v_t}) - b(C_1)r(P_{v_x, v_t}) \) and
\[
M = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}.
\]

The vertex \(v_t \) lies on the \(v_1 \rightarrow v_x \) path. There is a \((d_2 + d(v_1, v_t), 0)\)-path \(P_{v_{y+1}, v_t} \) from \(v_{y+1} \) to \(v_t \) using this path we have \(f_1 = (2)(d_2 + d(v_1, v_t)) - (2s - 3)(0) = 2d_2 + 2d(v_1, v_t) \). There are two paths \(P_{v_x, v_t} \) from \(v_x \) to \(v_t \) which are a \((d_1 + d(v_1, v_t), 1)\)-path and a \((2s - 2 + d_1 + d(v_1, v_t), 2)\)-path. Using the \((d_1 + d(v_1, v_t), 1)\)-path we have \(f_2 = s - 1 - d_1 - d(v_1, v_t) \). Using the \((s - 2 + d_1 + d(v_1, v_t), 2)\)-path we have \(f_2 = s - d_1 - d(v_1, v_t) \). We conclude that \(f_2 = s - d_1 - d(v_1, v_t) \). Therefore,
\[
\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 2s^2 + s(2d_2 - 2d_1 - 5) + 3 + 3d_1 - 2d_2 + d(v_1, v_t) \\ 2s - 2 - 2d_1 + 2d_2 \end{bmatrix}.
\]

By Lemma 2 we have \(\exp(v_t, D^{(2)}) \geq p + q = 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \) for each vertex \(v_t \) that lies on the \(v_1 \rightarrow v_x \) path.

The vertex \(v_t \) lies on the \(v_{y+1} \rightarrow v_y \) or \(v_{x+1} \rightarrow v_x \) path. There is a \((d_2 + d(v_1, v_t) - 1, 1)\)-path from \(v_{y+1} \) to \(v_t \). Using this path we have \(f_1 = 2d_2 + 2d(v_1, v_t) + 1 - 2s \). There is a \((d_1 + d(v_1, v_t) - s, 1)\)-path from \(v_x \) to \(v_t \). Using this path we have \(f_2 = 2s - 1 - d_1 - d(v_1, v_t) \).
By (1) we have \(\exp(v_t, D^{(2)}) \geq 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \) for each vertex \(v_t \) that lies on the \(v_{x+1} \rightarrow v_y \) or \(v_{x+1} \rightarrow v_x \) path.

The vertex \(v_t \) lies on the \(v_{y+1} \rightarrow v_n \) path. Using the \((d_2 - d(v_1, v_i), 0)-path from v_{y+1} to v_t\) we find that \(f_1 = 2d_2 - 2d(v_1, v_t) \). Using the \((s_2 - d(v_1, v_i), 2)-path from v_x to v_t\) we find that \(f_2 = s - d_1 + d(v_1, v_t) \). Hence \(s + f_1 + (2s_2 - 1)f_2 = 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \). Since \(d(v_1, v_t) = 2s_1 - 1 - d(v_1, v_t) \), by (1) \(\exp(v_t, D^{(2)}) \geq 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \) for each vertex \(v_t \) lies on the \(v_{y+1} \rightarrow v_n \) path.

Therefore, for each \(t = 1, 2, \ldots, n \), we have \(\exp(v_t, D^{(2)}) \geq 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \).

We now show that \(\exp(v_t, D^{(2)}) \leq 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \). We first show that, for each \(j = 1, 2, \ldots, n \), there is a \(v_j \rightarrow v_1 \) walk with \(h = 2s^2 + s(2d_2 - 2d_1 - 5) + 3 + d_1 - 2d_2 \) and \(\ell = 2s - 2 - d_1 - 2d_2 \). It suffices to show that the system

\[
Mz + \begin{bmatrix} r(P_{v_1, v_1}) \\ b(P_{v_1, v_1}) \end{bmatrix} = \begin{bmatrix} h \\ \ell \end{bmatrix}
\]

has a nonnegative integer solution for some path \(P_{v_j, v_1} \) from \(v_j \) to \(v_1 \).

The solution to the system (2) is \(z_1 = 2d_2 + (2s - 3)b(P_{v_1, v_1}) - 2r(P_{v_1, v_1}) \) and \(z_2 = s - 1 - d_1 + r(P_{v_1, v_1}) - (s - 1)b(P_{v_1, v_1}) \). If the vertex \(v_j \) lies on the \(v_1 \rightarrow v_x \) path, then there is a \((r(P_{v_1, v_1}), 1)-path from \(v_j \) to \(v_1 \) with \(d_1 \leq r(P_{v_1, v_1}) \leq s - 2 \). Using this path we find \(z_1 = 2d_2 - 2r(P_{v_1, v_1}) + 2s - 3 \) and \(z_2 = r(P_{v_1, v_1}) - d_1 \). Since \(r(P_{v_1, v_1}) \leq s - 2 \), we have \(z_1 \geq 2d_2 + 1 > 0 \). Since \(r(P_{v_1, v_1}) \geq d_1 \), we have \(z_2 \geq 0 \).

If the vertex \(v_j \) lies on the \(v_{y+1} \rightarrow v_y \) path, then there is a \((r(P_{v_1, v_1}), 1)-path from \(v_j \) to \(v_1 \) with \(d_2 \leq r(P_{v_1, v_1}) \leq 2s - 2 - c \). Using this path we have \(z_1 = 2s - 3 + 2d_2 - 2r(P_{v_1, v_1}) \) and \(z_2 = r(P_{v_1, v_1}) - d_1 \). Since \(r(P_{v_1, v_1}) \leq 2s - 2 - c \) and \(d_1 + c > s \), we have \(z_1 \geq 2(d_2 + c) - (2s - 1) \geq 2(d_1 + c) - (2s - 1) > 1 \). Since \(r(P_{v_1, v_1}) \geq d_2 \geq d_1 \), we have \(z_2 \geq 0 \).

If the vertex \(v_j \) lies on the \(v_{y+1} \rightarrow v_n \) path or on the \(v_{x+1} \rightarrow v_x \) path, then there is a \((r(P_{v_1, v_1}), 0)-path form \(v_j \) to \(v_1 \) with \(0 \leq r(P_{v_1, v_1}) \leq d_2 \). Using this path we find that \(z_1 = 2d_2 - 2r(P_{v_1, v_1}) \) and \(z_2 = s - 1 - d_1 + r(P_{v_1, v_1}) \). Since \(r(P_{v_1, v_1}) \leq d_2 \), we have \(z_1 \geq 0 \). Since \(d_1 \leq s - 1 \) and \(r(P_{v_1, v_1}) \geq 0 \), we have \(z_2 \geq r(P_{v_1, v_1}) \geq 0 \).

Therefore, for each \(j = 1, 2, \ldots, n \), there is a path \(P_{v_j, v_1} \) such that the system (2) has a nonnegative integer solution. This implies the walk that starts at \(v_j \), moves to \(v_1 \) along the chosen path \(P_{v_j, v_1} \), and then moves \(z_1 \) and \(z_2 \) times around the cycle \(C_1 \) and \(C_2 \), respectively, is a \(v_1 \rightarrow v_1 \) walk. Notice that for each vertex \(v_t, t = 2, 3, \ldots, n \), there is a unique path \(P_{v_t, v_1} \) from \(v_t \) to \(v_1 \) of length \(d(v_1, v_t) \). This implies for each vertex \(v_j, j = 1, 2, \ldots, n \), there is a \((h + r(P_{v_1, v_1})) \), \(\ell + b(P_{v_1, v_1}) \)-walk from \(v_j \) to \(v_1 \). Thus, \(\exp(v_t, D^{(2)}) \leq h + \ell + d(v_1, v_t) = 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \).

Therefore, we now conclude that for each \(t = 1, 2, \ldots, n \) we have \(\exp(v_t, D^{(2)}) = 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t) \).

Case 2. \(d_1 > d_2 \)

To show the upper bounds, we consider paths \(P_{v_{x+1}, v_1} \) and \(P_{v_y, v_t} \). We define \(f_1 = b(C_2)r(P_{v_{x+1}, v_1}) - r(C_2)b(P_{v_{x+1}, v_1}) \) and \(f_2 = r(C_1)b(P_{v_y, v_1}) - b(C_1)r(P_{v_y, v_1}) \) and

\[
M = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}
\]

The vertex \(v_t \) lies on the \(v_1 \rightarrow v_x \) path. Using the \((s_2 - d_1 + d(v_1, v_i), 1)-path from v_{x+1} to v_t\) we have \(f_1 = 2d_1 - 1 + d(v_1, v_t) \). Using the \((d_2 + d(v_1, v_i), 1)-path from v_y to v_t\) we have \(f_2 = s - 1 - d_2 - d(v_1, v_t) \). Therefore,

\[
\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 2s^2 + s(2d_1 - 2d_2 - 6) + 4 - 2d_1 + 3d_2 + d(v_1, v_t) \\ 2s - 3 + 2d_1 - 2d_2 \end{bmatrix}
\]
Lemma 2 implies $\exp(v_1, D^{(2)}) \geq 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$ for each vertex v_t that lies on the $v_1 \rightarrow v_s$ path.

The vertex v_t lies on the $v_{x+1} \rightarrow v_s$ path or on the $v_{x+1} \rightarrow v_y$ path. Using the $(d_1 + d(v_1, v_t) - s, 0)$-path from v_{x+1} to v_t we have $f_1 = 2d_1 + 2d(v_1, v_t) - 2s$. Using the $(d_2 + d(v_1, v_t) - 1, 2)$-path form v_y to v_t we have $f_2 = 2s - 1 - d_2 - d(v_1, v_t)$. By (1) we have $\exp(v_1, D^{(2)}) \geq 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$ for each vertex v_t that lies on the $v_{x+1} \rightarrow v_s$ path or on the $v_{x+1} \rightarrow v_y$ path.

The vertex v_t lies on the $v_{y-1} \rightarrow v_n$ path. Using the $(s - 2d_1 - 2d(v_1, v_t), 1)$-path from v_{x+1} to v_t we have $f_1 = 2d_1 - 2d(v_1, v_t) - 1$. Using the $(d_2 - d(v_1, v_t), 1)$-path from v_y to v_t we have $f_2 = 2s^2 + s(2d_1 - 2d_2 - 6) + 4 - 2d_1 + 3d_2 - d(v_1, v_t)$. Therefore, $[p \ q] = \left[\begin{array}{c} 2d_1 - 2d_2 + 2s - 3 \\ 2 \end{array} \right]$.

We next examine the existence of the $v_y \rightarrow v_t$ walk in $D^{(2)}$. Since the path P_{v_y, v_1} is a $(d_2 - d(v_1, v_t), 1)$-path and the solution to the system $Mz + \left[\begin{array}{c} d_2 - d(v_1, v_t) \\ 1 \end{array} \right] = \left[\begin{array}{c} p \\ q \end{array} \right]$ is $z_1 = 2s - 4 + 2d_1 - 2d_2$ and $z_2 = 0$, there is no $v_y \rightarrow v_t$ walk in $D^{(2)}$. Hence $\exp(v_1, D^{(2)}) > p + q$. Notice that the shortest $v_y \rightarrow v_t$ walk that contains at least p red arcs and at least q blue arcs is a $(p + 2s - 3, q + 2)$-walk. Hence we now conclude that $\exp(v_1, D^{(2)}) \geq p + q + 2s - 1$. Since $2s - 1 - d(v_1, v_t) = d(v_1, v_t)$, we conclude that $\exp(v_1, D^{(2)}) \geq 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$ for each vertex v_t that lies on the $v_{y+1} \rightarrow v_n$ path.

Therefore, we now conclude that the $\exp(v_1, D^{(2)}) \geq 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$ for each $t = 1, 2, \ldots, n$.

We next show that $\exp(v_1, D^{(2)}) \leq 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$ for each $j = 1, 2, \ldots, n$, we first show there is a $v_j \rightarrow v_1$ walk with $h = 2s^2 + s(2d_1 - 2d_2 - 6) + 4 - 2d_1 + 3d_2$ and $\ell = 2s - 3 + 2d_1 - 2d_2$. It suffices to show that the system

$$
Mz + \left[\begin{array}{c} r(P_{v_j, v_1}) \\ b(P_{v_j, v_1}) \end{array} \right] = \left[\begin{array}{c} h \\ \ell \end{array} \right]
$$

has a nonnegative integer solution for some path P_{v_j, v_1} from v_j to v_1.

The solution to the system (3) is $z_1 = 2d_1 - 1 + (2s - 3)b(P_{v_j, v_1}) - 2r(P_{v_j, v_1})$ and $z_2 = s - 1 - d_2 + r(P_{v_j, v_1}) - (s - 1)b(P_{v_j, v_1})$. If the vertex v_j lies on the $v_1 \rightarrow v_s$ path, then there is a $(r(P_{v_j, v_1}), 1)$-path from v_j to v_1 with $d_1 \leq r(P_{v_j, v_1}) \leq s - 2$. Using this path we find that $z_1 = 2s - 4 + 2d_1 - 2r(P_{v_j, v_1})$ and $z_2 = r(P_{v_j, v_1}) - d_2$. Since $r(P_{v_j, v_1}) \leq s - 2$, we have $z_1 \geq 2d_1$. Since $r(P_{v_j, v_1}) \leq d_1 > d_2$, we have $z_2 \geq 1$.

If the vertex $v_j = v_{x+1}$, there is a $(s - 2 + d_1, 1)$-path from v_j to v_1. Using this path we have $z_1 = 0$ and $z_2 = s - 2 + d_1 - d_2$. Since $d_1 > d_2$, we have $z_2 \geq 1$.

If the vertex v_j lies on the $v_{x+2} \rightarrow v_s$ path or $v_{y+1} \rightarrow v_n$ path, then there is a $(r(P_{v_j, v_1}), 0)$-path from v_j to v_1 with $0 \leq r(P_{v_j, v_1}) \leq d_1 - 1$. Using this path we find $z_1 = 2d_1 - 1 - 2r(P_{v_j, v_1})$ and $z_2 = s - 1 - d_2 + r(P_{v_j, v_1})$. Since $r(P_{v_j, v_1}) \leq d_1 - 1$, we have $z_1 \geq 1$. Since $s - 1 \geq d_1 > d_2$ and $r(P_{v_j, v_1}) \geq 1$, we have $z_2 \geq s - 1 - d_2 \geq s - 1 - d_1 \geq 0$.

If the vertex v_j lies on the $v_{y+1} \rightarrow v_n$ path, then there is a $(r(P_{v_j, v_1}), 1)$-path from v_j to v_1 with $d_2 \leq r(P_{v_j, v_1}) \leq 2s - 2 - c$. Using this path we have $z_1 = 2s - 4 + 2d_1 - 2r(P_{v_j, v_1})$ and $z_2 = r(P_{v_j, v_1}) - d_2$. Since $d_1 + c > s$ and $r(P_{v_j, v_1}) \leq 2s - 2 - c$, we have $z_1 \geq 2$. Since $d_2 \leq r(P_{v_j, v_1})$, we have $z_2 \geq 0$.

Therefore, for each $j = 1, 2, \ldots, n$, there is a path P_{v_j, v_1} such that the system (3) has a nonnegative integer solution. This implies there is a $(h + r(P_{v_j, v_1}), \ell + b(P_{v_j, v_1}))$-walk from v_j to v_1. Hence, $\exp(v_1, D^{(2)}) \leq 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$. Therefore, we now conclude that $\exp(v_1, D^{(2)}) = 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$ for each $t = 1, 2, \ldots, n$. There is a $(h + r(P_{v_j, v_1}), \ell + b(P_{v_j, v_1}))$-walk from v_j to v_1. Hence, $\exp(v_1, D^{(2)}) \leq 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t)$.
Therefore, we now conclude that \(\exp(v_t, D^{(2)}) = 2s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_2 + d(v_1, v_t) \) for each \(t = 1, 2, \ldots, n \).

We now consider the case where the two-colored digraph \(D^{(2)} \) has three blue arcs. Notice that the blue arcs of \(D^{(2)} \) are the arcs of the form \(v_x \rightarrow v_{x+1}, c \leq x \leq s, v_y \rightarrow v_{y+1}, s + 1 \leq y \leq n - 1 \) and \(v_z \rightarrow v_{z+1}, y + 1 \leq z \leq n \). Let \(d_1 = d(v_{x+1}, v_1) \), \(d_3 = d(v_{y+1}, v_1) \) and \(d_2 = d(v_{z+1}, v_1) \). We note that \(d_2 < d_3 \). We consider three cases, they are when \(d_2 < d_3 \leq d_1 \), \(d_1 \leq d_2 < d_3 \), and \(d_2 < d_1 < d_3 \).

Theorem 5. Let \(D^{(2)} \) be a primitive two-colored digraph consisting of two cycles of length \(s \) and \(2s - 1 \), respectively. If \(D^{(2)} \) has three blue arcs and \(d_2 < d_3 \leq d_1 \), then for each \(t = 1, 2, \ldots, n \), the \(\exp(v_t, D^{(2)}) = 4s^2 + s(2d_1 - 2d_2 - 4) + 1 + d_3 + d(v_1, v_t) \).

Proof. To show the lower bounds, we consider the paths \(P_{v_{x+1}, v_1} \) and \(P_{v_{y}, v_1} \). We define \(f_1 = b(C_2)^r(P_{v_{x+1}, v_1}) - r(C_2)b(P_{v_{x+1}, v_1}) \) and \(f_2 = r(C_1)b(P_{v_{y}, v_1}) - b(C_1)r(P_{v_{y}, v_1}) \) and \(\left[\begin{array}{c} p \\ q \end{array} \right] = M \left[\begin{array}{c} f_1 \\ f_2 \end{array} \right] \). The vertex \(v_1 \) lies on the \(v_1 \rightarrow v_x \) path or \(v_1 \rightarrow v_y \) path. Using the \((d_1 + d(v_1, v_1), 0) \)-path from \(v_{x+1} \) to \(v_1 \) we have \(f_1 = 2d_1 + 2d(v_1, v_1) \). Using the \((d_3 + d(v_1, v_1) - 1, 2) \)-path from \(v_y \) to \(v_1 \) we have \(f_2 = 2s - 1 - d_3 - d(v_1, v_1) \). Therefore, \(\left[\begin{array}{c} p \\ q \end{array} \right] = \left[\begin{array}{c} 4s^2 + s(2d_1 - 2d_3 - 8) + 3 - 2d_1 + 3d_3 + d(v_1, v_1) \\ 4s - 2 + 2d_1 - 2d_3 \end{array} \right] \). By Lemma 2 we have \(\exp(v_1, D^{(2)}) \geq 4s^2 + s(2d_1 - 2d_3 - 4) + 1 + d_3 + d(v_1, v_1) \) for each vertex \(v_t \) that lies on the \(v_1 \rightarrow v_x \) path or \(v_1 \rightarrow v_y \) path.

The vertex \(v_t \) lies on the \(v_{x+1} \rightarrow v_s \) path. Using the \((d_1 - d(v_1, v_1), 0) \)-path from \(v_{x+1} \) to \(v_1 \) we have \(f_1 = 2d_1 - 2d(v_1, v_1) \). Using the \((d_3 + s - d(v_1, v_1), 2, 3) \)-path from \(v_y \) to \(v_1 \) we have \(f_2 = 2s - d_3 + d(v_1, v_1) - 1 \). Therefore, \(\left[\begin{array}{c} p \\ q \end{array} \right] = \left[\begin{array}{c} 4s^2 + s(2d_1 - 2d_3 - 8) - 2d_1 + 3d_3 + 3 - d(v_1, v_1) \\ 4s - 2 + 2d_1 - 2d_3 \end{array} \right] \).

We next examine the existence of \(v_{x+1} \xrightarrow{(p,q)} v_t \) walk. Since the path \(P_{v_{x+1}, v_t} \) is a \((d_1 - d(v_1, v_1), 0) \)-path and the solution to the system \(Mz = \left[\begin{array}{c} d_1 - d(v_1, v_1) \\ 0 \end{array} \right] \) is \(z_1 = 0 \) and \(z_2 = 2s + d_1 - d_3 - 1 \), there is no \(v_{x+1} \xrightarrow{(p,q)} v_t \) walk in \(D^{(2)} \). Hence \(\exp(v_t, D^{(2)}) > p + q \). Notice that the shortest \(v_{x+1} \rightarrow v_t \) walk that contains at least \(p \) red arcs and \(q \) blue arcs is a \((p + s - 1, 1) \)-walk. This implies \(\exp(v_t, D^{(2)}) \geq 4s^2 + s(2d_1 - 2d_3 - 4) + 1 + d_3 + d(v_1, v_t) \) for each vertex \(v_t \) that lies on the \(v_{x+1} \rightarrow v_s \) path.

The vertex \(v_t \) lies on the \(v_{y+1} \rightarrow v_z \) path. Using the \((2s - 2 + d_1 - d(v_1, v_1), 1) \)-path from \(v_{x+1} \) to \(v_1 \) we have \(f_1 = 2s - 1 + 2d_1 - 2d(v_1, v_1) \). Using the \((d_3 - d(v_1, v_1), 1) \)-path from \(v_y \) to \(v_1 \) we have \(f_2 = s - 1 - d_3 + d(v_1, v_1) \). Therefore, \(\left[\begin{array}{c} p \\ q \end{array} \right] = \left[\begin{array}{c} 4s^2 + s(2d_1 - 2d_3 - 8) + 4 - 2d_1 + 3d_3 - d(v_1, v_1) \\ 4s + 2d_1 - 2d_3 - 3 \end{array} \right] \). We examine the existence of \(v_{x+1} \xrightarrow{(p,q)} v_t \) walk. Since the path \(P_{v_{x+1}, v_t} \) is a \((d_3 - d(v_1, v_1), 1) \)-path and the solution to the system \(Mz = \left[\begin{array}{c} d_3 - d(v_1, v_1) \\ 1 \end{array} \right] \) is \(z_1 = 2d_1 - 2d_3 - 3 \) and \(z_2 = 0 \), there is no \(v_y \xrightarrow{(p,q)} v_t \) walk in \(D^{(2)} \). Hence \(\exp(v_t, D^{(2)}) > p + q \). Notice that the shortest \(v_y \rightarrow v_t \) walk that contains at least \(p \) red arcs and \(q \) blue arcs is a \((p + 2s - 3, q + 2) \)-walk. This implies \(\exp(v_t, D^{(2)}) \geq p + q + 2s - 1 \). Since \(d(v_1, v_t) = 2s - 1 - d(v_1, v_1) \), we conclude that
We next examine the existence of the shortest 2-path from v_2 to v_1 we have $f_1 = 2d_1 - 2d_2$. Using the $(d_3 - 1 - d(v_1, v_1), 2)$-path from v_2 to v_1 we have $f_2 = 2s - 1 - d_3 + d(v_1, v_1)$. Therefore, $\left[\begin{array}{c} p \\ q \end{array} \right] = \left[\begin{array}{c} 4s^2 + s(2d_1 - 2d_3 - 4) + 1 + d_3 + d(v_1, v_1) \\ 2 \end{array} \right].$

We next examine the existence of v_y to v_1 walk. Since the path P_{v_y, v_1} is a $(d_3 - 1 - d(v_1, v_1), 2)$-path and the solution to the system $Mz + \left[\begin{array}{c} r(P_{v_j, v_1}) \\ b(P_{v_j, v_1}) \end{array} \right] = \left[\begin{array}{c} h \\ \ell \end{array} \right]$ has a nonnegative integer solution.

The solution to the system (4) is $z_1 = 2d_1 + b(P_{v_j, v_1})(2s - 3) - 2r(P_{v_j, v_1})$ and $z_2 = 2s - 1 - d_3 + r(P_{v_j, v_1})$. If the vertex v_j lies on the $v_1 \rightarrow v_y$ path, then there is a $(r(P_{v_j, v_1}), 2)$-path with $d_3 - 1 \leq r(P_{v_j, v_1}) \leq 2s - 3$. Using this path we find $z_1 = 2d_1 + 2(s - 3) - 2r(P_{v_j, v_1})$ and $z_2 = 2s + 1 - d_3 + r(P_{v_j, v_1})$. Since $r(P_{v_j, v_1}) \leq 2s - 3$, we have $z_1 \geq 2d_1$. Since $r(P_{v_j, v_1}) \geq d_3 - 1$, we have $z_2 \geq 2s$.

If the vertex v_j lies on the $v_{y+1} \rightarrow v_x$, then there is a $(r(P_{v_j, v_1}), 1)$-path with $d_1 \leq r(P_{v_j, v_1}) \leq s - c - 1$. Using this path we find that $z_1 = 2s - d_3 + 3r(P_{v_j, v_1})$. Since $r(P_{v_j, v_1}) \leq s - c - 1$, we have $z_1 \geq 2d_1 - 1 + 2c \geq 2d_1$. Since $r(P_{v_j, v_1}) \geq d_1$, we have $z_2 \geq 2s - d_1 + d_2 > 0$.

If the vertex v_j lies on the $v_{y+1} \rightarrow v_y$ path, then there is a $(r(P_{v_j, v_1}), 1)$-path from v_j to v_1 with $d_2 \leq r(P_{v_j, v_1}) \leq d_3 - 1$. Using this path we find that $z_1 = 2s + 2d_1 - 3 - 2r(P_{v_j, v_1})$. Since $r(P_{v_j, v_1}) \leq d_3 - 1$, we have $z_1 \geq 2s - 1$. Since $r(P_{v_j, v_1}) \geq d_2$, we have $z_2 \geq s - d_1 + d_2 > 0$.

If the vertex v_x is on the $v_{y+1} \rightarrow v_x$ path or on the $v_{y+1} \rightarrow v_n$ path, then there is a $(r(P_{v_j, v_1}), 0)$-path with $1 \leq r(P_{v_j, v_1}) \leq d_1$. Using this path we have $z_1 = 2d_1 - 2r(P_{v_j, v_1})$ and $z_2 = 2s - 1 - d_3 + r(P_{v_j, v_1})$. Since $r(P_{v_j, v_1}) \leq d_1$, we have $z_1 \geq 0$. Since $r(P_{v_j, v_1}) \geq 1$, we have $z_2 \geq 2s - d_3 \geq 2s - d_1 > 0$.

Therefore, for each $j = 1, 2, \ldots, n$, there is a path P_{v_j, v_1} such that the system (4) has a nonnegative integer solution. This implies for each $j = 1, 2, \ldots, n$, there is a $v_j \rightarrow (h, \ell)$ walk in $D(2)$ and for any vertex v_1 in $D(2)$ there is a $(h + r(P_{v_1, v_1}), \ell + b(P_{v_1, v_1}), 0)$-walk from v_2 to v_1. Hence, for each $t = 1, 2, \ldots, n$, the $exp(v_1, D(2)) \leq h + \ell + d(v_1, v_1) = 4s^2 + s(2d_1 - 2d_3 - 4) + 1 + d_3 + d(v_1, v_1)$.

Theorem 6. Let $D(2)$ be a primitive two-colored digraph consisting of two cycles of length s and $2s - 1$, respectively. Suppose $D(2)$ has three blue arcs and $d_1 \leq d_2 < d_3$, then for each
t = 1, 2, \ldots, n

\[
\exp(v_t, D^{(2)}) = \begin{cases}
2s^2 - 3s + 1 + d_3 + d(v_1, v_t) & \text{if } d_3 - d_1 \leq s \text{ and } 2s - 1 < 2d_3 - 2d_2, \\
4s^2 + s(2d_2 - 2d_3 - 4) + 1 + d_3 + d(v_1, v_t) & \text{if } d_3 - d_1 \leq s \text{ and } 2s - 1 > 2d_3 - 2d_2, \\
s(2d_3 - 2d_1 - 2) + 1 + d_3 + d(v_1, v_t) & \text{if } d_3 - d_1 > s \text{ and } 2s - 1 < 2d_3 - 2d_2, \\
2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_3 + d(v_1, v_t) & \text{if } d_3 - d_1 > s \text{ and } 2s - 1 > 2d_3 - 2d_2.
\end{cases}
\]

Proof. Suppose \(k(D^{(2)})\) is obtained by \((h, \ell)\)-walk. We employ Lemma 2 in order to set the lower bound for \(h + \ell\). To set the upper bound we consider the paths \(P^{(2)}\). To get the lower bound we consider the paths \(P^{(2)}\). There is a \(v_j \rightarrow v_1\) walk.

Case 1. \(d_3 - d_1 \leq s\) and \(2s - 1 < 2d_3 - 2d_2\)

To show that \(\exp(v_t, D^{(2)})\) has a nonnegative integer solution.

To show that, for each \(v_j\), there is a path \(P_{v_j, v_1}\) from \(v_j\) to \(v_1\) such that the system

\[
Mz + \begin{bmatrix}
r(P_{v_j, v_1}) \\
b(P_{v_j, v_1})
\end{bmatrix} = \begin{bmatrix}
2s^2 - 5s + 2 + d_3 \\
2s - 1
\end{bmatrix}
\]

has a nonnegative integer solution.

Case 2. \(2s - 1 > 2d_3 - 2d_2\) and \(d_3 - d_1 \leq s\)

To show that, for each \(v_j\), there is a path \(P_{v_j, v_1}\) from \(v_j\) to \(v_1\) such that the system

\[
Mz + \begin{bmatrix}
r(P_{v_j, v_1}) \\
b(P_{v_j, v_1})
\end{bmatrix} = \begin{bmatrix}
4s^2 + s(2d_2 - 2d_3 - 8) + 3 - 2d_2 + 3d_3 \\
4s - 2 + 2d_2 - 2d_3
\end{bmatrix}
\]

has a nonnegative integer solution.

Case 3. \(2s - 1 < 2d_3 - 2d_2\) and \(d_3 - d_1 > s\)

To show that, for each \(v_j\), there is a path \(P_{v_j, v_1}\) from \(v_j\) to \(v_1\) such that the system

\[
Mz + \begin{bmatrix}
r(P_{v_j, v_1}) \\
b(P_{v_j, v_1})
\end{bmatrix} = \begin{bmatrix}
2s(2d_3 - 2d_1 - 2) + 3 + 2d_1 - 2d_3 \\
2d_3 - 2d_1 - 1
\end{bmatrix}
\]

has a nonnegative integer solution.

Case 4. \(2s - 1 > 2d_3 - 2d_2\) and \(d_3 - d_1 > s\)

To show that, for each \(v_j\), there is a path \(P_{v_j, v_1}\) from \(v_j\) to \(v_1\) such that the system

\[
Mz + \begin{bmatrix}
r(P_{v_j, v_1}) \\
b(P_{v_j, v_1})
\end{bmatrix} = \begin{bmatrix}
r(C_2)b(P_{v_j, v_1}) - b(C_1)r(P_{v_j, v_1}) \\
f_2 = r(C_1)b(P_{v_j, v_1}) - b(C_1)r(P_{v_j, v_1})
\end{bmatrix}
\]

To show that, for each \(v_j\), there is a path \(P_{v_j, v_1}\) from \(v_j\) to \(v_1\) such that the system

\[
Mz + \begin{bmatrix}
r(P_{v_j, v_1}) \\
b(P_{v_j, v_1})
\end{bmatrix} = \begin{bmatrix}
r(C_2)b(P_{v_j, v_1}) - b(C_1)r(P_{v_j, v_1}) \\
f_2 = r(C_1)b(P_{v_j, v_1}) - b(C_1)r(P_{v_j, v_1})
\end{bmatrix}
\]
To show that, for each $t = 1, 2, \ldots, n$, the $\exp(v_t, D^{(2)}) \leq 2s^2 + s(2d_2 - 2d_1 - 3) + 1 + d_1 + d(v_1, v_t)$ it suffices to show that for each $j = 1, 2, \ldots, n$, there is a path P_{v_j, v_1} from v_j to v_1 such that the system

$$
Mz + \begin{bmatrix} r(P_{v_j, v_1}) \\ b(P_{v_j, v_1}) \end{bmatrix} = \begin{bmatrix} 2s^2 + s(2d_2 - 2d_1 - 5) + 3 + 3d_1 - 2d_2 \\ 2d_2 - 2d_1 + 2s - 2 \end{bmatrix}
$$

has a nonnegative integer solution.

Theorem 7. Let $D^{(2)}$ be a primitive two-colored digraph consisting of two cycles of length s and $2s - 1$, respectively. Suppose $D^{(2)}$ has three blue arcs and $d_2 < d_1 < d_3$, then for each $t = 1, 2, \ldots, n$

$$
\exp(v_t, D^{(2)}) = \begin{cases}
2s^2 - 3s + 1 + d_3 + d(v_1, v_t) & \text{if } d_3 - d_2 < s \text{ and } 2d_3 - 2d_1 > 2s - 1, \\
4s^2 + s(2d_1 - 2d_3 - 4) + 1 + d_3 + d(v_1, v_t) & \text{if } d_3 - d_2 < s \text{ and } 2d_3 - 2d_1 < 2s - 1, \\
2s^2 + s(2d_3 - 2d_2 - 2) + 1 + d_2 + d(v_1, v_t) & \text{if } d_3 - d_2 > s \text{ and } 2d_3 - 2d_1 > 2s - 1, \\
2s^2 + s(2d_3 - 2d_2 - 3) + 1 + d_2 + d(v_1, v_t) & \text{if } d_3 - d_2 > s \text{ and } 2d_3 - 2d_1 < 2s - 1.
\end{cases}
$$

References