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Abstract. This paper investigates the approximate solution of Riccati differential equations, 
and DNA repair model which is formed by Riccati equation. The existence result of the 
solution is obtained by Adomian decomposition method (ADM). Some initial value problems 
are solved by the method to demonstrate the main results. The obtained results are compared 
with the Runge-Kutta method to verify the validity of the ADM. It shows that the ADM has 
better results than the Runge-Kutta method. This results confirm that the ADM is a suitable 
method for approaching the exact solution of Riccati differential equations and the proposed 
model. 

1.  Introduction 
Riccati differential equation, formulated by the Italian mathematician Jacopo Francesco Riccati, is a 
first-order nonlinear ordinary differential equations that arise in different areas of mathematics and 
physics. Moreover Riccati differential equation appears on the DNA repair problem, which the 
solution of this equation interpreted the average number of DNA double-strand breaks (DSBs) per cell 
at a certain time [1]. Analytically, some forms of this differential equation are difficult to solve exactly 
and explicitly by elementary methods. However there is a good numerical method that can be used to 
obtain the approximate solution of this equation, i.e. Adomian Decomposition Method (ADM), 
presented by George Adomian in 1988 [2]. The method has been examined to solve some class of 
linear and nonlinear equations which the obtained solution rapidly closed to the exact solution, as in 
[3-5]. In this paper, we will discuss the use of ADM to approximate the exact solution of Riccati 
differential equation and the DNA repair model, and perform some numerical simulations. 

2.  Analysis of Method 

2.1.  Adomian Decomposition Method 
ADM is a method to resolve various types of nonlinear differential equations without requiring a 
linearization or prerequisite nonlinearity [2]. ADM generates a solution in the form of series whose 
terms are determined by a recursive relation of the Adomian polynomial. The ADM will be described 
by following the procedures [2]. To introduce this method, we consider the operator equation 

)()]([ tgtuF = , where F represents a general nonlinear ordinary differential operator and g  is a 
given function. The linear part ofF is decomposed into RL + , where L  is an invertible operator and 
R  is the reminder of F . Thus the equation can be written as 

http://creativecommons.org/licenses/by/3.0
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guNRL =++ )(  
or 
 NuRugLu --=  (1) 
where N  is a nonlinear part of F . 

Applying the operator 𝐿"# formally to the Eq. (1), we obtain NuLRuLgLu 111 --- --= . Suppose 
ℎ is the solution of the homogeneous equation 0=Lu , with the given initial/boundary conditions. 
Then the general solution of Eq. (1) is 
 NuLRuLgLhu 111 --- --+=  (2) 

The next problem is the decomposition of the nonlinear term 𝑁𝑢. Adomian developed a very 
elegant technique, such that the approximate solution of Eq. (2) can be represented as 
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with l  is constant whereas nuuuu ,,,, 210 !  are sought. If the nonlinear operator N  is attempted to 
Eq. (3) then 
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ExpandingN(u)  to Maclaurin series with respect to l  we obtain 
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, where the components of nA  are called Adomian polynomials that 

are generated for each non-linearity Nu  [1].  
As an example, if )()( ufuN = , the Adomian polynomials are given as: 
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!  
Now suppose Ru L-1  and Nu L-1 have an l  order, then Eq. (2) can be written as 

 NuLRuLgLhu 111 --- --+= ll  (5) 
If Eq. (3) and (4) are substituted for Eq. (5), then we obtain 
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Equating the coefficients of equal powers l  on both sides of Eq. (6), we obtain 
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In general can be expressed by the recursive relations 
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1 ),()( 1
1

1
1 ³--= -
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- nALuRLu nnn  
Therefore, the approximate solution is given by 

!+++= 210 uuuu  

3.  Application and Numerical Simulations 

3.1.  ADM for Solving Riccati Differential Equations 
With reference to [6], Riccati differential equations form is given by the equation below 

 )()()( 2 xCuxBuxA
dx
du

++=  (7) 

where A , B , and C  are the real functions of the real argument x . 
Now, let consider the Riccati differential Eq. (7), with the initial condition 

)()0( xDu =  
The ADM requires that Eq. (7) be expressed in terms of operator form as 

 )()()()( 1 xCuNxAuxBLu =--  (8) 

where 
dx
dL =  and 2

1 )( uuN = . 

By ADM, the approximate solution of Eq. (7) is the infinite series å
¥

=

=
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n xuxu  and the 

nonlinear term is å
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nAuuN , where nA  is the Adomian polynomial of 2u . The first 

component of Adomian polynomial is given by 
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!  
Now if both side of Eq. (8) are attempted by the operator 1-L , we obtain 
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nAuN  are substituted for Eq. (10), we get 
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If equating the coefficients of equal powers of 𝜆 on both side of Eq. (11), yields the recursive 
relation 
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Hence, the approximate solution of Eq. (7) is 
!+++= )()()()( 210 xuxuxuxu  
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with !,,, 210 uuu  is given by (12). 
To give a better understanding of the methodology, the following two examples will be discussed.  
 
Example 1: Consider the following Riccati differential equation 

 12 22 ++-= xxuu
dx
du

 (13) 

subject to the initial condition 

2
1)0( =u  

The exact solution of the initial condition problem (13) is given by 

x
x

xu +
-

=
2
1)(  

Substituting the initial condition problem (13) into (12) and using (9) to calculate the Adomian 
polynomials, yields the following recursive relation 

 
1 ],2[

)1(
2
1

11
1

21
0

³+-=

++=

--
-

-

nAxuLu

xLu

nnn

 (14) 

By using (14), the first three terms of the approximate solution )(xu  is given by 
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Hence, the third-term approximate solution for the initial condition problem (13) is given by 

2
1

4
5

820631122079
2=)(

257811

210 ++++-+++=
xxxxxxuuuxu  

The graphs of the approximate solution of (13) by ADM and Runge-Kutta method, and the error 
comparison between both methods are given in Fig. 1 and Fig. 2 respectively. 

  
Figure 1. Comparison of the exact solution, Runge-
Kutta, and ADM.  

Figure 2. Error comparison between ADM and 
Runge-Kutta.  
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It can be seen in Fig. 1, that the ADM has a better approximation than the Runge-Kutta method. 
Moreover Fig. 2 shows clearly that the accuracy gained by ADM is much better. The error value of 
both methods shows an enhancement on every iteration. However, the error values of the ADM are 
smaller than the Runge-Kutta method. 

The following table is given to see the accuracy of both methods on the initial value problem (13). 

Table 1. The absolute error of the approximate solution with ADM and Runge-Kutta 

n nx  
Exact 
Solution 

Runge-Kutta ADM 
Solution 
u Error 

Solution 
u Error 

 0 0.0 0.5000 0.5000 0.0000 0.5000 0.0000 
 1 0.1 0.6263 0.6314 0.0051 0.6263 0.0001 
2 0.2 0.7556 0.7805 0.0250 0.7550 0.0005 
3 0.3 0.8882 0.9548 0.0665 0.8864 0.0019 
4 0.4 1.0250 1.1657 0.1407 1.0205 0.0045 
5 0.5 1.1667 1.4323 0.2656 1.1577 0.0089 

Example 2: Consider the following Riccati differential equation 

1)21(2 -+-+= xuxxu
dx
du

(15) 

subject to the initial condition 
1)0( -=u

The exact solution of the initial condition problem (15) is 

1
2
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11)(
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xu
x

Substituting the initial condition problem (15) into (12) and using (9) to calculate the Adomian 
polynomials, yields the following recursive relation 
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(16) 

By using (16), the first three terms of the approximate solution u(x) is given by
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Hence, the third-term approximate solution for the initial condition problem (15) is given by 
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The graphs of the approximate solution of (15) by ADM and Runge-Kutta method, and the error 
comparison between both methods are given in Fig. 3 and Fig. 4 respectively.  
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Figure 3. Comparison of the exact solution, Runge-
Kutta, and ADM. 

Figure 4. Error comparison between ADM and 
Runge-Kutta. 

It is clear, as in the previous case, that the ADM has a better approximation than the Runge-Kutta 
method (See Fig. 3). The error value of both methods shows an enhancement on every iteration, 
however the error values of the ADM are smaller than the Runge-Kutta method (See Fig. 4). 

The following table is given to see the accuracy of both methods on the initial value problem (15). 

Table 2. The absolute error of the approximate solution with ADM and Runge-Kutta 

n
nx

Exact 
Solution 

Runge-Kutta ADM 
Solution 
u Error 

Solution 
u Error 

 0 0 -1.0000 -1.0000 0.0000 -1.0000 0.0000
 1 0.2 -1.3359 -1.4374 0.1015 -1.3359 0.0000 
2 0.4 -1.4662 -1.9690 0.5028 -1.4679 0.0017 
3 0.6 -1.3629 -2.6145 1.2516 -1.3604 0.0025 
4 0.8 -1.1097 -3.3971 2.2874 -1.1245 0.0148 
5 1 -0.8122 -4.3446 3.5324 -1.0401 0.2279 

3.2.  ADM for Solving DNA Repair Model 
Riccati differential equation has been used very heavily, one of the applications is in radiotherapy 
modeling and in studying damage to cells by ionizing radiation. The most important radiation damage 
is to chromatin, e.g. DNA double-strand breaks (DSBs). DNA DSBs are one of the most toxic of these 
lesions and must be repaired to preserve chromosomal integrity. Most DBSs are repaired during the 
next half hour or so, and a few are not repaired. Suppose U  be the number of DSBs, then the average
number of DSB per cell at time t  is given by

21 UUR
dt
dU g

t
d --= (17) 

0.,, ³= constgtd
where d  is the average number of DSBs induced per unit dose, R  is radiation dose rate,t  is a repair
time constant, and g  is a binary reaction rate constant in the sense of mass-action chemical kinetics
[1]. 
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The following illustration of using ADM for solving Eq. (17) is given. Consider the following 
DSBs repair model: 

25150 UU
dt
dU

--= (18) 

If there are 50 number of DSBs repair at time 0=t , then yields the initial condition
50)0( =U

The exact solution of the initial condition problem (18) is given by 

813
120130)( 25

25

-
+

= t

t

e
etU

The recursive relation of the initial condition problem (18) is 

1 ],5[
)150(50

11
1

1
0

³--=
+=

--
-

-

nAuLU
LU

nnn

(19) 

By using (19), the first three terms of the approximate solution U(t)  is given by

150t05=0 +U
t2750t7875-7500t= 23

1 --U
2345

2 t144375t550625t393750-450000t= +++U
Hence, the third-term approximate solution for the initial condition problem (18) is given by 

50t2600t136500t543125t393750-450000t=)( 2345
210 +-+++++= UUUtU

The other components can be determined similarly by using the recursive relation (19). The 
following graph shows the approximate solution of (18) with ADM for 2=n , 3=n , and 4=n .
The validity of this method shown by comparing the approximate solutions of the ADM, and the exact 
solution. 

It can be seen, the solution of the ADM is closer to the exact solution for greater order. 
Mathematically, the Eq. (17) can be written as 

))(( RUU
dt
dU

+-= gd

Figure 5. Comparison between the exact solution and the 
approximate solution with ADM. Blue line: the exact soluton ; 
purple line: n=2 ; yellow line: n=3 ; green line: n=4 
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where 
dg

t
-

=
R
1 . It means, Eq. (18) can be expressed as 

)15)(10( +-= UU
dt
dU

The following figure shows the phase plane of the DNA repair model (18). 

Based on Fig. 6, it can be analyzed that the number of repairing DNA will increase and approach to 
ten, if the number of induced dose DNA is below ten. If the number of induced dose DNA are in 
between forty and seventy, then the amount of repairing DNA will decrease and approach to twenty.  

4. Conclusion
In this paper, the Adomian decomposition method has been applied to finding the approximate 
solution of the Riccati differential equations and the DNA repair model. All of the examples show that 
the numerical results of the proposed method are better than the Runge-Kutta method. The method 
was clearly very efficient in approaching the exact solution of the proposed equation. The flexibility of 
the method and reduction in the size of computational components give this method wider 
applicability. 
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Figure 6. Phase plane of DNA repair problem (19) with 10=d , 15=R , and 1=g


