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Abstract. The theory of the Adomian modified decomposition method (AMDM) for solving 
linear and nonlinear differential equations is well established. However, the solutions obtained 
by using the current AMDM are valid only for a very small region. In this paper, a new 
aftertreatment technique is proposed to improve the accuracy of the AMDM during a wide 
region. Based on the proposed aftertreatment technique, the truncated series solution obtained 
by the AMDM can be expressed as another series in terms of the independent sine and cosine 
trigonometric functions. Two numerical examples are presented and compared to those 
obtained from the numerical 4th-order Runge-Kutta algorithm. It is shown that the AMDM 
with the proposed aftertreatment technique offers an accurate and effective method for solving 
nonlinear differential equations in a wide applicable region. 

1.  Introduction 
The Adomian decomposition method (ADM) [1–3] is a useful and powerful method for solving linear 
and nonlinear differential equations. The goal of ADM is to find the solution of linear and nonlinear, 
ordinary or partial differential equation without depending on any small parameter, such as the case 
with the perturbation method. The main advantages of ADM are computational simplicity and do not 
involve any linearization or smallness assumptions [1]. 

However, the result by using ADM is usually considered as a truncated series solution which only 
gives a good approximation to the accurate solution in a small region and has very small convergence 
radius. To overcome this drawback, two aftertreatment techniques have been proposed. One method is 
called as multistage ADM [4–6], which divide the solution space into M small regions. The solution is 
found an approximate solution in a closed and recursive form in a sequence of intervals [0, t1], [t1, 
t2], …, [tM; T] such that the initial condition in sub-division interval [ti, ti+1] is taken to be the 
condition at ti. The accuracy of this aftertreatment technique is strongly dependence on the sub-
division interval length. Another aftertreatment technique is based on Padé approximants, Laplace 
transform and its inverse to deal with the truncated series solution obtained by ADM. The combining 
Laplace ADM with Padé approximants have been investigated by many researchers and obtained 
plentiful achievement. No attempt will be made here to present a bibliographical account of previous 
work in this area. A few selective recent papers are quoted [7–10] which provide further references on 
the subject. 

http://creativecommons.org/licenses/by/3.0
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In this paper, a modified type of ADM, termed as the Adomian modified decomposition method 
(AMDM), proposed by Wazwaz and EI-Sayed [11] is used to solve nonlinear differential equations. 
And a new aftertreatment technique for improving the accuracy of the AMDM is proposed. The 
truncated series solution obtained by the AMDM can be expressed as another series in terms of the 
independent sine and cosine trigonometric functions based on the proposed aftertreatment technique. 
Finally, two numerical examples are given to demonstrate the feasibility of the proposed 
aftertreatment technique. 

2.  A brief review of Adomian modified decomposition method (AMDM) 
In this section, the concept of Adomian modified decomposition method (AMDM) is briefly 
introduced. Consider the general nonlinear functional equation: 

                             xgxNuxRuxLu                                                               (1) 
where L is a linear invertible operator of highest-order derivative with respect to x. R is the 

remainder linear operators. N is the nonlinear operator, and g(x) is the source term.  
As L is invertible, and applying the inverse operator L-1 to both sides of equation (1), we obtain 

                            xNuLxRuLxgLxLuL 1111                                                       (2) 

And                               xNuLxRuLxgLxu 111
0

                                                     (3) 

where L-1 can be an integral operator defined from 0 to x. And 0 is the kernel of the inverse 
operator L-1 and satisfies L0 = 0. 

According to the standard Adomian modified decomposition method [11–13], it defines the 
solution u(x) by an infinite series of the form 

                         





0m

m
mxCxu                                                                      (4) 

where the unknown coefficients Cm will be determined recurrently. 
And for the non-linear term Nu(x), it defines [11] 

                          





0

10 ,,,
m

m
mm xCCCAxNu                                                                (5) 

where the Am are the classical Adomian’s polynomials [1,14]. 
Notice that g(x) in equation (1) is also required to decompose as an infinite series 

                





0m

m
m xGxg                                                                     (6) 

Substituting equations (4), (5) and (6) into equation (3), we obtain 
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
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The recurrence relation with respect to initial condition is applied to determine the coefficient Ck in 
equation (7). However, in practice, all series in equation  (7) cannot be obtained exactly. The solution 
of u(x) is expressed by a truncated series and will be rewritten as 

                 



M

m

m
mxCxu

0

                                                                      (8) 

3.  Aftertreatment technique 
It is well-known that the main disadvantage of the AMDM is that solution’s series may only have very 
small convergence radius and the truncated series solution may be inaccurate in some regions [12]. 
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The main goal of this paper is to extend the convergence radius of the AMDM with a new proposed 
aftertreatment technique.  

Assume that the truncated series solution in equation (8) can be expressed as another series in terms 
of the independent sine and cosine trigonometric functions: 

                   



K

k
kkkk xqWxpSxu

1

sincos                                                   (9) 

where Sk, Wk, pk, and qk are the unknown values.  
Notice that the both side of equation (9) can be expanded as a power series, yields 
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From equation (10), it can be found that the unknown values Sk, Wk, pk, and qk in equation (9) can 
be determined by the following nonlinear algebraic equations, such as  

           



K

k

n
kkn
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pS
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By using the MATLAB functions sovle or MATHEMATICA function Nsolve, equation (11) can be 
directly solved. Then the solution u(x) in equation (9) can be obtained.  

4.  Numerical calculations 
In order to verify the proposed aftertreatment technique for the AMDM, two numerical examples will 
be discussed in this section.  

4.1.  Example 1: Consider a nonlinear differential equation 

                          
       03

2

2

 tyty
dt

tyd
                                                      (12) 

with the initial conditions 

                          10 y ,            
 

0
0


dt

dy
                                                       (13) 

According to AMDM presented in Section 2, the solution y(t) and nonlinear term [y(t)]3 for this 
example can be expressed as 

                        



M

m

m
mtCty

0

,         



M

m

m
mtAty

0

3
                                          (14) 

The Adomian’s polynomials for nonlinear term [y(t)]3 can be found in Ref. [14], and the first 
several terms are listed below for the convenience of the reader. 
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To determine the unknown coefficients Cm, a linear operator 2

2

dX

d
L   is imposed, then the 

inverse operator of L is therefore a 2-fold integral operator defined by 

                     t t
dtdtL

0 0

1 ...                                                                 (15) 

and 

                       XCCtytyLL 10
1                                                          (16) 

Applying equation (12) with L-1 and using equations (14) and (16), we get 
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        Mm ...,,3,2,1,0                      (17) 

Finally, using equations (13), (15) and (17), the coefficients Cm in equation (11) can be determined 
by using the following recurrence relations 

                  10 C , 01 C                                                                    (18) 

                         212 


 mm

AC
C mm

m             0m                                                        (19) 

Substituting the solved Cm into equation (11) and solving the system of nonlinear algebraic 
equations, the values Sk, Wk, pk, and qk in equation (11) can be determined. In this case, we set the 
series summation limit M = 7 and K = 2 in equations (8) and (9), respectively. Based on proposed 
aftertreatment technique, the solution for equation (12) can be written as 

                         ttty 4.4966150.01191cos1.334337s0.988094co                         (20) 
In order to check the accuracy of the proposed aftertreatment technique, the numerical result based 

on the four order Runge-Kutta solution (RK4) is also calculated. Figure 1 shows the comparisons 
between the AMDM solution, the AMDM with aftertreatment solution and the RK4 solution of 
equation (12). From figure 1, it can be found that the AMDM solution diverges rapidly when t > 0.8. 
However, the AMDM with aftertreatment solution shows a good convergence in comparison with the 
RK4 solution for t < 10. If more terms of Cm are used for aftertreatment, the accuracy of the solution 
can be improved. Figure 2 shows the solution when M = 11 and K = 3 in equations (8) and (9) are used. 
It illustrates that the AMDM with aftertreatment solution coincides with RK4 solution for t <30. 

For the sake of simplicity, the series summation limit M and K in equations (8) and (9) will be 
simply truncated to M = 7 and K = 2 in all the subsequent calculations. 
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