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Abstract. The theory of the Adomian modified decomposition method (AMDM) for solving
linear and nonlinear differential equations is well established. However, the solutions obtained
by using the current AMDM are valid only for a very small region. In this paper, a new
aftertreatment technique is proposed to improve the accuracy of the AMDM during a wide
region. Based on the proposed aftertreatment technique, the truncated series solution obtained
by the AMDM can be expressed as another series in terms of the independent sine and cosine
trigonometric functions. Two numerical examples are presented and compared to those
obtained from the numerical 4th-order Runge-Kutta algorithm. It is shown that the AMDM
with the proposed aftertreatment technique offers an accurate and effective method for solving
nonlinear differential equations in a wide applicable region.

1. Introduction

The Adomian decomposition method (ADM) [1-3] is a useful and powerful method for solving linear
and nonlinear differential equations. The goal of ADM is to find the solution of linear and nonlinear,
ordinary or partial differential equation without depending on any small parameter, such as the case
with the perturbation method. The main advantages of ADM are computational simplicity and do not
involve any linearization or smallness assumptions [1].

However, the result by using ADM is usually considered as a truncated series solution which only
gives a good approximation to the accurate solution in a small region and has very small convergence
radius. To overcome this drawback, two aftertreatment techniques have been proposed. One method is
called as multistage ADM [4—6], which divide the solution space into M small regions. The solution is
found an approximate solution in a closed and recursive form in a sequence of intervals [0, t;], [ti,
t2], ..., [tm; T] such that the initial condition in sub-division interval [tj, t+1] is taken to be the
condition at t;. The accuracy of this aftertreatment technique is strongly dependence on the sub-
division interval length. Another aftertreatment technique is based on Padé approximants, Laplace
transform and its inverse to deal with the truncated series solution obtained by ADM. The combining
Laplace ADM with Padé approximants have been investigated by many researchers and obtained
plentiful achievement. No attempt will be made here to present a bibliographical account of previous
work in this area. A few selective recent papers are quoted [7—10] which provide further references on
the subject.
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In this paper, a modified type of ADM, termed as the Adomian modified decomposition method
(AMDM), proposed by Wazwaz and EI-Sayed [11] is used to solve nonlinear differential equations.
And a new aftertreatment technique for improving the accuracy of the AMDM is proposed. The
truncated series solution obtained by the AMDM can be expressed as another series in terms of the
independent sine and cosine trigonometric functions based on the proposed aftertreatment technique.
Finally, two numerical examples are given to demonstrate the feasibility of the proposed
aftertreatment technique.

2. A brief review of Adomian maodified decomposition method (AMDM)
In this section, the concept of Adomian modified decomposition method (AMDM) is briefly
introduced. Consider the general nonlinear functional equation:

Lu(x)+ Ru(x)+ Nu(x) = g(x) (1)
where L is a linear invertible operator of highest-order derivative with respect to X. R is the

remainder linear operators. N is the nonlinear operator, and g(X) is the source term.
As L is invertible, and applying the inverse operator L™ to both sides of equation (1), we obtain

L'Lu(x) = L'g(x)— L'Ru(x) - L' Nu(x) )

And u(x)= @, + L'g(x)- L'Ru(x) - L""Nu(x) 3)

where L' can be an integral operator defined from 0 to X. And @, is the kernel of the inverse
operator L™ and satisfies L@, = 0.

According to the standard Adomian modified decomposition method [11-13], it defines the
solution U(X) by an infinite series of the form

u(x)= 3¢, x" 4)
m=0

where the unknown coefficients C,, will be determined recurrently.
And for the non-linear term Nu(x), it defines [11]

NU(X)= 3 A(Cy. GGy X )

where the A are the classical Adomian’s polynomials [1,14].
Notice that g(x) in equation (1) is also required to decompose as an infinite series

a(x)=> G, x" (6)
m=0
Substituting equations (4), (5) and (6) into equation (3), we obtain

u(x)= imem
m=0
=@, + L“(iGmxm] - L_I[RiCmeJ — L“(i A.(C,.C,.- ..,Cm)xmj
m=0 m=0 m=0

The recurrence relation with respect to initial condition is applied to determine the coefficient Cy in
equation (7). However, in practice, all series in equation (7) cannot be obtained exactly. The solution
of U(X) is expressed by a truncated series and will be rewritten as

M
u(x)=> C,x" @®)
m=0

(7

3. Aftertreatment technique
It is well-known that the main disadvantage of the AMDM is that solution’s series may only have very
small convergence radius and the truncated series solution may be inaccurate in some regions [12].
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The main goal of this paper is to extend the convergence radius of the AMDM with a new proposed
aftertreatment technique.

Assume that the truncated series solution in equation (8) can be expressed as another series in terms
of the independent sine and cosine trigonometric functions:

= i— [S< COS( P« X) +W, Sin(Qk X)] ®)

where S, W, p«, and g are the unknown values.
Notice that the both side of equation (9) can be expanded as a power series, yields

2 M
C,+Cx+Cx +...+C,x

1

K 3 2n-1 10
Z Wk[qu—%x%..ﬁ(—l)n(p" )x2”1+...ﬂ (10)

k=1 |

S (B[S 35 e -(£8 e

k=1

+

From equation (10), it can be found that the unknown values S, Wk, px, and gk in equation (9) can

be determined by the following nonlinear algebraic equations such as
2n+1

C, = (-1y - SR 1y WA
=(-1 , a==1 n=0,1,2,3,... 11
n ;Q@ el ;a D (11)
By using the MATLAB functions sovle or MATHEMATICA function Nsolve, equation (11) can be
directly solved. Then the solution U(X) in equation (9) can be obtained.

4. Numerical calculations
In order to verify the proposed aftertreatment technique for the AMDM, two numerical examples will
be discussed in this section.

4.1. Example 1: Consider a nonlinear differential equation

d
Iy o] =0 )
with the initial conditions
dy(0
y(0)=1, %:0 (13)

According to AMDM presented in Section 2, the solution y(t) and nonlinear term [y(t)]’ for this
example can be expressed as

=iQﬂ,[Wﬁ=iﬂﬂ (14)

The Adomian’s polynomials for nonlinear term [y(t)]> can be found in Ref. [14], and the first
several terms are listed below for the convenience of the reader.
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A=GC

A =3C)C,

A =3C;C, +3CC,

A =C’ +3C,C, +6C,C.C,

A, =3C;C, +3C/C, +3C;C, + 6C,CC,

A =3C;C, +3C’C, +3C,C, + 6C,C.C, +6C,C,C,

A =C; +3C.C, +3C/C, +3C.C, + 6C,C,C, +6C,C,C, + 6C,C,C,

A =3C/C, +3C’C, +3C;C, +3C;C, + 6C,C,C, +6C,C,C, + 6C,C,C,

2

To determine the unknown coefficients Cn, a linear operator L = is imposed, then the

X 2
inverse operator of L is therefore a 2-fold integral operator defined by
B tpt
L' =] ] ()t (15)
and

L'Ly(t)]= yit)-C, -C X (16)
Applying equation (12) with L™ and using equations (14) and (16), we get

M M
y(t)=C, +Ct + L{— dCin- zAntm}
m=0 m=0

_C _An m+2
=C,+Ct+——2 —1 ¢
0 et 1)fme 2)

Finally, using equations (13), (15) and (17), the coefficients C, in equation (11) can be determined
by using the following recurrence relations

C,=1,C =0 (18)

m=0,1,2,3,..,M (17)

__ Cm — Aﬂ >
Cro = matfme2) 00 (19
Substituting the solved C, into equation (11) and solving the system of nonlinear algebraic
equations, the values S, W, px, and gk in equation (11) can be determined. In this case, we set the
series summation limit M = 7 and K = 2 in equations (8) and (9), respectively. Based on proposed
aftertreatment technique, the solution for equation (12) can be written as

y(t) = 0.988094cos(1.334337t)+ 0.01191cos(4.496615t) (20)

In order to check the accuracy of the proposed aftertreatment technique, the numerical result based
on the four order Runge-Kutta solution (RK4) is also calculated. Figure 1 shows the comparisons
between the AMDM solution, the AMDM with aftertreatment solution and the RK4 solution of
equation (12). From figure 1, it can be found that the AMDM solution diverges rapidly when t > 0.8.
However, the AMDM with aftertreatment solution shows a good convergence in comparison with the
RK4 solution for t < 10. If more terms of Cy, are used for aftertreatment, the accuracy of the solution
can be improved. Figure 2 shows the solution when M = 11 and K = 3 in equations (8) and (9) are used.
It illustrates that the AMDM with aftertreatment solution coincides with RK4 solution for t <30.

For the sake of simplicity, the series summation limit M and K in equations (8) and (9) will be
simply truncated to M = 7 and K = 2 in all the subsequent calculations.
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[ —— The AMDM with aftertreatment|
> The RK4 solution

& J
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The AMDM with aftertreatment
41 > The RK4 solution
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Figure 1. The AMDM solution, the AMDM Figure 2. The AMDM solution, the AMDM
with aftertreatment solution and the RK4 with aftertreatment solution and the RK4
solution for example 1 when M =7 and K= 2. solution for example 1 when M =11 and K =3.

4.2. Example 2: Consider a nonlinear undamped pendulum
The free vibration of the nonlinear undamped pendulum problem can be expressed as a dimensionless
differential equation, yields

6(t)+sin[o(t)]=0 Q1)
with initial conditions

0(0)=a, 6(0)=0 (22)
where 61is the angular displacement. « is the initial amplitude.
By using the AMDM proceeding as above, the solution of equation (21) can be expressed as

M
H(t) = z C.t" and the first few coefficients Cy, are

m=0
Coze(o)za,Clzé(o)zo,g:%(“),qzo,g:%za) (23)
C.=0,C, - 25in(a)—sin(3a)’ C,=0,C, - _sin(Za)_ 17sin(4a) (24)

720 5040 161280

First, a small amplitude simple pendulum with &0) = 0.1745 and « = 1 studied by Ref. [10] is
restudied to further check the accuracy and effectiveness of the proposed method. Substituting the
solved Cy, in equations (23) and (24) into equation (11), then the AMDM with aftertreatment solution
can be obtained as follows,

O(t)=0.174501c0s(0.997561t) - 6.653862x 107 cos(7.237361t) (25)
The linearized solution [10] for small amplitude pendulum is
6(t)=0.1745¢cos(t) (26)

From equations (25) and (26), it can be found that the solution obtained by proposed method agrees
will to the linearized solution for small initial amplitude &, and figure 3 shows the AMDM solution,
the AMDM with aftertreatment and the linearized solution when 6, = 0.1745. Form figure 3, it can be
found that AMDM solution diverges rapidly when time t > 3, while the aftertreatment technique can
significantly improve the accuracy of the AMDM in a wide applicable region.
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Finally, a large amplitude nonlinear pendulum with 6, = n/3 studied by Ref. [10] is restudied.
Substituting the solved C,, with 6, = n/3 and a = 1 in equations (23, 24) into equation (11), then the
AMDM with aftertreatment solution can be obtained as follows,

6(t)=1.056052c0s(0.935205t ) — 8.854025x 107 cos(2.550738t) 27)

Comparison equation (25) to Ref. [10], it can be found that the results obtained by the proposed
method agrees well to the solution based on Laplace-ADM with Padé approximant.

Figure 4 shows the AMDM solution, the AMDM with aftertreatment and the RK4 solution when 6,
= /3. From figure 4, it can be found that AMDM solution diverges rapidly when time t > 2.5. When
the aftertreatment technique is used, the accuracy of results is improved significantly over the AMDM
in a wide applicable region.

02 ] . . 15 The AMDM
= The AMDM with aftertreatment
5 The RK4 solution
1I
5 0 E 05
E m
g
; L
£02 <
05;
The AMDM
= The AMDM with aftertreatment 1
The linearized solution ’
04 L : ‘ J 0 5 10 15 20
0 5 10 15 20 time(Sec)
time(Sec)
Figure 3. The AMDM solution, the AMDM Figure 4. The AMDM solution, the AMDM
with aftertreatment and the linearized solution with aftertreatment and the RK4 solution for
for example 2 when @, = 0.1745 and a = 1. example 2 when 6, = n/3 and o= 1.

5. Conclusions

In this paper, the new aftertreatment technique is proposed to improve the accuracy of the Adomian
modified decomposition method (AMDM). Based on proposed aftertreatment technique, the solution
using the AMDM can be expressed as another series in terms of the independent sine and cosine
trigonometric functions. Two numerical examples are investigated to demonstrate the accuracy of the
proposed approach. Comparison to traditional AMDM, the main advantage of the proposed
aftertreatment technique is that the applicable region of the solution can be greatly extended.
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