
Journal of Physics: Conference
Series

     

PAPER • OPEN ACCESS

Simulated Annealing for Competitive p-Median
Facility Location Problem
To cite this article: T V Levanova and A Y Gnusarev 2018 J. Phys.: Conf. Ser. 1050 012044

 

View the article online for updates and enhancements.

You may also like
Plastic deformation and strengthening
mechanism of FCC/HCP nano-laminated
dual-phase CoCrFeMnNi high entropy
alloy
Cheng Huang, Yin Yao, Xianghe Peng et
al.

-

Preprocessing among the Infalling Galaxy
Population of EDisCS Clusters
Dennis W. Just, Matthew Kirby, Dennis
Zaritsky et al.

-

Ultra-coarse-graining of homopolymers in
inhomogeneous systems
Fabian Berressem, Christoph Scherer,
Denis Andrienko et al.

-

This content was downloaded from IP address 18.116.36.192 on 05/05/2024 at 09:18

https://doi.org/10.1088/1742-6596/1050/1/012044
https://iopscience.iop.org/article/10.1088/1361-6528/ac2980
https://iopscience.iop.org/article/10.1088/1361-6528/ac2980
https://iopscience.iop.org/article/10.1088/1361-6528/ac2980
https://iopscience.iop.org/article/10.1088/1361-6528/ac2980
https://iopscience.iop.org/article/10.3847/1538-4357/ab44a0
https://iopscience.iop.org/article/10.3847/1538-4357/ab44a0
https://iopscience.iop.org/article/10.1088/1361-648X/abf6e2
https://iopscience.iop.org/article/10.1088/1361-648X/abf6e2
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsuQQm5ZhLeFwOS1XXPKmtj1WQ7py9iMW1DkDiNClCCXk88gLgpu74PH0u0KXL5TErhljJzhgx983d8HphaPxZCu6nRHnoIrOsZzs2oFBigmbnHgA1Y6qeypdUxW8Y3__kpusrTwT2ndGIxuk8F81wehYf9uFtjgfh3x82CtZcvezG_vSphVw_zXf7-89ryLWmC4uFDtyjFPPhOkUJv4H0OXZ6Q3gJ5yNOy0v6XwyaKQHj40uiCJGTnfIJZXhPV7N3tDi-DdbJ8AIZ4s4r-CxS-Eu80FrlXZ_oJHCO_6ndIu3eUd4X_UVMYKE0-HyMs7rKTZcrHQH1W2V85h1JJJF5e6co_gIg&sig=Cg0ArKJSzGt59DQDXW6v&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

Mechanical Science and Technology Update (MSTU-2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1050 (2018) 012044  doi :10.1088/1742-6596/1050/1/012044

Simulated Annealing for Competitive p-Median

Facility Location Problem

T V Levanova, A Y Gnusarev

Sobolev Institute of Mathematics SB RAS, Omsk Branch, Omsk, Russia

E-mail: levanova@ofim.oscsbras.ru, alexander.gnussarev@gmail.com

Abstract. There is a number of models that take into account the market competition in the
location theory. Aboulian R. et al. formulated the location and design problem (CFLDP), in
which the share of the market being served elastically varies depending on the location. The
models with elastic demand are considered to be rather complicated and advantageous. We
developed this problem and proposed the new one which combines CFLDP and classical
p-median problem. In the given formulation a number of new facilities is fixed and is equal to
p, so competitive p-median facility location and design problem (CPFLDP) has been derived.
Therefore, the task can be considered as a clustering problem. In this paper we develop local
search algorithms for CPFLDP. A computational experiment is carried out, the results are
discussed.

1. Introduction

Facility location problems take a special place in the location theory. During last few years the
competitive models, which describe the modern economy processes most properly, have gained
the ground. There are different types of the state above problems, depending on the rival parts
and customers behavior, possible facility locations [1]. Aboolian R., Berman O., Krass D. have
formulated the location and design problem, where the rival parts struggle for the demand share
[2]. The share changes elastically depending on the customers choice of the facility in order
to satisfy their demands. The authors [2] describe this type of demand through a nonlinear
function, traditionally used in the special interaction models in marketing. The developed
mathematical model with a nonlinear objective function complicates the optimum search. Most
commonly the known commercial software is not able to find any possible solution [3, 4]. The
approximate approach becomes actual in the given situation. It should be mentioned that
the number of algorithms to solve the elastic demand problems is quite limited. Probabilistic
weighted greedy heuristics was offered to solve the location and design problem in [2]. We
developed and researched a number of local search algorithms for the given problem [3, 4]. In
this work we continue investigations in the given direction for the new competitive p-median
facility location problem.

2. Competitive p-Median Facility Location Problem

One of the most known facility location problems is the p-median problem, which has a wide
employment range and is often formulated as a clustering problem. However, the competitive
location models attract the main interest at this time. This work researches the offered

http://creativecommons.org/licenses/by/3.0
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Competitive p-Median Facility Location and Design Problem (CPFLDP) which unites the
statement of the elastic demand problem from [2] and the classical p-median problem. Let
us introduce the problem formulation and its mathematical model.

A new company is to locate a limited number of its facilities according to the given volume of
money. It can state both the locations and the types of the facilities, for example: a supermarket,
a hypermarket, etc. It has to rival for the demand with the existing companies, taking into
account the fact that the customers choose the facilities depending on the distance, attractiveness
and other factors. That is why the share of the serviced demand changes elastically depending
on the companys and customers decisions. The aim of the company is to define the facility
locations and types in order to attract the biggest share of the total demand.

Let us introduce the following notation with the consideration of [2]: N = {1, 2, . . . , n} is
a discrete set of the demand points, so that each point is able to locate a facility; C ⊂ N are
the points of the demand occupied by competitor; S = N \ C are the possible facility location
points for the new company; R is a number of facility types; wi is the demand weight in the
point i ∈ N ; cjr is the facility opening cost if the variant r ∈ R is used in the point j ∈ S; p
is the facility number to be opened; β is the distance sensitivity parameter; λ is the demand
elasticity coefficient.

Variables xjr = 1, if the facility of the type r ∈ R is located in the point j ∈ S, xjr = 0
otherwise.

The usefulness uij of the company’s facility j ∈ S for a customer i ∈ N is calculated the
following way: uij =

∑
r∈R kijrxjr, where kijr = ajr(dij +1)−β are the special coefficients which

take into consideration the distance dij between the points i and j, the customers sensitivity to
it β and the attractiveness air of the facility type r ∈ R, i, j ∈ N . The total facility usefulness
Ui(S) of the point i ∈ S is estimated through Ui(C) =

∑
j∈C uij =

∑
r∈R kijrxjr. The notation

for the competitors is similar.
In this model the demand function has an exponential form:

g(Ui) = 1 − exp(−λ · Ui), where Ui is the total utility for a customer at i ∈ N from all open
facilities:

Ui =
∑
j∈S

R∑
r=1

kijrxjr +
∑
j∈C

R∑
r=1

kijrxjr.

The share of the new facilities in the total volume of customer i ∈ N servicing is equal to:

MSi =

∑
j∈S

∑R
r=1

kijrxjr∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C

∑R
r=1 kijrxjr

.

Based on above notation, the mathematical model looks as follows:

max
∑
i∈N

wi ·

(
1− exp

(
− λ

(∑
j∈S

R∑
r=1

kijrxjr +
∑
j∈C

R∑
r=1

kijrxjr

)))
· (1)

·

( ∑
j∈S

∑R
r=1

kijrxjr∑
j∈S

∑R
r=1

kijrxjr +
∑

j∈C

∑R
r=1

kijrxjr

)
,

∑
j∈S

∑
r∈R

cjrxjr ≤ B, (2)

∑
r∈R

xjr ≤ 1, j ∈ S, (3)

∑
j∈S

∑
r∈R

xjr = p, (4)

xjr ∈ {0, 1}, r ∈ R, j ∈ S. (5)
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The objective function (1) reflects the company’s goal to maximize its demand share. Inequation
(2) allows locate the facilities taking in account the budget amounts available. Conditions (3)
show that there is a possibility to locate the facilities of only one type. Equation (4) sets the
condition for the number of facilities to be opened.

Theoretically the given problem is NP-hard. For the implementation of experimental studies
a set of 192 test examples have been used, which were constructed earlier on the basis of a real
applied problem [3]. The set consists of two series, where the distances between the points are
defined with the equally uniform distribution (Series 1) and satisfy the triangle inequality (Series
2). A set of 16 examples of the dimension |N | = 60, 80, 100, 150, 200, 300 with three possible
projects and budget limits of 3, 5, 7 and 9 units have been formed.

3. Development of Simulated Annealing Algorithm

The research of the problem is frequently started from the attempt to use the existing software.
The usage of the commercial software GAMS (solver CoinBonmin) [5] for the CPFLDP does not
always allow find a permissible solution. Furthermore, the computational experiments [6] showed
that CPFLDP is more complicated for the solver than the Competitive Facility Location and
Design Problem (CFLDP), which is set by the conditions (1)-(3), (5). The data about average
CPU time for Series 1 is given in the Table 1.

Table 1. Average CPU time of CoinBonmin, sec.

60 80 100 150 200 300

CPFLDP 181 329 482 2351 2650 11831
CFLDP 106 161 295 1000 1325 4561

Taking into account the given above information the local search algorithms were chosen as
the solution methods. The Variable Neighborhood Search (VNS) algorithm was offered in order
to solve the CPFLDP in [6]. In this work we offer the realization of the simulated annealing
(SA) algorithm. This algorithm is currently known for its successful usage for a wide range of
optimization problems, for example [4, 7].

The simulated annealing algorithm starts from some initial solution and initial temperature
parameter. At each value of temperature a certain number of iterations is carried out. On
each iteration the algorithm selects from neighbourhood of the current solution a new solution
randomly. This solution is accepted as a new current one according to some probabilistic law.
Then the temperature decreases. The process continues until the system reaches the frozen
state or until other stopping criteria are satisfied (e.g. maximal number of iterations, a maximal
number of steps without improvements etc.).

The algorithm has following controlling parameters: τ0 is the temperature of the frozen state;
L is the length of a temperature interval; ϕ(τ) is the low of reduction of temperature.

Consider the scheme of the SA algorithm.

(1) Set the initial solutions S and temperature τ .

(2) While l < L do

(a) choose solutions S′ from the neighbourhood N(S) of solutions S;
(b) Δ := F (S′)− F (S);
(c) if Δ ≤ 0 then S := S′;
(d) if Δ > 0 then S := S′ with probability p = exp{−Δ/τ}.
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(3) Reduce temperature τ := ϕ(τ).

(4) If time to terminate then return the best found solution S∗ else go to step 2.

On the basis of the competitive p-median facility location and design problem specificity the
special kinds of neighborhoods have been built. The Boolean matrix X can be associated an
integer vector z = (zj), so that zj = r, if xjr = 1. Let us call the neighborhood Np of a solution
z a set of vectors received as a result of the following steps:

(1) choose a facility opened in the point j = s with the project variant zs;

(2) choose a point j = q, where a facility is not opened yet;

(3) open a facility in the point q with the project variant zs and close the facility in the point
s, i.e. execute the following transformation: zq := zs, zs := 0.

It should be noted that there is a problem of selecting parameter values, so that the algorithm
can give good results for most instances. After the series of preliminary experiments the following
parameter values for the simulated annealing algorithm have been found: the threshold value
equal to 5; for the simulated annealing algorithm the temperature interval length L = 10,
the initial temperature τ = 150, the cooling (minimal) temperature value τ0 = 5, the low of
reduction of temperature is ϕ(τ) = 0.99 · τ .

Table 2. Average deviations from upper bounds in case of uniform distribution distances.

60 80 100 150 200 300

min 0.000 0.000 0.000 0.000 0.000 0.000
aver 0.483 0.101 0.450 0.263 0.190 0.384
max 3.326 0.825 2.421 2.212 3.011 3.162

Table 2 shows the minimum (min), average (aver) and maximum (max) values of deviations
from the upper bounds (UB) for test instances with uniform distribution of distances in a single
run of the algorithms. The average deviation for the uniform distribution of distances instances
of 300 locations is 0.384%, and the maximal deviation not exceeds 3.162%.

The test instances with Euclidean distances proved to be difficult for all considered algorithms
(see Table 3). The average deviations in this case for the same dimension is 15.775%, the maximal
deviation is 18.912%. Previously it was shown that the upper bound used is rough for the Series
2 for the CFLDP problem [8]. The large deviations in table 3 may be due to the same reason.

Table 3. Average deviations from upper bounds in case of the Euclidean distances.

60 80 100 150 200 300

min 19.274 18.802 10.027 18.349 10.178 9.330
aver 29.695 26.495 21.577 25.666 16.123 15.775
max 49.883 33.252 33.029 32.189 22.535 18.912

The described algorithm were tested on a computer with Intel Xeon X5675 @ 3.07 GHz
processor, 32 GB RAM. In Table 4 the minimum, average and maximum running time for Series 1
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are done. For example, the average CPU time of 300 locations is 166.465 seconds, compared
to 11831 seconds of solver CoinBonmin of system GAMS (see Table 1). This advantage can be
explained by the relatively simple type of neighborhood used. This fact once again confirms that
the simulation annealing algorithm for should be applied to problems in which it is possible to
construct a neighborhood that allows one to simply move from one solution to another. However,
due to the presence of a large number of parameters in the algorithm, a wide computational
experiment is required to configure them. For Series 2, similar results were obtained.

Table 4. Average CPU time for case of uniform distribution distances, sec.

60 80 100 150 200 300

min 5.238 9.126 12.972 28.346 43.980 94.818
aver 12.174 18.855 25.287 51.234 75.961 166.465
max 24.052 33.777 48.124 106.724 146.520 312.111

4. Conclusions

In this paper we have suggested simulated annealing algorithm for new Competitive p-Median
Facility Location Problem. This algorithm allow to find solutions close to the upper bounds on
the special test instances in case of uniform distribution of distances. On another series in case
of the Euclidean distances the deviations are greater. This confirms that the upper bounds used
are rough for these examples. It was necessary to continue research using other rules for the
upper bound construction. It should be noted that the proposed algorithm works on average
faster than the GAMS up to 70 times. It is interesting to continue these studies for other
threshold algorithms.
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