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Abstract. The work of nanomachines, which is a contemporary subject of the numerous 

investigations, is permanently affected by thermal fluctuations. Some aspects of this 

phenomenon might be reduced to the so-called Kramers problem concerning the decay rate of a 

metastable state. In the present work we compare the result of computer modelling, performed 

by solving the Langevin equations, with the analytical formulas for the decay rate for the case 

of energy diffusion regime (relatively small values of the friction strength). Qualitatively the 

agreement between these two approaches is rather good. However, the quantitative analysis 

reveals a difference of 10-20% which depends upon the thermal energy of the system. 

1. Introduction 

Nowadays the work of nanomachines is under extensive experimental study [1-3]. For these objects, 

the thermal fluctuations driving Brownian motion play an important role. Some challenges in this field 

are related to the so-called Kramers problem [4-6] concerning the quasistationary thermal decay rate 

(QDR) of a metastable state. The QDR depends significantly upon the friction strength 𝜂: at larger 

values of 𝜂 (the spatial diffusion regime) the rate decreases with 𝜂 whereas at smaller values of 

friction (the energy diffusion regime) opposite is predicted. The approximate formulas for the QDR 

obtained in [4] and modified in [7, 8] were checked thoroughly by comparing with the numerical 

modeling for the spatial diffusion regime [9-11]. Yet for the energy diffusion regime no quantitative 

tests of the approximate formulas are known. This is the goal of the present study to perform these 

tests. 

2. Model 

For this aim we model the decay process using the Langevin equations. Since in [4, 7] only the one-

dimensional (1D) analytical formula was derived, we perform our modeling for 1D too. The Brownian 

motion is described by a dimensionless coordinate 𝑞 and the conjugate momentum 𝑝. In the discrete 

form the equations used for modeling read: 

𝑝(𝑛+1) = 𝑝(𝑛)(1 − 𝜂𝑚−1𝜏) + 𝐾𝜏 + 𝑔𝑏(𝑛)√𝜏,                                     (1) 

𝑞(𝑛+1) = 𝑞(𝑛) + (𝑝(𝑛) + 𝑝(𝑛+1))𝜏/(2𝑚).                                         (2) 

The superscripts represent two moments of time separated by the time step of numerical modeling 

𝜏. The random numbers b entering the random forces have a Gaussian distribution with zero average 

and variance equal to 2. In equation (1) 𝑚 and 𝜂 are the coordinate independent inertia and friction 

parameters, respectively; 𝐾 = −𝑑𝑈/𝑑𝑞 is the driving force; 𝑔 =  (𝜃𝜂)1 2⁄  is the amplitude of the 

random force; 𝜃 stands for the average thermal energy. The potential 𝑈(𝑞) is represented by two 

parabolas of the same stiffness 𝐶 smoothly jointed at 𝑞𝑚. 

The modeling results in a sequence of 𝑁𝑡𝑜𝑡 trajectories terminated not later than at the time moment 

𝑡𝐷. Some of the trajectories reach the absorptive border 𝑞𝑎 = 2 before 𝑡𝐷. The algorithm for 

calculating the QDR resulting from the dynamical modeling, 𝑅𝐷, is described in Ref. [9]. 

Let us now discuss the approximate formula for the QDR when there is almost no dissipation in 

one bounce. This formula was obtained in [4]. It reads 

http://creativecommons.org/licenses/by/3.0
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𝑅𝐾𝐿 = 𝛾
𝜔

2𝜋
 exp (−

𝑈𝑏

𝜃
).                                                                 (3) 

Here 𝜔 is the frequency of oscillations near the parabolic bottom of the potential well; 𝑈𝑏 is the barrier 

height. 

𝛾 =
𝐼𝑏𝜂

𝜃𝑚
;                                                                                (4) 

𝐼𝑏 denotes the classical non-dissipative action at the collective energy equal to 𝑈𝑏: 

𝐼𝑏 = 2 ∫ √2𝑚[𝑈𝑏 − 𝑈(𝑞)]𝑑𝑞
𝑞𝑏

𝑞𝑙

.                                                          (5) 

It is evaluated from the left turning point (𝑞𝑙) up to the location of the top of the barrier (𝑞𝑏). In our 

case 𝐼𝑏 = 2𝜋 ∙ 1.07 ∙ 𝑈𝑏/𝜔. Equation (3) is supposed to be valid provided 𝛾 < 1.  

In [7] a modification of equation (3) was proposed allowing a smooth transition from the energy 

diffusion regime to the spatial diffusion regime. Denoting this modified rate as 𝑅𝐾𝐿𝐵 we write it as 

𝑅𝐾𝐿𝐵 =  
𝛿 − 1

𝛿 + 1
𝑅𝐾𝐿 .                                                                     (6) 

Here 

𝛿 = (1 +
4𝛼

𝛾
)

1/2

;                                                                     (7) 

𝛼 is a dimensionless adjustable parameter of the order of unity. 

3. Results 

In figure 1 we compare the approximate rate 𝑅𝐾𝐿𝐵 with the numerical one 𝑅𝐷 in the wide range of the 

friction strength in a qualitative manner. For convenience of a wider audience, the rates and damping 

coefficient are given in units of 𝜔 (𝜑 = 𝜂(𝑚𝜔)−1 ). These calculations are performed for three values 

of the controlling parameter 𝜀 = 𝑈𝑏𝜃−1. The values of 𝑅𝐾𝐿𝐵 are calculated using 𝛼 = 1.3. In figure 1 

one sees good qualitative agreement of the approximate rates with the numerical ones for all values of 

𝜀 and 𝜑. Note, that the numerical rate 𝑅𝐷 is a subject of statistical errors which are between 1% and 

2% in our calculations. 

 

 
Figure 1. The decay rates 𝑅𝐾𝐿𝐵 and 𝑅𝐷 versus the dimensionless friction strength 𝜑 for three values of 

controlling parameter 𝜀 indicated in the figure. 
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In order to consider the problem in a more quantitative manner, in figure 2 we present the fractional 

difference 

𝜉 =
𝑅𝐾𝐿𝐵

𝑅𝐷
− 1.                                                                        (8) 

for the same values of the controlling parameter 𝜀 as in figure 1. Analyzing the values of 𝜉 is more 

convenient because the rates themselves cover several orders of magnitude whereas the deviation of 

the approximate rate from the dynamical one is at most several tens percent. 

 

 
Figure 2. The fractional differences between 𝑅𝐾𝐿𝐵 and 𝑅𝐷 as functions of the dimensionless friction 

strength 𝜑 for three values of controlling parameter 𝜀 and adjustable parameter 𝛼  

(both are indicated in the figure). 

 

First of all, we note in in figure 2 that no value of fitting parameter 𝛼  provides an ideal agreement 

of 𝑅𝐾𝐿𝐵 with 𝑅𝐷, i.e. the value of 𝜉 never stays around zero within the error bars. In each panel the 

values of 𝜉 corresponding to different values of 𝛼 converge as 𝜑 decreases. This is expected from 

equations (6), (7). Another interesting feature observed in each panel is that the fractional difference 𝜉 

saturate at extremely weak friction. The saturated values are different depending upon 𝜀. Generally 

speaking, the Kramers approach is expected to become poorer as 𝜀 decreases (see details in [4, 10, 

12]): the larger 𝜀 the larger excess of 𝑅𝐷 over the Kramers rate, i.e. the smaller 𝜉. Results presented in 
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figure 2c seem corresponding to this consideration. However, the value of 𝜉 = 10% at 𝜀 > 3 in 

figures 2a and 2b is unexpected. It can be related to the circumstance that the Kramers formula (3) is 

obtained using the “Fokker-Planck” equation for the action variable and is approximate by itself 

whereas we model the decay process using the Langevin equations which are equivalent to the 

Fokker-Plank equation for the phase-space density. 

4. Conclusions 
In the present work we have compared an approximate analytical formula for the thermal decay rate in 

the energy diffusion regime, i. e. at small values of friction, with the exact quasistationary numerical 

rate 𝑅𝐷. The latter was obtained modeling the decay process by solving the Langevin equations. Our 

calculations demonstrate good qualitative agreement between the approximate rate 𝑅𝐾𝐿𝐵 and 𝑅𝐷. 

The quantitative comparison between these two rates shows that there is no way to reach an ideal 

agreement of 𝑅𝐾𝐿𝐵 with 𝑅𝐷 within the statistical errors of the latter which do not exceed 2%. 

Moreover, at extremely weak friction an approximate approach of [4] overestimates the numerical 

(exact) rate by 10% when all conditions of applicability of this approach are fulfilled (including the 

controlling parameter 𝜀 ≫ 1). As 𝜀 becomes comparable to unity, the numerical rate exceeds the 

approximate one. This observation agrees with the general expectation. 
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