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due to brake activation of traction machine
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Abstract. This paper shows an elevator dynamic model that calculates the compensating
sheave motion during a brake activation of the traction machine. A simplified mathematical
formulation is derived to evaluate the vertical static displacement of the compensating sheave.
The vertical vibration induced by the brake of the traction machine is also evaluated and it is
concluded that the maximum vibration occurs when the vertical vibration by the car stop timing
synchronizes the phase of the vibration by the brake activation. The maximum vibration is also
evaluated by a mathematical formulation and it shows that the vertical vibration is proportional
to the building height. The derived equations contribute to the elevator’s optimal design.

1. Introduction

Most elevators applied to tall buildings include compensating ropes to satisfy the balanced rope
tension between the car and the counter weight. The compensating ropes receive tension by the
compensating sheave, which is installed at the bottom space of the elevator shaft [1, 2]. The
compensating sheave is only suspended by the compensating ropes, therefore, the sheave can
move vertically during the car traveling. It is important to evaluate the vertical displacement
of the compensating sheave, because the displacement is one of the key factor to determine the
pit depth of the elevator shaft.

This paper shows the static displacement and the vertical vibration of the compensating
sheave. Firstly, an elevator system model is proposed to evaluate the vertical motion of
each component. The derived simulation model indicates that the vertical static displacement
depends on the car position and the car loading condition. Based on the simulation results, we
can produce a simplified mathematical formulation to evaluate the static displacement.

Secondary, the vertical vibration induced by the brake of the traction machine is evaluated
numerically. As the simulation results correspond with the experimental ones, we can investigate
the worst condition of the vibration by changing the elevator’s system parameters. It is concluded
that the maximum vibration occurs when the vertical vibration induced by the car stop timing
synchronizes the phase of the vibration induced by the brake activation. By the result, we can
also introduce a mathematical formulation to evaluate the maximum vibration.

Finally, we evaluate the relation between the vertical vibration and the building height. By
the derived equation, we can conclude that the amplitude of the vertical vibration induced by
the brake is proportional to the building height.
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In the end, the derived simulation model and mathematical formulations contribute to the
elevator’s optimal design, especially for the pit depth evaluation.

2. Multi-body dynamic model
Figure 1 shows the multi-body dynamic model of our elevator system. Since the suspension
and compensating ropes are treated as continuous bodies, they are modeled by alternating the
intensive mass and spring [3, 4].

The multi-body dynamic model in figure 1 is represented by the following equation of motion:

Mi+ Ci+ Kz =F, (1)

where M, C', K and F are the system’s inertia matrix, damping matrix, stiffness matrix and
generalized force vector respectively. @« is the vector of state variables, which includes the
translational and rotational values. Equation (1) includes models of rope slip on the sheaves,
tension loss, and the transient brake force of the traction machine [5].

When the brake is activated at the traction machine due to abnormal behaviors in the elevator
system, the car and the counter-weight receive a large vertical vibration at the same time. The
vibration also induces the vertical motion against the compensating sheave (figure 2).
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Figure 1. Elevator configuration Figure 2. Sheave’s vertical motion

3. Simulation results

3.1. Static displacement of the compensating sheave

The vertical displacement of the compensating sheave x4 in figure 1 is evaluated in each car
position. Figure 3 shows the compensating sheave’s vertical displacement when the car moves
downward from the top floor to the bottom floor. During the acceleration and deceleration
time, the compensating sheave moves downward. The simulation result of equation (1) shows
the same time response against the experimental one.

When the car stops at the top floor, the stiffness of the suspension rope at the car side is high
enough. Therefore the car loading condition doesn’t affect the compensating sheave’s vertical
motion at the top floor. The vertical position of the compensating sheave is determined by
the stretch of the suspension rope at the counter-weight side. On the other hand, when the
car stops at the bottom floor without any load, the sheave moves upward compared to the top
floor’s stopping condition as shown in figure 3 and figure 4(real line). This is because the stretch
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of the suspension rope at the car side is shorter due to lighter weight of the car against the
counter-weight as shown in figure 5. If the car has a rated load, the sheave moves downward
(dashed line in figure 4) due to heavier weight of the car against the counter-weight.
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Figure 5. Relation between sheave’s vertical displacement and car position

The equivalent rope stiffness K in figure 5 is expressed by the serial spring connection between
the suspension rope and the shackle spring at the rope end.

KK,

K=nx—""_
Ks + K,

(2)
where K, and K, are the stiffness of the suspension rope and the shackle spring respectively. n
is the number of rope in the elevator system.
By using the equivalent rope stiffness K, the relative displacement of the compensating sheave
T is represented by the following simple equation:
T4 _MwG_(Mc—l-ML)G (Mw—MC—ML)XG

Ts = 7, T K K — K 9 (3)
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where G, M,,, M. and M, are the gravitational acceleration, the counter-weight mass, the car
mass and the car loading mass respectively. x4 is the relative stretch of the suspension rope
between the car side and the counter-weight side. As the compensating sheave is the movable
pulley, the vertical displacement z is half of zg4.

3.2. Vertical vibration during the brake activation

When the brake is activated during the car running, the compensating sheave receives a large
vibration as shown in figure 6. The simulation result of equation (1) shows the same time
response against the experimental one. The vibration behavior can be described by figure 7.
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Figure 6. Sheave displacement during brake Figure 7. Relationship between sheave vibra-
activation tion and brake timing

The car and the counter-weight receive a step force by the brake. The force induces a vertical
vibration and the vibration continues while the car slows down its speed. When the car stops,
the compensating sheave receives another step force and then it induces another vibration.

If the first vibration and the second vibration are synchronized at the car stopping time, the
second vibration is magnified and a larger vibration occurs after the car stopping time as shown
in figure 7.

In this section, we evaluate the above large vibration at the car stopping time. At first, we
introduce a generalized mass M, which represents the car weight or the counter-weight one.

M= M.+ Ms/2 + M, + My, (bottom floor condition) (@)
| My + Mg/24+ M, (top floor condition) ’

where M, and M, are the weight of compensating sheave and suspension rope respectively. The
rope weight M, is expressed as the following equivalent mass.

M, =nxpx L/3, (5)

where p and L are the linear density of the suspension rope and the rope length respectively.

As the generalized mass M is suspended by the rope, the mass causes vertical vibration by
the brake force of the traction machine. In the actual system, the vertical vibration decreases
gradually due to the rope damping effect. However we ignore the damping effect to evaluate the
worst condition.

The car velocity pattern also affects the vibration. In figure 7, the brake is activated under
the constant speed condition. On the other hand, figure 8 shows the vibration behavior under
the brake occurrence at the car acceleration time.
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When the car is accelerating at SG, the brake is activated and the car is decelerated to —aG
by the brake force.
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Figure 8. Brake activation at car acceleration time

Due to the time response of the acceleration in figure 8, the vibration of M induced by the
brake activation is derived by a simple 1-DOF(degree of freedom) vibration model as shown in

figure 5.
MxG
zi(t) = ——{=6+ (a + B)(1 — coswit)}, (6)
where w is the natural frequency of the generalized mass M suspended by the equivalent rope

stiffness K.

K
W=\ (7)
Equation (6) is derived by the following initial condition.

M x pG
-
By the step function of the brake force (a+ )G, equation (6) shows the sinusoidal wave response.

In figure 8, D, and D correspond to the following equation.

aMG _ pMG

D, = D 9
a K’ b K ()

From the second term of equation (6), the vibration amplitude Cy during deceleration due to
the traction brake is given by

i(0) = i(0) = 0. (®)

(a4 MG
-

The residual vibration after the car stopping is also described by a sinusoidal wave of the
same frequency in equation (7). The following equation is derived by a simple 1-DOF vibration
model in the same manner as equation (6).

z(t) = Acosw(t —t;) + Bsinw(t — t;), (11)

Ci=D,+ Dy = (10)
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where t; is the time of car stopping and the arbitrary values A, B are determined by the following
initial condition.

Z(tl) = xi(ti), Z(tz) = xz(tz) (12)
Then equation (11) is expressed by

s (f N 2
2(t) = x(t;) cosw(t — t;) + ngz) sinw(t —t;) = \/xf(tz) + ( ) sin(wt + ¢), (13)

where ¢ is the constant of phase shift.
The maximum amplitude of equation (13) is derived by the following condition.

2N —1
coswt; = -1 — ti:u, (N=1,2,---). (14)
w

In this case, the maximum amplitude is given by

7 = max{z(t)} = M; 20+ ). (15)

In figure 8, the maximum amplitude Cs as the residual vibration is given by the following
equation.
20+ p)MG
K

The compensating sheave’s vibration is half of the generalized mass M, because it moves
by the mechanism of movable pulley. Therefore the maximum vibration of the compensating
sheave is expressed as follows.

Co=D,+C1=2D,+ Dy = =7 (16)

g _MxG o 1) (17)

Ts = 2K

3.3. Influence of building height
Equation (17) is the function of the equivalent rope stiffness K. If the rope is long enough,
equation (2) is approximated by

E.A
K~nxK,=nx TLT, (18)

where E, and A, are the rope’s Young modulus and the cross section area respectively. The
rope length L can be approximated by the building height.

Substituting equation (18) into equation (17), it is assumed that the maximum vibration is
proportional to the rope length L, or the building height.

MG

~ onp A 2+ AL (19)

Ls

To evaluate the above assumption, the maximum vibration is calculated in each building
height. Figure 9 shows the several simulation results of the maximum vibration in the actual
elevator specifications.

The result of equation (17) which is marked by a circle matches the simulation result marked
by a square. As both results are proportional to the building height, the above assumption is
acceptable.
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Figure 9. Maximum vertical vibration with building height

4. Conclusions

We evaluated the vertical displacement and vibration of the compensating sheave. Our formula
suggests that the static displacement depends on the car position and the car loading condition.
We also get another conclusion that the maximum vertical vibration induced by the brake of
the traction machine is proportional to the building height. As the maximum vertical vibration
and the static displacement are expressed by simple formulas, we can use them for the elevator’s
optimal design.
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