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Abstract. The support vector machine (SVM) is a well-established classifi-
cation method whose name refers to the particular training examples, called
support vectors, that determine the maximum margin separating hyperplane.
The SVM classifier is known to enjoy good generalization properties when the
number of support vectors is small compared to the number of training exam-
ples. However, recent research has shown that in sufficiently high-dimensional
linear classification problems, the SVM can generalize well despite a prolifera-
tion of support vectors where all training examples are support vectors. In this
paper, we identify new deterministic equivalences for this phenomenon of support
vector proliferation, and use them to (1) substantially broaden the conditions
under which the phenomenon occurs in high-dimensional settings, and (2) prove
a nearly matching converse result.
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1. Introduction

The support vector machine (SVM) is one of the most well-known and commonly used
methods for binary classification in machine learning [14, 42]. Its homogeneous version
in the linearly separable setting (commonly also known as the hard-margin SVM ) is
defined as the solution to an optimization problem characterizing the linear classifier
(a separating hyperplane) that maximizes the minimum margin achieved on the n
training examples (x1, y1), . . . , (xn, yn) ∈ R

d × {−1,+1}:

max
w∈Rd,γ�0

γ subject to margini (w) � γ for all i = 1, . . . ,n, (1)

https://doi.org/10.1088/1742-5468/ac98a9 2

https://doi.org/10.1088/1742-5468/ac98a9


J.S
tat.

M
ech.

(2022)
114011

On the proliferation of support vectors in high dimensions∗

where

margini(w) :=

{
yix

T
i w/‖w‖2 ifw �= 0

0 ifw = 0

is the margin achieved by w on the ith training example5 (x i, yi). The SVM gets its
name from the fact that the solution (w �, γ�) depends only on the set of training exam-
ples that achieve the minimum margin value, γ�. These examples are known as the
‘support vectors’, and it is well-known that the weight vector w � can be written as a
(non-negative) linear combination of the yix i corresponding to support vectors. More
precisely, the dual form of the solution expresses the weight vector w� =

∑n
i=1α

�
i yixi in

terms of dual variables α�
1, . . . ,α

�
n � 0. This constitutes a concise representation of the

solution—just the list of non-zero dual variables α�
i and corresponding data points. This

remarkable property of the SVM is particularly important in its ‘kernelized’ extension
[8, 39], where the dimension d may be very large (or, in fact, infinite) but inner products
can be computed efficiently.

The number of support vectors, if sufficiently small, has interesting consequences for
the generalization error of the hard-margin SVM solution. Techniques based on leave-
one-out analysis and sample compression [19, 20, 43] bound the generalization error as
a linear function of the fraction of support vectors and have no explicit dependence
on the dimension d. In particular, if the number of support vectors can be shown to
be o(n) with high probability, these bounds imply ‘good generalization’ of the SVM
solution in the sense that the generalization error of the SVM is upper-bounded by a
quantity that tends to zero as n→∞. Moreover, this sparsity in support vectors can
be demonstrated in sufficiently low-dimensional settings using asymptotic arguments
[10, 16, 30]. However, the story is starkly different in the modern high-dimensional
(also called overparameterized) regime; in fact, quite the opposite can happen. Recent
work comparing classification and regression tasks under the high-dimensional linear
model [34] showed that under sufficient ‘effective overparameterization’, e.g. d ∼ n log n
under isotropic Gaussian design, every training example is a support vector with high
probability . That is, the fraction of support vectors is exactly 1 with high probabil-
ity. This establishes a remarkable link between the SVM and solutions that interpolate
training data, allowing an entirely different set of recently developed techniques that
analyze interpolating solutions in regression tasks [5, 7, 22, 32, 33, 35] to be applied
to the SVM. Using this equivalence, Muthukumar et al [34] showed the existence of
intermediate levels of overparameterization in which all training examples are sup-
port vectors with high probability, but the ensuing SVM solution still generalizes well.
This characterization was derived for a specific overparameterized ensemble inspired
by spiked covariance models [29, 47]. More importantly, the level of overparameteri-
zation considered there was only sufficiently, not necessarily, high enough for support
vector proliferation.

5We only consider homogeneous linear classifiers in this paper and hence have omitted the bias term. The equivalent, but more
standard, form of this problem is presented as equation (2) in section 2.1.
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In this paper, we establish necessary and sufficient conditions for the phenomenon
of support vector proliferation to occur with high probability for a range of high-
dimensional linear ensembles, including sub-Gaussian and Haar design of the covariate
matrix. In other words, for sufficiently high effective overparameterization (measured
through quantities that are related to effective ranks of the covariance matrix as iden-
tified by Bartlett et al [5]), we show that all training examples are support vectors
with high probability. We also provide a weak converse: in the absence of a certain
level of overparameterization, at least one training example is not a support vector with
constant probability.

1.1. Related work

The number of support vectors has been previously studied in several contexts on
account of the aforementioned connection to generalization error both in classical
regimes using sample compression bounds [19, 20, 43], and the modern high-dimensional
regime [13, 34]. Several works investigate the thermodynamic limit where both the
dimension of the input data d and the number of training data n both tend to infinity
at a fixed ratio δ = n/d (e.g. [10, 16, 28, 30]). One particular result of note is that of
Buhot and Gordon [10], who consider a linearly6 separable setting where the training
data inputs are drawn i.i.d. from a d-dimensional isotropic normal distribution. They
find that the typical fraction of training examples that are support vectors approaches
the following (in the limit as both n, d→∞):⎧⎪⎪⎨

⎪⎪⎩
0.952

δ
for δ 	 1,

1−
√

2δ

π
exp

(
− 1

2δ

)
for δ 
 1.

In the classical regime, where n 	 d (i.e. δ 	 1), a combination of this asymptotic esti-
mate with sample compression arguments yields generalization error bounds of order
O(1/δ) = O(d/n), which tend to zero as δ →∞. However, in the high-dimensional
regime, where d 	 n (i.e. δ 
 1), the fraction of examples that are support vectors
quickly approaches 1 as δ → 0. In these cases, the generalization error bounds based on
support vectors no longer provide non-trivial guarantees.

Muthukumar et al [34] recently provided a non-asymptotic result for this isotropic
case considered above. They found that if d grows somewhat faster than n (specifically,
d ∼ n log n), then the fraction of examples that are support vectors is 1 with very high
probability. They also showed that the fraction of support vectors obtained by the hard-
margin linear SVM can tend to 1 in anisotropic settings if the setting is sufficiently
high-dimensional; this is captured by notions of effective rank of the covariance matrix
of the linear featurizations [5]. Our results greatly sharpen the sufficient conditions
provided there; see section 3 for a detailed comparison, and in particular, section 3.4 for
additional discussion of implications for generalization error bounds.

6We note that the main interest of Buhot and Gordon is in SVMs with non-linear feature maps; we quote one of their results
specialized to the linear setting.
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Chatterji and Long [13] also recently showed that the SVM can generalize well in
overparameterized regimes. In their work, the data are generated by a linear model
inspired by Fisher’s linear discriminant analysis, and establish their results under the
assumption of sufficiently high separation between the means of the two classes. Their
results are based on a direct analysis of the SVM, but do not make any claims about
the number of support vectors.

The number of support vectors has also been studied in non-separable but low-
dimensional settings, using suitable variants of the SVM optimization problem. These
variants include the soft-margin SVM [14] and the ν-SVM [40]. In both of these, the
hard-margin constraint is relaxed and support vectors include training examples that
are exactly on the margin as well as margin violations. The soft-margin SVM does
this by introducing slack variables in the margin constraints on examples, and uses
a hyper-parameter to control the trade-off between the margin maximization objective
and the sum of constraint violations. The ν-SVM provides somewhat more direct control
on the number of support vectors: the hyper-parameter ν is an upper-bound on the
fraction of margin violations and a lower-bound on the fraction of all support vector
examples. First, for a suitable choice of the hyper-parameter, the fraction of examples
that are support vectors in the soft-margin SVM can be related to the Bayes error
rate when certain kernel functions are used [4, 41]. Indeed, this fact has motivated
algorithmic developments for sparsifying the SVM solution (e.g. [11, 17, 23]). Second,
under some general conditions on the data distribution, it is also shown for the ν-SVM
[40, proposition 5] that as n→∞ for a fixed dimension d, all support vectors are of the
margin violation category. These results for non-separable but low-dimensional settings
are not directly comparable to ours, which hold in the high-dimensional (therefore,
typically separable) regime. Notably, our results on the support vector proliferation do
not require the presence of label noise—i.e. the Bayes error rate can be zero and still,
every example may be a support vector.

In addition to the aforementioned sample compression bounds that explicitly use
the number of support vectors, there is a distinct line of work on generalization error
of SVMs based on the margin γ achieved on the training examples [2, 3, 21, 31, 49].
However, in the settings we consider, these generalization error bounds are never smaller
than a universal constant (e.g. 1/

√
2), as pointed out by Muthukumar et al [34, section 6]

and expanded upon in section 3.4. It is worth mentioning that the margin-based bounds,
as well as the bounds based on the number of support vectors, make no (or very few)
assumptions about the distribution of the training examples. The distribution-free qual-
ity makes the bounds widely applicable, but it also limits their ability to capture certain
generalization phenomena, such as those from [13, 34].

Our work bears some resemblance to the early work of Cover [15] on linear classifica-
tion. There, the concern is the number of independent features necessary and sufficient
for a data set (with fixed, non-random labels) to become linear separable. Linear separa-
bility just requires the existence of w ∈ R

d such that margini(w) > 0 for all i = 1, . . . , n,
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but these margin values could vary across examples. In contrast, our work considers
necessary and sufficient conditions under which the margins achieved are all the same
maximum (positive) value.

There have been several developments on support vector proliferation since the
initial publication of our work. First, Ardeshir et al [1] strengthened our converse
result under the independent features model. For isotropic features, they show that
d = Ω(n log n) is necessary for a constant probability of support vector prolifera-
tion. They also provide a converse result for anisotropic features in terms of effec-
tive dimensions. In the special case of standard Gaussian features, they find that
the transition occurs around d ∼ 2n log n, and they bound the width of the transi-
tion. Ardeshir et al also give empirical evidence for the universality of support vector
proliferation under broader classes of feature distributions. Independently, Wang and
Thrampoulidis [45] showed that support vector proliferation also occurs under suf-
ficient effective overparameterization under the Gaussian mixture model; Cao et al
[12] further sharpened and generalized these results to general sub-Gaussian mixture
models. Finally, Wang et al [46] considered the multiclass case and showed a high-
probability equivalence between not only the one-vs-all SVM [37] and interpolation
(which follows as a direct consequence of this work), but also the multiclass SVM
[48]. While the dual of the multiclass SVM required a different and novel treatment,
subsequent steps in their proof leverage, in part, the arguments that are provided in
this paper.

2. Setting

In this section, we introduce notation for the SVM problem, and describe the
probabilistic models of the training data under which we conduct our analysis.

2.1. SVM optimization problem

Our analysis considers the standard setting for homogeneous binary linear classification
with SVMs. In this setting, one has n training examples (x1, y1), . . . , (xn, yn) ∈ R

d ×
{−1,+1}. A homogeneous linear classifier is specified by a weight vector w ∈ R

d, so that
the prediction of this classifier on x ∈ R

d is given by the sign of xTw. The ambiguity of
the sign when xTw = 0 is not important in our analysis.

The SVM optimization problem from equation (1) is more commonly written as

min
w∈Rd

1

2
‖w‖22

subj. to yix
T
i w � 1 for all i = 1, . . . ,n.

(2)

The well-known Lagrangian dual of equation (2) can be written entirely in terms of
the vector of labels y := (y1, . . . , yn) ∈ R

n and the n× n Gram (or kernel) matrix K

https://doi.org/10.1088/1742-5468/ac98a9 6
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corresponding to x 1, . . . , x n, i.e. Ki,j :=xT
i xj for all 1 � i, j � n:

max
α∈Rn

n∑
i=1

αi −
1

2
αT diag(y)TK diag(y)α

subj. toαi � 0 for all i = 1, . . . ,n.

(3)

Above, we use diag(·) to denote the diagonal matrix with diagonal entries taken from
the vector-valued argument. An optimal solution α� to the dual problem in equation (3)
corresponds to an optimal primal variable w � for the problem in equation (2) via the
relation w� =

∑n
i=1α

�
i yixi. The support vectors are precisely the examples (x i, yi) for

which the corresponding α�
i is positive, a consequence of complementary slackness.

It will be notationally convenient to change the optimization variable from α to
β ∈ R

n with βi = yiαi for all i = 1, . . . , n. In terms of β, the SVM dual problem from
equation (3) becomes

max
β∈Rn

yTβ − 1

2
βTKβ

subj. to yiβi � 0 for all i = 1, . . . ,n.

(4)

An optimal solution β� to this problem corresponds to an optimal primal variable w � via
the relation w� =

∑n
i=1β

�
i xi, and the support vectors are precisely the examples (x i, yi)

for which β�
i is non-zero.

Note that if it were not for the n constraints, the solutions to optimization problem
would be characterized by the linear equation Kβ = y . We refer to the version of the
optimization problem in equation (4) without the n constraints as the ridgeless regression
problem. Solutions to this problem have been extensively studied in recent years (e.g. [5,
7, 22, 27, 29, 35]). If a vector β ∈ R

n satisfies both Kβ = y as well as the n constraints
yiβi � 0 for all i = 1, . . . , n, then β is necessarily an optimal solution to the SVM dual
problem from equation (4).

2.2. Data model

We analyze the SVM under the following probabilistic model of the training examples.
Feature model. The x 1, . . . , x n are random vectors in R

d satisfying

xi := diag(λ)1/2zi, for all i = 1, . . . ,n.

The positive vector λ ∈ R
d
++ parameterizes the model. The random vectors, collected in

the n× d random matrix Z := [z1| · · · |zn]T = (zi,j)1�i�n ; 1�j�d, satisfy one of the following
distributional assumptions.

(a) Independent features: Z has independent entries such that each zi,j is mean-zero,
unit variance, and sub-Gaussian with parameter v > 0 (i.e. E(zi,j) = 0, E(z2i,j) = 1,

and E(etzi,j) � evt
2/2 for all t ∈ R).

(b) Haar features: Z is taken to be the first n rows of a uniformly random d× d

orthogonal matrix (with the Haar measure), and then scaled by
√
d. The scaling
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is immaterial to our results, but it makes the analysis comparable to that for the
independent features case.

Label model. Conditional on x 1, . . . , x n, the y1, . . . , yn are independent {−1,+1}-
valued random variables such that the conditional distribution of yi depends only on x i

for each i = 1, . . . , n. Formally:

yi ⊥⊥ (x1, y1, . . . , xi−1, yi−1, xi+1, yi+1, . . . , xn, yn)|xi.

Remarks. All of our results will assume d � n. The non-singularity of the kernel
matrix K = Z diag(λ)ZT will be important for our analysis. In the case of Haar features,
setting d � n ensures that the matrix Z always has rank n, and hence the kernel matrix
K = Zdiag(λ)ZT is always non-singular. In the case of independent features, if the
distributions of the zi,j are continuous, then Z has rank n almost surely, and hence again
K is non-singular almost surely. Our results only require the zi,j to be sub-Gaussian and
need not have continuous distributions. For instance, if the zi,j are Rademacher (uniform
on {−1,+1}), then there is a non-zero probability that Z is rank-deficient—however,
we will see that this probability is negligible.

Our label model is very general and allows for a variety of settings, including the
following.

(a) Generalized linear models (GLMs): Pr(yi = 1|xi) = g(xT
i w) for some w ∈ R

d and
some function g :R→ [0, 1]. Examples include logistic regression, where g(t) =
1/(1 + e−t); probit regression, where g(t) = Φ(t) and Φ is the cumulative distri-
bution function of the standard Gaussian distribution; and one-bit compressive
sensing [9], where g(t) = �{t>0}.

(b) Multi-index models : Pr(yi = 1|x i) = h(Wx i) for some k ∈ N, W ∈ R
k×d, and

h :Rk → [0, 1]. The case k = 1 corresponds to GLMs. Examples with k � 2 include
the intersections of half-spaces models and certain neural networks [6, 24, 25].

(c) Fixed labels : yi ∈ {−1,+1} are fixed (non-random) values. This can be regarded as
a null model where the feature vectors have no statistical relationship to the labels.
This null model was, e.g. considered by Cover [15].

Our results in theorems 1 and 2 consider, respectively, the independent features and
Haar features, but both allowing for general label models. Our weak converse result in
theorem 3 is established in the special case where the zi,j are i.i.d. standard Gaussian
random variables (a special case of independent features), and where the labels are fixed.

2.3. Additional notation

Let [n] := {1, . . . , n} for any natural number n. Let R++ := {x ∈ R :x > 0} denote the
positive real numbers. For a vector v ∈ R

n, we let v\i ∈ R
n−1 denote the vector obtained

from v by omitting the ith coordinate. For a matrix M ∈ R
n×d, we let M\i ∈ R

(n−1)×d

denote the matrix obtained from M by omitting the ith row. Sometimes, for a square
matrix M ∈ R

n×n, we will also use M\i ∈ R
(n−1)×(n−1) to denote the matrix obtained

from M by removing the ith row and column. We let e i denote the ith coordinate
vector in R

n. For a vector v ∈ R
d, we denote its p-norm by ‖v‖p = (

∑d
i=1|vi|p)1/p. For

a matrix M ∈ R
d×d, we denote its 2→ 2 operator norm (i.e. largest singular value) by

https://doi.org/10.1088/1742-5468/ac98a9 8
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‖M‖op = supv∈Rd : ‖v‖2�1‖Mv‖2. Let Sd−1 := {x ∈ R
d : ‖x‖2 = 1} denote the unit sphere in

R
d. If M is a symmetric matrix, λmin(M ) denotes the smallest eigenvalue of M . Finally,

we will use (C, c, c1, c2) to denote universal constants that do not depend, explicitly or
implicitly, on the dimension d, the number of training examples n, or properties of the
data distribution.

3. Main results

Our primary interest is in the probability that every training example is a support vector
under the data model from section 2.2. We give sufficient conditions on certain effective
dimensions for this probability to tend to one as n→∞. We complement these results
with a partial weak converse. Finally, we present a key deterministic result that is used
in the proofs of the aforementioned results. All proofs are given in section 4.

We define the following effective dimensions in terms of the data model
parameter λ:

d2 :=
‖λ‖21
‖λ‖22

and d∞ :=
‖λ‖1
‖λ‖∞

.

Observe that d � d2 � d∞, and that if λj = 1 for all j = 1, . . . , d (i.e. the isotropic set-
ting), then d = d2 = d∞. We note that d2 and d∞ are, respectively, the same as the
effective ranks r0(diag(λ)) and R0(diag(λ)) studied by Bartlett et al [5]. They arise
naturally from the tail behavior of certain linear combinations of χ2-random variables
(see, e.g. [26]).

3.1. Sufficient conditions

Our first main result provides sufficient conditions on the effective dimensions d2 and
d∞ in the independent features setting so that, with probability tending to one, every
training example is a support vector.

Theorem 1. There are universal constants C > 0 and c > 0 such that the following
holds. If the training data (x 1, y1), . . . , (x n, yn) follow the model from section 2.2 with
independent features, subgaussian parameter v > 0, and model parameter λ ∈ R

d
++, then

the probability that every training example is a support vector is at least

1− exp

(
−c ·min

{
d2
v2
,
d∞
v

}
+ Cn

)
− exp

(
−c · d∞

vn
+ C log n

)
.

Observe that the probability from theorem 1 is close to 1 when

d2 	 v2n and d∞ 	 vn log n.

We can compare this condition to that from the prior work of Muthukumar et al [34]
in our setting with independent Gaussian features (v = 1). In the anisotropic setting

https://doi.org/10.1088/1742-5468/ac98a9 9

https://doi.org/10.1088/1742-5468/ac98a9


J.S
tat.

M
ech.

(2022)
114011

On the proliferation of support vectors in high dimensions∗

(i.e. general λ), the prior result’s condition for every training example to be a support
vector with high probability is d2 	 n2 log n and d∞ 	 n3/2 log n. In the isotropic set-
ting (i.e. all λj = 1), assuming the labels are fixed (i.e. non-random), the prior result’s
condition is d 	 n log n. Theorem 1 is an improvement in the anisotropic case, and it
matches this prior result in the isotropic case7.

Our second main result provides an analogue of theorem 1 for the case of Haar
features (where neither training examples nor features are statistically independent).

Theorem 2. There are universal constants C > 0 and c > 0 such that the following
holds. If the training data (x 1, y1), . . . , (x n, yn) follow the model from section 2.2 with
Haar features and model parameter λ ∈ R

d
++, then the probability that every training

example is a support vector is at least

1− exp(−c · d∞ + Cn)− exp

(
−c · d− n+ 1

d
· d∞
n

+ C log n

)
.

3.2. Weak converse

Our final main result gives a weak converse to theorem 1 in the case where the features
are i.i.d. standard Gaussian and the labels are fixed.

Theorem 3. Let the training data (x 1, y1), . . . , (x n, yn) follow the model from section 2.2
with λ = (1, . . . , 1), z 1, . . . , z n being i.i.d. standard Gaussian random vectors in R

d, and
y1, . . . , yn ∈ {±1} being arbitrary but fixed (i.e. non-random) values. For any d � n, the
probability that at least one training example is not a support vector is at least

Φ

⎛
⎝−

√
d− n+ 4 + 2

√
d− n+ 2

n− 1

⎞
⎠ ·

(
1− 1

e

)
,

where Φ is the cumulative distribution function of the standard Gaussian distribution.

Observe that the probability bound from theorem 3 is at least a positive constant
(independent of d and n) whenever the dimension d (regarded as a function of n) is
O(n). This means that the dimension d must be super-linear in n in order for the
‘success’ probability of theorem 1 to tend to one with n. Theorem 3 applies to the
case where the features vectors are isotropic. In appendix A, we give a version of the
result that applies to certain anisotropic settings, again in the case of independent
Gaussian features and fixed labels. The theorem puts restrictions on the tail behav-
ior of λ. These restrictions are related to the effective ranks studied by Bartlett et al
[5]. The proof is similar to that of theorem 3, but also relies on a technical result
from [5].

Except when the ‘success’ probability is required to be �1− 1/nc for constant c > 0,
there is a log(n) gap between the sufficient condition from theorem 1 and the necessary

7We remark that the result of Muthukumar et al [34] for the anisotropic case, in fact, holds for all (fixed) label vectors y ∈ {−1,+1}n
simultaneously. However, their proof does not readily give a tighter condition when only a single (random) label vector is considered.
Our proof technique side-steps this issue by showing that it is sufficient to consider the scaling of quantities that do not depend on
the value of the label vector.
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condition from theorem 3. As mentioned earlier, subsequent work of Ardeshir et al [1]
closed this gap and showed that even for constant success probability, d = Ω(n log n) is
necessary.

3.3. Deterministic equivalences

The crux of all of the above results lies in the following key lemma, which characterizes
equivalent conditions for every training example to be a support vector.

Lemma 1. Suppose Z := [z1| · · · |zn]T ∈ R
n×d and λ ∈ R

d
++ are such that Z diag(λ)ZT

and Z\i diag(λ)Z
T
\i for all i = 1, . . . , n are non-singular. Let the training data

(x1, y1), . . . , (xn, yn) ∈ R
d × {−1,+1} satisfy xi = diag(λ)1/2zi for each i = 1, . . . , n.

Then the following are equivalent:

(a) Every training example is a support vector.

(b) The vector β :=K−1y satisfies yiβi > 0 for all i = 1, . . . , n.

(c) yiy
T
\i
(
Z\i diag(λ)Z

T
\i
)−1

Z\i diag(λ)zi < 1 for all i = 1, . . . , n.

The above lemma is a deterministic result—it does not reference a particular sta-
tistical model for the data—and hence the equivalences are given under non-singularity
conditions. We note that the non-singularity conditions are readily satisfied under the
data model from section 2.2 (with high probability, in the case of independent features,
or deterministically, in the case of Haar features).

The equivalences of the first two items in this lemma connect the solutions to the
SVM optimization problem and the ridgeless regression problem more tightly than was
done in the prior work of Muthukumar et al [34], who only proved one direction of the
equivalence between the first two items. The proofs of our main results critically use the
third item in the above equivalence.

3.4. Implications for generalization

In theorems 1 and 2, we identified high-dimensional regimes in which the SVM solution
exactly corresponds to the least norm (linear) interpolation of training data with high
probability. We observe in figure 1 that certain deterministic featurizations (which bear
some resemblance to the Haar features of theorem 2, and have been independently
analyzed in the interpolating regime for regression problems [7, 35]) also empirically
exhibit similar support vector proliferation when the effective overparameterization is
sufficiently high.

The regimes considered in our results go beyond the common high-dimensional
asymptotic where d and n grow proportionally to each other (i.e. n/d→ δ as n, d→∞).
One may wonder, then, whether these regimes are too high dimensional for the SVM to
generalize well. As mentioned in section 1, the classical generalization error bounds for
the SVM are based on the number of support vectors or the worst-case margin achieved
on the training examples. Recall that these upper bounds are, respectively, roughly of
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Figure 1. Plots of linear functions on top of trigonometric features of a scalar
input variable that parameterizes the horizontal axis. (These plots originally
appeared in [34].) The two linear functions are those given by the solution
to the SVM optimization problem and the ridgeless regression problem (i.e.
the least norm interpolation), based on 32 training data shown as ×’s in the
plot. The features are obtained via the mapping t 
→ (1,

√
η1 cos(1 · t),√η1 sin

(1 · t), . . . ,√ηk cos(k · t),√ηk sin(k · t)) ∈ R
2k+1 where k = 214. In (a), the SVM and

least norm interpolation coincide exactly (so all 32 examples are support vectors);
in (b), the functions are noticeably distinct (and only 18 out of 32 examples are
support vectors). In each case, we computed analogues of d2 and d∞ based on the
eigenvalues of the Gram matrix. In (a), they are 108.386 and 21.5626; in (b), they
are 3.213 78 and 2.201 98.

the form8

# support vectors

n
and

‖w�‖22
n

· E[tr(K)]

n
.

Here, w � is the solution to the SVM primal problem in equation (2). Unfortunately,
these bounds are not informative for the high-dimensional regimes in which all training
points become support vectors. As soon as d2 and d∞, respectively, grow beyond n
and n log n, then both bounds above become trivial with probability tending to one.
This is immediately apparent for the first bound, as a consequence of theorem 1. For
the second bound, an inspection of the proof of theorem 1 shows that in an event
where every training example is a support vector (with the same probability as given in
theorem 1), we have

‖w�‖22 = yTK−1y � n

‖K‖op
� n

2‖λ‖1
.

Since E[tr(K)]/n = ‖λ‖1, the second bound is at least 1/2 in this event. We also remark
that even more sophisticated generalization bounds using the distribution of the margin
on training examples (e.g. [18]) do not help in this high-dimensional regime. This is
because when all training examples become support vectors, the normalized margin of
every training point becomes exactly the worst-case margin, which is 1/‖w �‖2.

8 Some bounds are given as the square-roots of the expressions we show, but whether or not the square-root is used will not make
a difference in our case. We also omit constants (which are typically larger than 1), polylogarithmic factors in n, and terms related
to the confidence level for the bound.
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However, recent analyses show that the SVM can generalize well even when all
training points become support vectors. In particular, the recent work of Muthukumar
et al [34] provided positive implications for the SVM by analyzing the classification
test error of the least norm interpolation. In particular, they considered a special
anisotropic Gaussian ensemble inspired by spiked covariance models, parameterized by
positive constants p > 1 and 0 < (q, r) < 1; here, d = np and (q, r) parameterize the
eigenvalues of the feature covariance matrix and the sparsity of the unknown signal
respectively. See [34, section 3.4] for further details. It suffices for our purposes to note
that the main result of Muthukumar et al [34, theorem 2] showed that the follow-
ing rate region of (p, q, r) is necessary and sufficient for the least norm interpolation
of training data to generalize well, in the sense that the classification test error goes
to 0 as n→∞:

0 � q < 1− r +
p− 1

2
. (5)

It is easy to verify that theorem 1 directly implies good generalization of the SVM for
this entire rate region. First, for q � 1− r, it holds that

d2 � n2p−max{2p−2q−r,p}

d∞ � nq+r,

and since we have assumed p > 1, the conditions of theorem 1, i.e. d2 	 n, d∞ 	 n log n,
would hold if and only if q > 1− r. On the other hand, the usual margin-based bounds
would show good generalization of the SVM if 0 � q < (1− r). Putting these together,
the SVM generalizes well for the entire rate region in equation (5).

Further, the improvement of this implication over the partial implications for the
SVM that were provided in Muthukumar et al [34] is clear. In particular [34, corollary 1]
required p > 2, i.e. d 	 n2, and showed that the SVM will then generalize well if
(3/2− r) < q < (1− r) + (p− 1)/2. Thus, the rate region implied by this work was

{0 � q < (1− r)} ∪
{(

3

2
− r

)
< q < (1− r) +

(p− 1)

2

}
,

which has a non-trivial gap compared to equation (5). In summary, our results imply
an expansion over the rate region predicted by classical generalization bounds based on
either the number of support vectors or the margin.

4. Proofs

This section gives the proofs of the main results, as well as the proof of the main technical
lemma.

Throughout, we use the shorthand notations Λ := diag(λ) and K\i :=Z\iΛZT
\i for

each i = 1, . . . , n. Note that K ni is the same as K = Zdiag(λ)ZT except omitting both
the ith row and the ith column (whereas Z \i only omits the ith row of Z ).
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4.1. Proof of lemma 1

Recall that we assume K andK ni for all i = 1, . . . , n are non-singular. We first show that
all training examples are support vectors if and only if the candidate solution β = K−1y
satisfies

yiβi > 0 for all i = 1, . . . ,n. (6)

• (⇐=) Assume yiβi > 0 for all i ∈ [n]. Recall that β = K−1y is the unique optimal
solution to the ridgeless regression problem (i.e. the problem in equation (4) without
the n constraints). Since equation (6) holds, then β is dual-feasible as well, and
so it is the unique optimal solution to the dual program, i.e. β� = β. Moreover,
yiβ

�
i > 0 =⇒ β�

i �= 0 for all i ∈ [n], and so every training example is a support vector.

• (=⇒) Assume every training example is a support vector, i.e. β�
i �= 0 for all i ∈ [n]

(so, in particular, yiβ
�
i > 0 for all i ∈ [n]). We shall write the solution w � to the

primal problem from equation (2) as a linear combination of x 1, . . . , x n in two ways.
The first way is in terms of the dual solution β�, i.e. w� =

∑n
i=1 β

�
i xi, which follows

by strong duality. The second way comes via complementary slackness, which implies
that w � satisfies every constraint in equation (2) with equality. In other words, w �

solves

min
w∈Rd

1

2
‖w‖22

subj. to xT
i w = yi for all i = 1, . . . ,n.

Since K is non-singular by assumption, the solution is unique and is given by
XTK−1y = XTβ =

∑n
i=1 βixi, where X = [x1| · · · |xn]

T. So we have w� =
∑n

i=1 β
�
i xi =∑n

i=1 βixi. The non-singularity of K also implies that x 1, . . . , x n are linearly
independent, so we must have βi = β�

i �= 0 for all i ∈ [n], and thus equation (6) holds.

So we have shown that all training examples are support vectors if and only if
equation (6) holds. It therefore suffices to show that, for each i = 1, . . . , n,

yiβi > 0 ⇐⇒ yiy
T
\iK

−1
\i Z\iΛzi < 1.

By symmetry, we only need to show this implication for i = 1.
Observe that y1 β1 = y1e

T
1K

−1y = eT
1K

−1(y1y) is the inner product between the first
row of K−1 and y1y . Therefore, by Cramer’s rule, we have

y1β1 = y1e
T
1K

−1y =
det(K̃)

det(K)

where K̃ is the matrix obtained from K by replacing the first row with y1y
T. Since K

is assumed to be invertible, K is positive definite, and so det(K ) > 0. Hence, we have

y1β1 > 0 iff det(K̃) > 0.
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Let us write K̃ as

K̃ =

[
1 y1y

T
\1

a K\1

]
,

where a :=Z n1Λz 1 and recall that K n1 denotes the (n− 1)× (n− 1) matrix obtained
by removing the first row and column fromK . Note thatK n1 is invertible by assumption
and hence positive definite. Also, define

Q :=

[
1 −y1y

T
\1

0 In−1

]
,

where I n−1 is the (n− 1)× (n− 1) identity matrix. Every diagonal entry of Q is equal
to 1, so det(Q) = 1. Hence

det(K̃) = det(K̃) det(Q)

= det(K̃Q)

= det

([
1 0 T

a K\1 − y1ay
T
\1

])

= det(K\1 − abT)

where b := y1yn1. Therefore, det(K̃) > 0 iff det(K\1 − abT) > 0.
By the matrix determinant lemma,

det(K\1 − abT) = det(K\1)(1− bTK−1
\1 a).

Since K \1 is positive definite, we have det(K \1) > 0. Hence, det(K\1 − abT) > 0 iff

bTK−1
\1 a < 1.

Connecting all of the equivalences and plugging-in for a , b, and K n1, we have shown
that

y1β1 > 0 ⇐⇒ y1y
T
\1(Z\1ΛZT

\1)
−1Z\1Λz1 < 1,

as required. This completes the proof of the lemma. �

4.2. Proof of theorem 1

We fix t = t(n,λ) > 0 to a positive value depending on λ and n that will be determined
later. We define the following events:

(a) For i ∈ [n], Bi is the event that K ni is non-singular and

yiy
T
\iK

−1
\i Z\iΛzi � 1.

(b) For i ∈ [n], Si is the event that K ni is singular.

(c) S is the event that K is singular.

(d) B :=S ∪
⋃n

i=1(Bi ∪ Si).
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Additionally, we define the event Ei(t), for every i ∈ [n] and a given t > 0, that K ni

is non-singular and∥∥∥ΛZT
\iK

−1
\i y\i

∥∥∥2
2
� 1

t
.

Note that if the event B does not occur, then ZΛZT is non-singular, each K ni is
non-singular, and

yiy
T
\iK

−1
\i Z\iΛzi < 1, for all i = 1, . . . ,n.

Hence, by lemma 1, if B does not occur, then every training example is a support vector.
So, it suffices to upper-bound the probability of the event B. We bound Pr(B) as

follows:

Pr(B) � Pr(S) +
n∑

i=1

Pr(Bi ∪ Si)

= Pr(S) +
n∑

i=1

(Pr((Bi ∩ Sc
i ∩ Ei(t)c) ∪ (Si ∩ Ei(t)c)) + Pr((Bi ∪ Si) ∩ Ei(t)))

� Pr(S) +
n∑

i=1

(Pr(Bi|Sc
i ∩ Ei(t)c) Pr(Sc

i ∩ Ei(t)c)

+ Pr(Si ∩ Ei(t)c) + Pr((Bi ∪ Si) ∩ Ei(t)))

� Pr(S) +
n∑

i=1

(Pr(Bi|Sc
i ∩ Ei(t)c) + Pr(Si) + Pr(Ei(t))). (7)

Above, the first two inequalities follow from the union bound, and the rest uses the law
of total probability.

We first upper bound the probability of the singularity events in the following lemma.

Lemma 2. We have

max{Pr(S), Pr(S1), . . . , Pr(Sn)} � 2× 9n · exp
(
−c ·min

{
d2
v2

,
d∞
v

})

where c > 0 is the universal constant in the statement of lemma 8.

Proof. It suffices to bound Pr(S), since each K ni is a principal submatrix of K , and
hence λmin(K ni) � λmin(K ) for all i ∈ [n]. Observe that

ZΛZT =
d∑

j=1

λjvjv
T
j

where v j is the j th column of Z . Recall that the columns of Z are independent, and

so these vectors satisfy the conditions of lemma 8. Moreover, since ZΛZT is positive
semi-definite, its singularity would require
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∥∥
2
� ‖λ‖1.

The probability of this latter event can be bounded by lemma 8 with τ = ‖λ‖1, thereby
giving the claimed bound on Pr(S). This completes the proof of the lemma. �

The next lemma upper bounds the probability of the event Bi conditioned on the
non-singularity event Si and the complement of the event Ei(t).
Lemma 3. For any t > 0,

Pr(Bi|Sc
i ∩ Ei(t)c) � 2 exp

(
− t

2v

)
.

Proof. Let B′
i be the event that K ni is non-singular and∣∣∣yT
\iK

−1
\i Z\iΛzi

∣∣∣ = max
{
−yT

\iK
−1
\i Z\iΛzi, y

T
\iK

−1
\i Z\iΛzi

}
� 1.

Since |yi| = 1, it follows that Bi ⊆ B′
i, so

Pr(Bi|Sc
i ∩ Ei(t)c) � Pr(B′

i|Sc
i ∩ Ei(t)c).

Conditional on the event Sc
i ∩ Ei(t)c, we have that K ni is non-singular and

‖ΛZT
\iK

−1
\i y\i‖22 � 1/t. Since z i is independent of {(z j, yj) : j �= i}, it follows that

yT
\iK

−1
\i Z\iΛzi = (ΛZT

\iK
−1
\i y\i)

Tzi

is (conditionally) sub-Gaussian with parameter at most v · ‖ΛZT
\iK

−1
\i y\i‖22 � v/t. Then,

the standard sub-Gaussian tail bound gives us

Pr(Bi|Sc
i ∩ Ei(t)c) � Pr(B′

i|Sc
i ∩ Ei(t)c) � 2 exp

(
− t

2v

)
.

This completes the proof of the lemma. �
Finally, the following lemma upper bounds the probability of the event Ei(t) for

t := d∞/2n.

Lemma 4.

Pr(Ei(d∞/(2n))) � 2× 9n−1 · exp
(
−c ·min

{
d2
4v2

,
d∞
v

})

where c > 0 is the universal constant from lemma 8.

Proof. Let E′
i(t) be the event that

λmin(K\i) � n‖λ‖∞t.

Under Sc
i , the matrix K ni is non-singular. We get
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‖ΛZT
\iK

−1
\i y\i‖22 � ‖Λ1/2‖2op‖Λ1/2ZT

\iK
−1
\i y\i‖22

= ‖λ‖∞yT
\iK

−1
\i Z\iΛZT

\iK
−1
\i y\i

� n‖λ‖∞ sup
u∈Rn−1 : ‖v‖2=1

uTK−1
\i u

=
n‖λ‖∞

λmin(K\i)
.

It follows that Ei(t) ⊆ E′
i(t). Observe that for t := d∞/(2n), the event E′

i(t) is that where

λmin(K\i) � 1

2
‖λ‖1.

Therefore (as in the proof of lemma 2), lemma 8 with τ = ‖λ‖1/2 implies that

Pr(E′
i(d∞/(2n))) = Pr

(
λmin(K\i) � 1

2
‖λ‖1

)

� 2× 9n−1 · exp
(
−c ·min

{
d2
4v2

,
d∞
v

})
.

This completes the proof of the lemma. �
Plugging the probability bounds from lemmas 2–4 (with t = d∞/(2n)) into

equation (7) completes the proof of theorem 1. �

4.3. Proof of theorem 2

The proof follows a similar sequence of steps to that of theorem 1 with slight differences
in the events that we condition on. We first observe that 1√

d
zi|(Z\i, y\i) is a uniformly

random unit vector in Sd−1 restricted to the subspace orthogonal to the row space of
Z ni. That is, it has the same (conditional) distribution as B iu i, where:

(a) B i is a d× (n− d+ 1) matrix whose columns form an orthonormal basis for the
orthogonal complement of Z ni’s row space;

(b) u i is a uniformly random unit vector in Sd−n.

As before, for every i ∈ [n], we define the event Bi that K \i is non-singular and

yiy
T
\iK

−1
\i Z\iΛzi � 1.

The Haar measure ensures that the matrices Z and Z ni always have full row rank.
Therefore, because Λ � 0, the matrices K and K ni are always non-singular. So we do
not need to worry about singularity (cf the events S and Si). We accordingly consider
the event B :=

⋃n
i=1Bi. As before, we also define the event Ei(t) for every i ∈ [n] and a

given t > 0, that

‖BT
i ΛZT

\iK
−1
\i y\i‖22 � d− n+ 1

d
· 1
t
.
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By the union bound, we get

Pr(B) �
n∑
i=1

Pr(Bi)

�
n∑
i=1

Pr(Bi|Ei(t)c) + Pr(Ei(t)),

and so we need to upper bound the probabilities Pr(Bi|Ei(t)c) and Pr(Ei(t)) for every
i ∈ [n].

The following lemma upper bounds Pr(Bi|Ei(t)c), and is analogous to lemma 3 in the
proof of theorem 1.

Lemma 5. For any t > 0, we have

Pr(Bi|Ei(t)c) � 2 exp(−t).

Proof. First, as discussed above, we have

Pr
(
yiy

T
\iK

−1
\i Z\iΛzi � 1

)
= Pr

(√
d · yiyT

\iK
−1
\i Z\iΛBiui � 1

)
� Pr

(√
d
∣∣∣(BT

i ΛZT
\iK

−1
\i y\i)

Tui

∣∣∣ � 1
)
.

Moreover, u i is independent of Z ni, and as established in lemma 9, the random vec-
tor u i is sub-Gaussian with parameter at most O(1/(d− n+ 1)). Therefore,

√
d ·

(BT
i ΛZT

\iK
−1
\i y\i)

Tui is conditionally sub-Gaussian with parameter at most d
d−n+1

·
‖BT

i ΛZT
\iK

−1
\i y\i‖22 � 1

t
. Here, the last inequality follows because we have conditioned

on Ei(t)c. Therefore, the standard sub-Gaussian tail bound gives us

Pr(Bi|Ei(t)c) � 2 exp(−t).

�
The next lemma upper bounds Pr(Ei(t)) for t := d−n+1

d
· d∞

2n
, and is analogous to lemma

4 in the proof of theorem 1.

Lemma 6. We have

Pr

(
Ei
(
d− n+ 1

d
· d∞
2n

))
� exp(−c1 · d) + 2× 9n · exp(−c2 ·min{d2, d∞})

where c1 > 0 and c2 > 0 are universal constants.

Proof. We get

‖BT
i ΛZT

\iK
−1
\i y\i‖22 � ‖BT

i ‖22 · ‖ΛZT
\iK

−1
\i y\i‖22

= ‖ΛZT
\iK

−1
\i y\i‖22

� n‖λ‖∞
λmin(K\i)

,
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where we used the fact that B i has orthonormal columns, and the last inequality
follows by an identical argument to the proof of lemma 4. We will show in particular
that

Pr

(
λmin(K\i) � 1

2
‖λ‖1

)
� 1− exp(−c1 · d)− 2× 9n−1 · exp(−c2 ·min{d2, d∞}). (8)

Given equation (8), we can complete the proof of lemma 6. This is because we get

‖BT
i ΛZT

\iK
−1
\i y\i‖22 � 2n‖λ‖∞

‖λ‖1
=

2n

d∞
=

d− n+ 1

d
· 1
t

for

t :=
d− n+ 1

d
· d∞
2n

.

We complete the proof by proving equation (8). Let S ∈ R
m×d be a random matrix

with i.i.d. standard Gaussian entries with m :=n− 1, and let the singular value decom-
position of S be S = VΛSU

T where V ∈ R
m×m and U ∈ R

d×m are orthonormal matrices.
Then, it is well-known that

√
d ·UT follows the same distribution as Z \i, and hence

λmin(K \i) has the same distribution as d · λmin(U
TΛU ). Moreover,

d · λmin(U
TΛU) = min

v∈Rn,‖v‖2=1
vTΛ−1

S VTVΛSU
TΛUΛSV

TVΛ−1
S v

� d

‖ΛS‖2op
· min
v∈Rn,‖v‖2=1

vTSΛSTv

=
d

‖ΛS‖2op
· λmin(SΛST).

By classical operator norm tail bounds on Gaussian random matrices (e.g. [44],
corollary 5.35), we note that ‖ΛS‖22 � 3

2
d with probability at least 1− exp(−c1 · d).

Now, we note that the matrix SΛST :=
∑d

j=1λjsjs
T
j where the s j’s are i.i.d. standard

Gaussian random vectors in R
n. So, we directly substitute lemma 8 with τ := 1

4
‖λ‖1,

and get λmin(SΛST) � 3
4
‖λ‖1 with probability at least 1–2× 9m · exp(−c2 ·min{d2, d∞}).

Putting both of these inequalities together directly gives us equation (8) with the desired
probability bound, and completes the proof. �

Finally, putting the high probability statements of lemmas 5 and 6 together
completes the proof of theorem 2.

4.4. Proof of theorem 3

By lemma 1, our task is equivalent to lower-bounding the probability that there exists i ∈
[n] such that yiy

T
\i
(
Z\iZ

T
\i
)−1

Z\izi � 1. This event is the union of n (possibly overlapping)
events, and hence its probability is at least the probability of one of the events, say, the
first one:

Pr
(
∃i ∈ [n] s.t. yiy

T
\iK

−1
\i Z\izi � 1

)
� Pr

(
y1y

T
\1K

−1
\1 Z\1z1 � 1

)
.

https://doi.org/10.1088/1742-5468/ac98a9 20

https://doi.org/10.1088/1742-5468/ac98a9


J.S
tat.

M
ech.

(2022)
114011

On the proliferation of support vectors in high dimensions∗

Because z 1 is a standard Gaussian random vector independent of Z \1, the condi-

tional distribution of y1y
T
\1K

−1
\1 Z\1z1|Z\1 is Gaussian with mean zero and variance

σ2 := ‖ZT
\1K

−1
\1 y\1‖22. Therefore, for any t > 0, we have

Pr
(
y1y

T
\1K

−1
\1 Z\1z1 � 1

)
= E[Pr(σg � 1|σ)] (where g ∼ N(0, 1), g⊥⊥σ)

= E[Φ(−1/σ)]

� E
[
Φ(−1/σ)|σ2 � 1/t

]
Pr
(
σ2 � 1/t

)
� Φ(−

√
t) · Pr(E1(t)),

where Φ is the standard Gaussian cumulative distribution function, and E1(t) is the
event that

σ2 = y\1K
−1
\1 Z\1Z

T
\1K

−1
\1 y\1 = y\1K

−1
\1 y\1 � 1

t

(as in the proofs of theorems 1 and 2). We now lower-bound the probability of E1(t).
Observe that the (n− 1)× (n− 1) random matrixK\1 = Z\1Z

T
\1 follows aWishart distri-

bution with identity scale matrix and d degrees-of-freedom. Moreover, by the rotational
symmetry of the standard Gaussian distribution, the random variable yT

\1K
−1
\1 y\1 has the

same distribution as that of (
√
n− 1e1)

TK−1
\1 (

√
n− 1e1) = (n− 1)eT

1K
−1
\1 e1. It is known

that 1/eT
1K

−1
\1 e1 follows a χ2 distribution with d− (n− 2) degrees-of-freedom; we denote

its cumulative distribution function by Fd−n+2. Therefore,

Pr(E1(t)) = Fd−n+2(t(n− 1)).

So, we have shown that

Pr
(
y1y

T
\1K

−1
\1 Z\1z1 � 1

)
� sup

t�0
Φ(−

√
t) · Fd−n+2(t(n− 1)).

For t := d−n+4+2
√
d−n+2

n−1
, we obtain Fd−n+2(t) � 1− 1/e by a standard χ2 tail bound

[26, lemma 1]. In this case, we obtain

Pr
(
y1y

T
\1K

−1
\1 Z\1z1 � 1

)
� Φ

⎛
⎝−

√
d− n+ 4 + 2

√
d− n+ 2

n− 1

⎞
⎠ ·

(
1− 1

e

)

as claimed. �
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Appendix A. Anisotropic version of theorem 3

Below, we give a version of theorem 3 that applies to certain anisotropic settings,
depending on some conditions on λ.

Theorem 4. There are absolute constants c > 0 and c′ > 0 such that the following
hold. Let the training data (x 1, y1), . . . , (x n, yn) follow the model from section 2.2, with
z 1, . . . , z n being i.i.d. standard Gaussian random vectors in R

d, and y1, . . . , yn ∈ {±1}
being arbitrary but fixed (i.e. non-random) values. Assume d > n and that there exists
k ∈ N and b > 1 such that k < (n− 1)/c and∑d

j=k+1λj

λk+1
� b(n− 1)

where λ1 � λ2 � · · · � λd. Then the probability that at least one training example is not
a support vector is at least

c′ ·Φ
(
−
√

2cb2(n− 1)

k + 1

)
·
(
1− 10 e−(n−1)/c

)
,

where Φ is the standard Gaussian cumulative distribution function.

Note that the probability bound in theorem 4 is at least a positive constant for
sufficiently large n provided that the (k, b) obtained as a function of λ satisfy k+ 1 �
c′′b2(n− 1) for some absolute constant c′′ > 0.

Proof. The proof begins in the same way as in that of theorem 3. Using the same
arguments, we obtain the following lower bound:

Pr
(
∃i ∈ [n] s.t. yiy

T
\iK

−1
\i Z\iΛzi � 1

)
� Pr

(
y1y

T
\1K

−1
\1 Z\1Λz1 � 1

)
� Φ(−

√
t) · Pr(E1(t)) (9)

where E1(t) is the event that∥∥∥ΛZT
\1K

−1
\1 y\1

∥∥∥2
2
� 1

t
.

We next focus on lower-bounding the probability of E1(t). (This part is more involved
than in the proof of theorem 3.) Observe that the (rotationally invariant) distribution
of Z \1 is the same as that of QZ \1, where Q is a uniformly random (n− 1)× (n− 1)
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orthogonal matrix independent of Z \1. Therefore, ΛZT
\1K

−1y\1 has the same
distribution as

Λ(QZ\1)
T(QZ\1ΛZT

\1Q
T)−1y\1 = ΛZT

\1Q
TQ(Z\1ΛZT

\1)
−1QTy\1

=
√
n− 1ΛZT

\1K
−1
\1 u

where u :=QTy\1/
√
n− 1 is a uniformly random unit vector, independent of Z n1. Letting

M :=ΛZT
\1K

−1
\1 , we can thus lower-bound the probability of E1(t) using

Pr(E1(t)) = Pr
(
‖
√
n− 1Mu‖22 > 1/t

)
� Pr

(
‖
√
n− 1Mu‖22 > 1/t|tr

(
MTM

)
� 2/t

)
· Pr
(
tr
(
MTM

)
� 2/t

)
. (10)

We lower-bound each of the probabilities on the right-hand side of equation (10).
We begin with the first probability in equation (10), which we handle for arbitrary

t > 0. By the Paley–Zygmund inequality, we have

Pr

(
‖
√
n− 1Mu‖22 >

1

2
E
[
‖
√
n− 1Mu‖22

]
|Z\1

)
� 1

4
· E
[
‖
√
n− 1Mu‖22

]2
E
[
‖
√
n− 1Mu‖42

] . (11)

Since
√
n− 1u is isotropic, we have

E
[
‖
√
n− 1Mu‖22|Z\1

]
= (n− 1)tr

(
MTME

[
uuT

])
= tr

(
MTM

)
.

Furthermore, by lemma 9,

E
[
‖
√
n− 1Mu‖42|Z\1

]
� C tr

(
MTM

)2
for some universal constant C > 0. Therefore, plugging back into equation (11), we
obtain

Pr

(
‖
√
n− 1Mu‖22 >

1

2
tr
(
MTM

)
| Z\1

)
� 1

4
· tr

(
MTM

)2
C tr

(
MTM

)2 =
1

4C
.

Thus we also have the following for arbitrary t > 0:

Pr
(
‖
√
n− 1Mu‖22 > 1/t | tr

(
MTM

)
� 2/t

)
� 1

4C
. (12)

We next consider the second probability in equation (10), namely
Pr
(
tr
(
MTM

)
� 2/t

)
. Recall that we assume there exists k < (n− 1)/c and b > 1

such that ∑d
j=k+1λj

λk+1
� b(n− 1). (13)

We claim that for t := 2cb2(n−1)
k+1

,
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Pr

(
tr
(
MTM

)
� 2

t

)
� 1− 10 e−(n−1)/c. (14)

Indeed, this claim follows from lemma 16 of [5], where their matrix C is our matrix
MTM, except our matrix is (n− 1)× (n− 1) instead of n× n, and their matrix Σ is
our matrix Λ; see the definitions in their lemma 8. The universal constant c > 0 in
their lemma is the same as ours, and equation (13) is precisely their condition rk(Σ) <
b(n− 1) (with the same k and b). Therefore, the conclusion of their lemma implies, in
our notation, that with probability at least 1− 10e−(n−1)/c,

tr
(
MTM

)
� k + 1

cb2(n− 1)
=

2

t
.

This proves the claimed probability bound.
We conclude from equations (9), (10), (12) and (14) that the probability that at

least one training example is not a support vector is bounded below by

Φ

(
−
√

2cb2(n− 1)

k + 1

)
· 1

4C
·
(
1− 10 e−(n−1)/c

)
as claimed. �

Appendix B. Probabilistic inequalities

Lemma 7. Let M ∈ R
n×n be a symmetric matrix, and let N be an ε-net of Sn−1 with

respect to the Euclidean metric for some ε < 1/2, then

‖M‖2 � 1

1− 2ε
max
u∈N

|uTMu|.

Proof. See [44, lemma 5.4]. �

Lemma 8. There is a universal constant c > 0 such that the following holds. Let
λ1, . . . ,λd > 0 be given. Let v 1, . . . , vd be independent random vectors taking values in
R

n such that, for some v > 0,

E(vj) = 0, E(vjv
T
j ) = In, E(exp(u

Tvj)) � exp(v‖u‖22/2) for allu ∈ R
n

for all j = 1, . . . , d. For any τ > 0,

Pr

⎛
⎝
∥∥∥∥∥

d∑
j=1

λjvjv
T
j − ‖λ‖1In

∥∥∥∥∥
2

� τ

⎞
⎠ � 2× 9n · exp

(
−c ·min

{
τ 2

v2‖λ‖22
,

τ

v‖λ‖∞

})
.

where ‖λ‖1 :=
∑d

j=1λj, ‖λ‖22 :=
∑d

j=1λ
2
j , and ‖λ‖∞ := maxj∈[d] λj.

Proof. Let N be an (1/4)-net of Sn−1 with respect to the Euclidean metric. A standard
volume argument of Pisier [36] allows a choice of N with |N | � 9n. By lemma 7, we
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have for any t > 0,

Pr

⎛
⎝
∥∥∥∥∥

d∑
j=1

λjvjv
T
j − ‖λ‖1In

∥∥∥∥∥
2

� τ

⎞
⎠ � Pr

(
max
u∈N

∣∣∣∣∣
d∑

j=1

λj(u
Tvj)

2 − ‖λ‖1

∣∣∣∣∣ � τ/2

)
.

Next, observe that for any u ∈ Sn−1, the random variables uTv1, . . . ,u
Tvd are inde-

pendent random variables, each with mean-zero, unit variance, and sub-Gaussian with
parameter v. By the Hanson–Wright inequality of [38] and a union bound, there exists
a universal constant c > 0 such that, for any unit vector u ∈ Sn−1 and any τ > 0,

Pr

⎛
⎝max

u∈N

∣∣∣∣∣
d∑

j=1

λj(u
Tvj)

2 − ‖λ‖1

∣∣∣∣∣
2

� τ/2

⎞
⎠

� 2× 9n · exp
(
−c ·min

{
τ 2

v2‖λ‖22
,

τ

v‖λ‖∞

})
.

The claim follows. �
Lemma 9. Let θ be a uniformly random unit vector in Sm−1. For any unit vector u ∈
Sm−1, the random variable uTθ is sub-Gaussian with parameter v = O(1/m). Moreover,
for any matrix M ∈ R

m×m, we have

E
[
‖Mθ‖42

]
� C

m2
tr
(
MTM

)2
where C > 0 is a universal constant.

Proof. Let L be a χ random variable with m degrees-of-freedom, independent of θ, so
the distribution of z :=Lθ is the standard Gaussian in R

m. Let μ :=E[L] = E[L|θ] =√
2Γ((m+1)/2)

Γ(m/2)
= Ω(

√
m). By Jensen’s inequality, for any t ∈ R,

E
[
exp(tuTθ)

]
= E

[
exp

((
t

μ
u

)T

(E[L|θ]θ)
)]

� E

[
exp

((
t

μ
u

)T

(Lθ)

)]

= E

[
exp

((
t

μ
u

)T

z

)]

= exp

(
t2

2μ2

)
.

It follows that uTθ is sub-Gaussian with parameter v = 1/μ2 = O(1/m).
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Similarly, again by Jensen’s inequality,

μ4 · E
[
‖Mθ‖42

]
= E

[
E[L|θ]4‖Mθ‖42

]
� E

[
L4‖Mθ‖42

]
= E

[
‖Mz‖42

]
.

Furthermore, a direct computation shows that

E
[
‖Mz‖42

]
= 2 tr

(
(MTM)2

)
+ tr

(
MTM

)2
� 3 tr

(
MTM

)2
.

The conclusion follows since μ4 = Ω(m2). �
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