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Abstract. We consider a one-dimensional Brownian search in the presence of
trapping. The diffusion equation of the particle is represented by a memory kernel
that enters the general waiting time probability density function. We find the
general form of the first arrival time density, search reliability and efficiency and
analyze several special cases of the memory kernel. We also analyze the Lévy

∗Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

© 2022 The Author(s). Published on behalf of SISSA Medialab srl 
by IOP Publishing Ltd 1742-5468/22/093201+30$33.00

mailto:trifce.sandev@manu.edu.mk
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ac841e&domain=pdf&date_stamp=2022-9-12
https://doi.org/10.1088/1742-5468/ac841e
https://creativecommons.org/licenses/by/4.0/


J.S
tat.

M
ech.

(2022)
093201

Generalized diffusion and random search processes

search in the presence of trapping in cases of single and multiple targets, as well
as combined Lévy–Brownian search strategies in case of a single target. The
presented results are general and could be of interest for further investigation of
different optimal search strategies, as well as in the animal foraging or spreading
of contamination particles in the environment.

Keywords: Brownian motion, diffusion, stochastic processes, stochastic search
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1. Introduction

Searching problems are ubiquitous in the natural world. They occur on many fields. In
our daily life, searching for a lost key is a representative search problem [1]. In order to
produce a chemical reaction, transcription factor proteins search for a specific binding
spot on a DNA chain in biology [2, 3]. In addition, the behaviors of animals foraging are
a branch of the search problem [4, 5]. Mathematically, computer algorithms searching for
minima in a complex search space [6] are classified as a search problem. Brownian motion
with Gaussian distributed jump length was considered as an optimal search strategy
until Shlesinger and Klafter suggested that Lévy flight is more efficient when searching
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for sparse targets in 1986 [7]. The typical characteristic of one- and two-dimensional
Brownian search lies in oversampling, which frequently arrives at the previously visited
point. The Brownian search strategy is sufficient when we have a non-destructive search
scenario where the target does not get depleted from being visited by the searcher, but
in the case of destructive foraging, where the target becomes undetectable after visiting
it once, this strategy becomes inefficient [5, 7–9]. This oversampling behavior can be
avoided by Lévy flight search and in cases of destructive foraging it becomes the optimal
search strategy since the scale free of jump length [10, 11], where the distribution of jump
length satisfies power-law distribution, i.e. λ(x) ∼ 1/|x|1+β with 0 < β < 2 [12–14].

We focus on the search problems in the discipline of movement ecology [4, 15], where
the movement patterns of animals are saltatory, occupied with long excursions. One of
the classical examples is albatross birds searching for food [16, 17]. Within this movement
ecology the Lévy flight hypothesis is formulated: it states that the scale-free search
strategies called Lévy flight search minimise the search time [5, 8, 16] and is the optimal
search strategy under a broad set of conditions, such as target resource distribution
(sparse/abundant resources), target revisitability (destructive/non-destructive targets)
and prey targeting [18]. For albatross birds searching for sparse food, it is a good choice
to search with power-law distributed jump length. It is discovered that there are a
large number of animals searching with such scale-free strategies. For instance, deer and
goats [19, 20], bees [21] as well as marine predators [22, 23]. Though there are some
questions [17, 24, 25] about the Lévy flight search strategies of albatross birds, in [26]
it implies that the searching strategies of individual albatross birds are indeed Lévy
flights.

In order to verify whether the searcher can locate the target or not, search reliability
is defined. However, it cannot be used to judge a search strategy since it does not pro-
vide any information about the efficiency of a search strategy. Correspondingly, search
efficiency is defined, which is used to choose the optimal search strategies and is a
crucial quantity in search problem [27]. Based on the space-fractional Fokker–Planck
equation as well as search reliability and search efficiency, [28] compares the
Brownian search with the Lévy flight search, it found that the search efficiency depends
on the initial searcher–target distance, Brownian search is a good choice when the ini-
tial searcher–target distance is smaller than some critical value, otherwise Lévy flight
optimizes the search process. [28] also discusses the problem of searching for multiple
targets. Moreover, the search efficiencies are compared in [29] in the presence of an
external drift. It shows that Brownian searcher is always the most efficient for short
initial separation or when the target is in the downhill case for larger initial separation,
whereas Lévy flight turns out to be efficient search strategy when the target is in the
uphill case. In addition, due to the complex biological reality, the search reliability and
search efficiency of combined Lévy–Brownian motion are discussed in [30].

Beginning with the Montroll–Weiss equation [31, 32], which is derived in the frame
of continuous time random walk (CTRW) model, in [33] a generalized diffusion equation
in modified or Riemann–Liouville form is obtained, which generalizes the time fractional
diffusion equation [14, 34]. In this paper we aim to study the search process based on
the generalized diffusion equation for different memory kernels. The aim of introducing
such search problems is manifold. Apart from the application in animal foraging, the
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considered models could be of interest for analysis of the propagation of contamination
particles in the environment. The CTRW model [14, 36, 37] was applied, for example,
to infiltration of anomalously diffusing particles from one material to another through
a biased interface [38], and recently in the long-term prediction of 137Cs concentration
in the lakes after the Fukushima Daiichi Nuclear Power Plant accident [39], where the

contamination particle (137Cs) follows a long-tailed waiting time between jumps. Addi-
tionally to the ground and underground water pollution, such CTRW models could
apply to model propagation of sandstorm particles, including pathogens or microbes
carried by the sandstorm [40–42]. The sandstorm particles fly over a long distance
before they arrive at the particular area and stay around for some time while the next
flight takes place. The long flight of sandstorm particles may be interrupted by long
waiting times. By studying the first passage and/or arrival time distribution of the con-
tamination particle to the particular point of interest, one can map the area affected by
the contamination particles at some given time.

This paper is organized as follows. In section 2, we introduce the Brownian search
model with trapping in terms of the generalized diffusion equation, calculate the search
reliability and search efficiency for different memory kernels. In section 3, we turn to
discuss the Lévy flight search with trapping in the presence of one target. Finally, we
conclude the paper with some discussions in section 4. In the appendices, we give the
properties of Mittag–Leffler and Fox H-functions, as well as general results for Lévy
flight search with trapping in the presence of multiple targets and combined Lévy flight
search in the presence of a single target.

2. Brownian search with trapping

We consider one dimensional search with trapping, which is given by the following
generalized diffusion equation with a δ-sink of a strength ℘fa(t)

∂

∂t
P (x, t) = D ∂

∂t

∫ t

0

η(t− t′)
∂2

∂x2
P (x, t′) dt′ − ℘fa(t)δ(x−X), (1)

where the initial condition meets P(x, t = 0) = δ(x− x0). Here, D is a diffusion coefficient
and η(t) represents the memory kernel, satisfying lims→0

1
η̂(s)

= 0 and 1
η̂(s)

is a complete

Bernstein function [33, 43–45]. In this equation, δ-sink means that the random searcher
positioned at x = x0 at the beginning, will be removed when it arrives for the first time at
x = X, i.e. P(x = X, t) = 0. Thus, ℘fa(t) represents the first arrival time density (FATD)
[46, 47].

Here we note that in the absence of a sink, equation (1) is reduced to the generalized
diffusion equation [33, 43, 48]

∂

∂t
P (x, t) = D ∂

∂t

∫ t

0

η(t− t′)
∂2

∂x2
P (x, t′) dt′, (2)

describing the anomalous diffusive process. This equation can be obtained from the
CTRW model [37] with a memory-dependent waiting time probability density function

(PDF) ψ(t), which in Laplace space is given by ψ̂(s) = 1/(1 + τηη̂
−1(s)), and jump length

https://doi.org/10.1088/1742-5468/ac841e 4

https://doi.org/10.1088/1742-5468/ac841e


J.S
tat.

M
ech.

(2022)
093201

Generalized diffusion and random search processes

PDF λ(x) with finite variance, which in Fourier space is λ̃(k) ∼ 1− σ2

2
k2. The generalized

diffusion coefficient in equation (2) reads D = σ2/[2τη].
Integrating equation (1) with respect to x from −∞ to ∞, we get the expression of

FATD, which reads

℘fa(t) = − d

dt

∫ ∞

−∞
P (x, t) dx = − d

dt
S(t). (3)

It is the negative time derivative of the survival probability S(t) =
∫∞
−∞P (x, t) dx.

Two important quantities characterising the diffusion process respectively are search
reliability and search efficiency. The search reliability quantifies the extent to which
the search process can locate the trap, which is accounted as the cumulative arrival
probability [47]

P =

∫ ∞

0

℘fa(t) dt. (4)

If the search reliability equals one, P = 1, the searcher will find the target with the
probability 1. With the aid of Laplace transform7 the search reliability can be simplified
as

P = ℘̂fa(s = 0), (5)

where ℘̂fa(s) is the Laplace image of ℘fa(t). The search reliability may be relevant for
choosing the search strategy. A large value of search reliability corresponds to a high
success probability to which the searcher can locate the target. It can be smaller than
unity for example for Brownian search with drift, which pushes the particle in the
opposite direction from the target location [47].

The search efficiency can be defined in different ways either as a ratio of the visited
number of targets and the number of steps or as a ratio of the visited number of targets
and the distance travelled. The first definition can be applied when a searcher moves
with jumps, while the second definition applies for example to Brownian motion search
and finite-velocity Lévy walks search [28–30]. We focus on searching for a single or a
finite number of targets with saltatory motion in this paper. In our continuous time
model, we argued that the search efficiency can be described as a ratio of the visited
number of targets and the time of the process with a proper averaging. Naturally, it

relates to the mean first arrival time, 〈t〉 =
∫∞
0
t℘fa(t) dt = −∂℘̂fa(s)

∂s

∣∣∣
s=0

, in two ways, as

E = 1/〈t〉, or as the averaged inverse search time [47]

E =

〈
1

t

〉
=

∫ ∞

0

℘fa(t)

t
dt. (6)

This definition of efficiency (6) was used for Brownian motion with drift [47], symmetric
Lévy flight search with drift [47], for combined Lévy–Brownian and Lévy–Lévy search
[28–30] of single and multiple targets, as well as asymmetric Lévy flight search [49], and
in all cases such an approach gives reasonable results. Moreover, 〈t〉 diverges in some

7The Laplace transform is defined as f̂(s) = L{f(t)}(s) =
∫∞
0
e−stf(t) dt.
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situations since if we consider, for example, Brownian search, then some of the particles
will go in the opposite direction of the target and will never reach it, which by averaging
will lead to infinite mean time to reach the target [50]. Also, 〈t〉 is diverging when an
external bias initially pushes the Lévy flight searcher towards the target [29]. In this
case, due to the presence of leapovers a Lévy flight searcher may miss the target [29].
Furthermore, the efficiency of a given search strategy could be also analyzed in terms of
calculation of the most probable value of the first arrival time, which can be obtained
by finding the first derivative with respect to time t of the FATD. Thus, finding the
most probable value of the first arrival time may require numerical calculations. In this
paper, we calculate the most probable value of the first arrival time for some cases of
the memory kernel analytically and for some numerically. However, detailed analysis
and comparison between different definitions of the efficiency require further extensive
numerical study and we leave this problem for some future work.

Here, we utilize (6) as a definition of search efficiency. A search strategy is optimal
when the search efficiency of the corresponding diffusion process is maximal. Using the
properties of Laplace transform

L
{
f(t)

t

}
(s) =

∫ ∞

0

e−st f(t)

t
dt =

∫ ∞

s

f̂(u)du, (7)

where f̂(u) is the Laplace image of f(t). The search efficiency (6) can be written in the
following form [47]

E =

∫ ∞

0

℘̂fa(s) ds. (8)

Thus, both the search reliability and the search efficiency are related to the Laplace
image of FATD, i.e. ℘̂fa(s). In the following, we aim to derive the expression of ℘̂fa(s).

By Laplace and Fourier transformation8 of equation (1), we find

s
˜̂
P (k, s)− eıkx0 = −Dk2sη̂(s)

˜̂
P (k, s)− ℘̂fa(s)e

ıkX , (9)

from there we have

˜̂
P (k, s) =

1

sη̂(s)

eıkx0 − ℘̂fa(s)e
ıkX

1
η̂(s)

+Dk2
. (10)

The inverse Fourier transform9 of equation (10) yields

P̂ (x, s) =
s−1

2
√
Dη̂(s)

[
e
− |x−x0 |√

Dη̂(s) − ℘̂fa(s) e
− |x−X|√

Dη̂(s)

]
. (11)

From the condition P̂ (x = X , s) = 0 for the FATD we obtain

℘̂fa(s) = e
− |X−x0|√

Dη̂(s) . (12)

8The Fourier transform is defined as f̃(k) = F{f(x)}(k) =
∫∞
−∞eikxf(x) dx.

9 The inverse Fourier transform is defined as f(x) = F−1{f̃(k)}(x) = 1
2π

∫ ∞
−∞e−ikxf̃(k) dk.
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By substitution of FATD in equation (11), for the P̂ (x, s) we find

P̂ (x, s) =
s−1

2
√
Dη̂(s)

[
e
− |x−x0 |√

Dη̂(s) − e
− |x−X|+|X−x0|√

Dη̂(s)

]
. (13)

This result can be obtained if one uses the subordination approach, such as in [51].
In addition, combined with (5) we find that the search reliability equals P = ℘̂fa

(s = 0) = 1 since the memory kernel satisfies lims→0
1

η̂(s)
= 0, which means the searcher

will always arrive at the target eventually. We calculate the search efficiency based on
(12), which is expressed by

E =

∫ ∞

0

e
− |X−x0|√

Dη̂(s) ds. (14)

Next, we will calculate the search efficiency for some representative memory kernels η(t).
Here we note that for the case without sink, we find the solution of equation (2) in

the form (x0 = 0)

P̂ (x, s) =
s−1

2
√
Dη̂(s)

e
− |x|√

Dη̂(s) . (15)

From here, one can find the corresponding mean squared displacement (MSD) [33], i.e.

〈
x2(t)

〉
=

∫ ∞

−∞
x2P (x, t) dx = 2DL−1

[
s−1η̂(s)

]
. (16)

2.1. Brownian search

The standard case of Brownian search is obtained for η(t) = 1, i.e. η̂(s) = 1/s. In this
situation, the waiting time PDF behaves as Poisson distribution ψ(t) = L−1

[
1

1+τ s

]
=

1
τ
e−t/τ and MSD in the absence of a sink has a linear dependence on time 〈x2(t)〉 = 2Dt.

The FATD then becomes

℘̂fa(s) = e−
s1/2√

D |X−x0|, (17)

i.e.

℘fa(t) =
|X − x0|√
4πDt3

e−
(X−x0)

2

4Dt , (18)

which is the Lévy–Smirnov distribution with power-law decay t−3/2 in the long time
limit [46], see figure 1. This result coincides with the first passage time density [50] since
the particle does not perform the jump-like motion and the first passage time will be
the same as the first arrival/hitting time. The reliability equals one, P = 1, while the
efficiency is [47]

https://doi.org/10.1088/1742-5468/ac841e 7
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Figure 1. FATD (18) for D = 1 and |X− x0| = 1 (blue solid line), |X− x0| = 2
(red dashed line), |X− x0| = 3 (black dot-dashed line).

E =

∫ ∞

0

e
− s1/2√

D |X−x0|ds =
2D

(X − x0)2
. (19)

We note that the mean time of the Brownian particle to hit the target,
〈t〉 =

∫∞
0
t ℘fa(t) dt, diverges [50] since some particles can move in the wrong direction

and never hit the target. By taking the first derivative with respect to time t of the
FATD, we figure out the most probable value of the first arrival time t∗, which behaves

as t∗ =
(X−x0)

2

6D . Thus, if we define the efficiency as the reciprocal of the most proba-

ble value of first arrival time t∗, we find E∗ = 1
t∗
= 6D

(X−x0)2
. Moreover, for a fixed initial

searcher–target distance, increasing diffusivity of the searcher can improve the search
efficiency.

2.2. Power-law memory kernel: anomalous diffusive search

We consider the power-law memory kernel η(t) = tα−1

Γ(α)
, 0 < α < 1, i.e. η̂(s) = s−α. In this

case the waiting time PDF behaves as the two parameter Mittag–Leffler distribution

ψ(t) = L−1
[

1
1+ταsα

]
= 1

τ

(
t
τ

)α−1
Eα,α

(
−
[
t
τ

]α)
[52], while the MSD in the absence of a sink

has a power law dependence on time, 〈x2(t)〉 = 2D tα

Γ(1+α)
. This gives an anomalous dif-

fusive process [14], i.e. subdiffusion, since 0 < α < 1, which has been observed in many
physical and biological systems, such as in charge carrier motion in amorphous semi-
conductors [53], anomalous transport in biological cells [54], subdiffusion in artificially
crowded systems [55], etc.

For the FATD in the Laplace space we yield

℘̂fa(s) = e
− sα/2√

D |X−x0| = H1,0
0,1

[
sα/2√
D
|X − x0|

∣∣∣∣ −
(0, 1)

]
, (20)

where Hm,n
p,q (z) is the Fox H-function (A.5). The above equals sign holds by using relation

(A.16). Taking the inverse Laplace transform (A.11) for the FATD gives

℘fa(t) =
1

t
H1,0

1,1

[
|X − x0|√

Dtα

∣∣∣∣(0,α/2)(0, 1)

]
, (21)

https://doi.org/10.1088/1742-5468/ac841e 8
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Figure 2. FATD (21) for D = 1, |X− x0| = 1 and α = 1 (blue solid line), α = 0.75
(red dashed line), α = 0.5 (black dot-dashed line).

with 0 < α < 1. This is the case of anomalous diffusive search with waiting time PDF,
which scales as ψ(t) ∼ t−1−α. Graphical representation of the FATD (21) is given in
figure 2, showing its long time behavior of form ℘fa(t) ∼ t−α/2−1. We note that the FATD
has the same behavior as the first passage time density (see equation (54) in [35]), since
the particle does not perform jump-like motion and thus the FATD and the first passage
time density coincides. The reliability equals one, while the efficiency is

E =

∫ ∞

0

e−
sα/2√

D |X−x0|ds =
D1/α

|X − x0|2/α
Γ

(
2 + α

α

)
. (22)

We note that the case α = 1/2 can be related to the Brownian backbone search on a two-
dimensional comb [56], where the efficiency behaves as E ∼ 1

|X−x0|4 , while for α = 1/4 to

the Brownian backbone search on a three-dimensional comb with E ∼ 1
|X−x0|8 [57]. The

result of one dimension Brownian search is recovered when α = 1. Since the MSD of
the searcher in the absence of a sink has a power law dependence on time, we call

it a subdiffusive search. We also note that from the definition 〈t〉 = −∂℘̂fa(s)
∂s

∣∣∣
s=0

and

equation (20), one finds that the mean time the particle to hit the target diverges, since
some of the particles move in the wrong direction and never hit the target.

The left panel of figure 3 shows the efficiency as a function of the initial
searcher–target distance |X− x0| for fixed exponent α. For close initial searcher–target
distance |X− x0|, subdiffusion search with small exponent α is the best search strategy.
However, with increasing |X− x0|, subdiffusive search with larger exponents α becomes
more efficient, thus for large initial searcher–target distance the Brownian search is the
most efficient search strategy. This behavior is consistent with our intuition since for
short initial separation, Brownian search may start the search in the opposite direction
of the target, while the subdiffusive search due to the waiting time in the traps reduces
the probability that searcher moves away from the target in the wrong direction in
a short time of the search. For longer initial searcher–target distances, the Brownian
search is more efficient since with subdiffusive search the particle moves slower due to
the waiting time in the traps.

https://doi.org/10.1088/1742-5468/ac841e 9
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Figure 3. (Left) Anomalous diffusion search efficiency as a function of the initial
position |X− x0| for three different value of α, respectively are α = 1, α = 0.8,
α = 0.6. (Right) Anomalous diffusion search efficiency as a function of α for
fixed initial position |X− x0|. We take |X− x0| = 1 (blue solid line), |X− x0| = 10
(red solid line), |X− x0| = 100 (yellow solid line) and |X− x0| = 1000 (purple solid
line), respectively.

In addition to initial searcher-trap distance |X – x0|, the search efficiency has a
close relation with α. As [29] does, we also introduce the relative efficiency to discuss
the dependence of search efficiency on α for fixed |X – x0|. The relative efficiency is
defined as

Erel =
E(α)

E(αopt)
, (23)

where E(αopt) stands for the maximum efficiency for this initial separation and the cor-
responding value of power-law memory kernel exponent is αopt. Obviously, Erel = 1 if
α = αopt. As shown in the right panel of figure 3, for close initial separation the func-
tional form of Erel is non-monotonic. It drops with increasing α until it reaches the
minimum, and then grows with α. However for the longer initial distance between the
searcher and target |X – x0|, the functional form of Erel is monotonic. The search efficiency
attains the maximum when α = 1, which implies the Brownian search is the most effi-
cient among subdiffusive search for longer initial distance between the searcher and the
target.

The efficiency as the reciprocal of the most probable value of first arrival time for the
case of power-law memory kernel cannot be obtained analytically and requires numerical
calculations. In figure 4, we give a comparison between the calculated efficiency (22) and
the reciprocal of the most probable value of first arrival time.

2.3. Exponential memory kernel

We consider the exponential memory kernel η(t) = e−rt, i.e. η̂(s) = 1
s+r

. Without the sink
term, we recover the Brownian motion with exponential resetting to the initial position
of the searcher (see for example [58]), which can be rewritten in the form [59]

https://doi.org/10.1088/1742-5468/ac841e 10

https://doi.org/10.1088/1742-5468/ac841e


J.S
tat.

M
ech.

(2022)
093201

Generalized diffusion and random search processes

Figure 4. Comparison between the efficiency (22) (red dashed line) and the recip-
rocal of the most probable value of first arrival time (blue solid line) for D = 0.5,
α = 0.5.

∂

∂t
Pr(x, t) = D ∂2

∂x2
Pr(x, t)− r Pr(x, t) + r δ(x− x0), (24)

or in the renewal form [60]

Pr(x, t) = e−rtP (x, t) +

∫ t

0

r e−rt′P (x, t′) dt′. (25)

Here, P(x, t) is the PDF for r = 0. We note that due to the resetting mechanism, the
condition lims→0

1
η̂(s)

= 0 is no longer valid in this case.

Taking η̂(s) = 1
s+r

into FATD, we find

℘̂fa(s) = e−
(s+r)1/2√

D |X−x0|, (26)

from which, by inverse Laplace transform, we find the exponentially truncated
Lévy–Smirnov distribution

℘fa(t) =
|X − x0|√
4πDt3

e−
(X−x0)

2

4Dt −rt, (27)

shown in figure 5. The reliability then becomes P = e−
√

r
D |X−x0|, which equals unity only

for r = 0. Therefore, the resetting mechanism which brings the particle back to the
initial position decreases the cumulative arrival probability for the particles to reach the
target. For the efficiency, we find

E =
2
√
D(

√
D +

√
r|X − x0|)

(X − x0)2
e−
√

r
D |X−x0|. (28)

This result reduces to the efficiency (19) of Brownian search if r = 0. For a fixed ini-
tial distance between the searcher and the target, the search efficiency decreases with
increasing reset rate r. Significantly different from the Brownian search strategy, when
the memory kernel behaves as an exponential distribution, we conclude that the mean
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Figure 5. FATD (27) for D = 1; (left) r = 0.1 and |X− x0| = 1 (blue solid
line), |X− x0| = 2 (red dashed line), |X− x0| = 3 (black dot-dashed line); (right)
|X− x0| = 1 and r = 0 (blue solid line), r = 0.1 (red dashed line), r = 1 (black
dot-dashed line).

time of the particle to hit the target becomes finite, i.e. 〈t〉 = |X−x0|√
4Dr

e−
√

r
D |X−x0|. This is

due to the resetting mechanism which prevents the particles from moving in the wrong
direction and never finding the target. Here, we note that in terms of the most probable

value of first arrival time, for efficiency we find E∗ = 4r
√
D

2
√

4r(X−x0)2+9D−3
√
D
.

2.4. Truncated power-law memory kernel

For the truncated (or tempered) power-law memory kernel η(t) = e−rt tα−1

Γ(α)
, 0 < α < 1,

r > 0, i.e. η̂(s) = (s+ r)−α, in the absence of sink, we recover the subdiffusive search
process with exponential resetting to the initial position. The corresponding diffusion
equation for the PDF Pr(x, t) can be written in renewal form (25) through the PDF
P(x, t) in the absence of resetting mechanism (r = 0) [61], as well as in the form of the
tempered fractional Fokker–Planck equation [62, 63]∫ t

0

e−r(t−t′) (t− t′)−α

Γ(1− α)

∂

∂t′
Pr(x, t

′) dt′

= D ∂2

∂x2
Pr(x, t)−

∫ t

0

e−r(t−t′) (t− t′)−α

Γ(1− α)
[r Pr(x, t)− r δ(x− x0)]dt

′. (29)

For the FATD in Laplace space, we have

℘̂fa(s) = e
− (s+r)α/2√

D |X−x0| = H1,0
0,1

[
(s+ r)α/2√

D
|X − x0|

∣∣∣∣ −
(0, 1)

]
, (30)

which by inverse Laplace transform becomes

℘fa(t) =
e−rt

t
H1,0

1,1

[
|X − x0|√

Dtα

∣∣∣∣(0,α/2)(0, 1)

]
. (31)

The FATD in the long time limit is of exponentially truncated power-law form
℘fa(t) ∼ t−α/2−1e−rt, which can be seen in figure 6.
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Figure 6. FATD (31) for D = 1, |X− x0| = 1; (left) r = 0.1 and α = 1 (blue solid
line), α = 0.75 (red dashed line), α = 0.5 (black dot-dashed line); (right) α = 0.5
and r = 0 (blue solid line), r = 0.1 (red dashed line), r = 1 (black dot-dashed line).

Figure 7. The search efficiency (32) for D = 1, r = 10. Taking α = 1 (blue solid
line), α = 0.8 (red dashed line), α = 0.6 (yellow dot line), respectively. (Left) The
initial search-trap distance |X− x0| is small; (right) the initial search-trap distance
|X− x0| is large.

The reliability equals P = e−
rα/2√

D |X−x0|, which equals unity again only for r = 0 since
the resetting decreases the cumulative arrival probability for the particles to reach the
target. For the efficiency we find

E =

∫ ∞

0

e−
(s+r)α/2√

D |X−x0| ds = − 2

α

D1/α

|X − x0|2/α
Γ

(
2

α
,
(s+ r)α/2|X − x0|√

D

)∣∣∣∣
s=∞

s=0

=
2

α

D1/α

|X − x0|2/α
Γ

(
2

α
,
rα/2|X − x0|√

D

)
, (32)

where Γ(a, z) =
∫ ∞
z
ya−1e−y dy is the upper incomplete gamma function. This result

reduces to the efficiency (22) of subdiffusive random search when r = 0. From figure 7
we see that the subdiffusion search with truncated power-law memory kernel with
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Figure 8. Comparison between the term for the search efficiency (32) (red dashed
line) and the reciprocal of the most probable value of first arrival time (blue solid
line), which in this case can be obtained only numerically, for D = 0.5, α = 0.5 and
r = 0.1.

smaller exponents α and r is more efficient. Furthermore, the mean time for the par-

ticle to hit the target becomes finite as well, i.e. 〈t〉 = α|X−x0|√
4Dr2−αe

−
√

rα

D |X−x0|, since the

resetting prevents the particle from moving far away from the target in the wrong
direction.

In figure 8 as in the case of power-law memory kernel, we give a comparison between
the efficiency calculated with (32) and the efficiency given with the reciprocal of the
most probable value of first arrival time for the truncated power-law memory kernel.
Here again as it is with the power-law memory kernel, the first arrival time cannot be
obtained analytically and the time is calculated using numerical methods.

3. Lévy search with trapping

We may also consider the first arrival process of Lévy flight search in the presence of the
target located in position X. The particle will be removed from the location X once it
arrives for the first time. The corresponding Fokker–Planck equation contains a δ-sink
term with strength ℘fa(t),

∂

∂t
P (x, t) = Dβ

∂

∂t

∫ t

0

η(t− t′)
∂β

∂|x|β P (x, t′) dt′ − ℘fa(t)δ(x−X), (33)

where ∂β

∂|x|β is the Riesz fractional derivative of order 0 < β � 2. It is defined as a pseudo-

differential operator with the Fourier symbol |k|β, i.e. [64]

F
{

∂β

∂|x|β f(x)
}
(k) = −|k|βf̃(k). (34)

In the following discussion, we only consider 1 < β � 2 since the search reliability
equals zero for one-dimension Lévy flight search without a bias, which is explained in
[29, 46]. In addition, Dβ represents the generalized diffusion coefficient [14]. For β = 2,
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it corresponds to a Brownian search with trapping. Integrating both sides of (33) over
x from −∞ to ∞, the same formula for the FATD is obtained as the one given by
equation (3).

Equation (33) without a sink gives the generalized, nonlocal in space and time,
diffusion equation

∂

∂t
P (x, t) = Dβ

∂

∂t

∫ t

0

η(t− t′)
∂β

∂|x|β P (x, t′) dt′. (35)

This equation can be obtained from CTRW with the same waiting time PDF as we

consider before, and jump length PDF with infinite variance, i.e. λ̃(k) ∼ 1− σβ

2
|k|β,

0 < β < 2, giving the generalized diffusion coefficient Dβ = σβ/[2τη]. Therefore,
equation (35) combines Lévy flights (represented by the Riesz space fractional derivative)
with subdiffusive dynamics (represented by the memory kernel).

By Fourier–Laplace transformation we have

s
˜̂
P (k, s)− eıkx0 = −Dβ |k|βsη̂(s) ˜̂P (k, s)− ℘̂fa(s)e

ıkX , (36)

from which we find

˜̂
P (k, s) =

eıkx0 − eıkX℘̂fa(s)

s

1

1 +Dβ|k|βη̂(s)

=
eıkx0 − eıkX℘̂fa(s)

s
H1,1

1,1

[
Dβη̂(s)|k|β

∣∣∣∣∣ (0, 1)(0, 1)

]
, (37)

where we use relation (A.17). From the condition P(x = X, s) = 0, by inverse Fourier
transform of equation (37), for the FATD we find

℘̂fa(s) =

∫∞
0

cos(k|X − x0|)H1,1
1,1

[
Dβη̂(s)k

β

∣∣∣∣∣ (0, 1)(0, 1)

]
dk

∫ ∞
0
H1,1

1,1

[
Dβη̂(s)kβ

∣∣∣∣∣ (0, 1)(0, 1)

]
dk

. (38)

It can be simplified as

℘̂fa(s) =
sin(π/β)[Dβη̂(s)]

1/β

|X − x0|
H2,1

2,3

[
|X − x0|

[Dβη̂(s)]1/β

∣∣∣∣∣ (1, 1/β), (1, 1/2)(1, 1), (1, 1/β), (1, 1/2)

]

= sin(π/β)H2,1
2,3

[
|X − x0|

[Dβη̂(s)]1/β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
, (39)

where we used equation (A.7), or
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℘̂fa(s) =
sin(π/β)[Dβη̂(s)]

1/β

√
π|X − x0|

H2,1
1,3

[
|X − x0|

2[Dβη̂(s)]1/β

∣∣∣∣∣ (1, 1/β)(1/2, 1/2), (1, 1/β), (1, 1/2)

]

=
sin(π/β)

2
√
π

H2,1
1,3

[
|X − x0|

2[Dβη̂(s)]1/β

∣∣∣∣∣ (1− 1/β, 1/β)

(0, 1/2), (1− 1/β, 1/β), (1/2, 1/2)

]
,

(40)

where we used equation (A.8). For β = 2 this result turns to ℘̂fa(s) = e
− |X−x0|√

Dη̂(s) , as it should
be. Notably, Lévy flight search diminishes the oversampling due to the scale-free of jump
length. However, the leapovers of Lévy flight caused by the extremely long jumps may
make the searcher overshoot the target. Since the length of leapovers is wider than the
jump length distribution, rendering the first passage of Lévy flight, which behaves as
t−3/2 different from the first arrival process.

We note that in the absence of a sink the solution of equation (35) in Laplace space
is given by (x0 = 0)

P̂ (x, s) = F−1

[
1

s
H1,1

1,1

[
Dβη̂(s)|k|β

∣∣∣∣∣ (0, 1)(0, 1)

]]

=
s−1

|x|H
2,1
2,3

[
|k|β

Dβη̂(s)

∣∣∣∣ (1, 1), (1, β/2)
(1, β), (1, 1), (1, β/2)

]
. (41)

From here one can calculate the q th moment for 0 < q < β � 2, which reads

〈|x(t)|q〉 =
∫ ∞

−∞
|x|qP (x, t) dx

=
2Dq/β

β

β

Γ(1 + q)Γ(1 + q/β)Γ(−q/β)

Γ(−q/2)Γ(1 + q/2)
L−1

[
s−1(η̂(s))q/β

]
. (42)

Therefore, the second moment, i.e. MSD (q = 2) diverges, and thus one defines fractional
moments 〈|x(t)|q〉 to characterize the transport, from which as MSD one uses 〈|x(t)|q〉2/q.
For β = 2 and q = 2 we recover the MSD given by equation (16).

3.1. Lévy flight search

The typical case of Lévy flight search is derived when η(t) = 1, i.e. η̂(s) = 1/s. In the
absence of a sink, from (42) for the q th moment one finds 〈|x(t)|q〉 ∼ tq/β and thus

〈|x(t)|q〉2/q ∼ t2/β. This is the case of superdiffusion (2/β > 1), which is characteristic for
Lévy flights [14]. The FATD reads
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℘̂fa(s) = sin(π/β)H2,1
2,3

[
s1/β|X − x0|

D1/β
β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
. (43)

The inverse Laplace transformation yields

℘fa(t) = sin(π/β)
1

t
H2,1

3,3

[
|X − x0|
[Dβt]1/β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2), (0, 1/β)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
. (44)

Using the asymptotic expression of H-function in [65], for the long-time limit we have

℘̂fa(s) 
 1− sin

(
π

β

)
sin

(
πβ

2

)
βΓ[2− β]|X − x0|β−1

π(β − 1)

(
s

Dβ

) β−1
β

, (45)

from where it follows that ℘fa(t) ∼ t−2+1/β in the long time limit [46]; see figure 9.
The searcher will always find the target after a sufficiently long time since the search
reliability is one. The search efficiency is

E = β sin(π/β)

∫ ∞

0

H2,1
2,3

[
s|X − x0|β

Dβ

∣∣∣∣∣ (1− 1/β, 1), (1/2, β/2)

(0, β), (1− 1/β, 1), (1/2, β/2)

]
ds

=
Dββ

|X − x0|β
cos

(
π

[
1− β

2

])
Γ[β]. (46)

This type of Lévy flight search was first considered and in details analyzed in [66],
and then additionally investigated in [29], as well. As shown in figure 10, the efficiency
of Lévy flight search is symmetric with respect to target position X. For short initial
searcher–target distances, Brownian search is a more efficient process and the func-
tional form of relative efficiency Erel is completely monotonous, see the left panel of
figure 11. However, for large initial searcher–target distances, Lévy flight search with
smaller power-law exponent β is dominant. This behavior is consistent with our intu-
ition since the jump length of Lévy flight increases with decreasing power-law exponent
β, leading to the searcher arrives at the target faster for large initial distances. In addi-
tion, the power-law exponent β of optimal Lévy flight search strategy shifts to left with
increasing initial searcher–target distance |X – x0|.

3.2. Power-law memory kernel. Lévy flight search with trapping

Similarly, taking η(t) = t−α/Γ[1− α] (η̂(s) = s−α) for 0 < α < 1, we have the situation
of Lévy flight search (due to the Riesz space fractional derivative in the equation)
with trapping (due to the power-law memory kernel, which gives long tailed wait-
ing time PDF between the jumps). In the absence of a sink, for the q th moment

we have 〈|x(t)|q〉 ∼ tαq/β , i.e. 〈|x(t)|q〉2/q ∼ t2α/β . This is the case of typical competition
between long jumps, characterized by parameter β and long waiting times, characterized

by parameter α, see [14]. For 2α
β

� 1 one observes either subdiffusion, normal diffusion
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Figure 9. Asymptotic expression of FATD (44), which is obtained by numerical
inverse Laplace transform for Dβ = 0.5, X = 10−4, x0 = 1 and β = 2 (blue solid
line), β = 1.7 (red dashed line) and β = 1.3 (black dash-dotted line).

Figure 10. Search efficiency as a function of the initial position |X− x0| for three
different values of β, β = 2 (blue solid line), β = 1.7 (red dashed line) and β = 1.3
(black dot-dashed line) with Dβ = 0.005, X = 1.

or superdiffusion. Thus, from equation (39), we get the expression of FATD

℘̂fa(s) = sin(π/β)H2,1
2,3

[
sα/β |X − x0|

D1/β
β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
. (47)

By inverse Laplace transformation, one obtains

℘fa(t) = sin(π/β)
1

t
H2,1

3,3

[
|X − x0|
D1/β

β tα/β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2), (0,α/β)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
. (48)

For s→ 0 we have

℘̂fa(s) 
 1− sin

(
π

β

)
sin

(
πβ

2

)
βΓ[2− β]|X − x0|β−1

π(β − 1)

(
sα

Dβ

) β−1
β

, (49)
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Figure 11. Relative efficiency for Lévy flights search as a function of the power-
law exponent β (left) for x0 = 3 (blue solid line), x0 = 10 (red dashed line),
x0 = 100 (black dotted line) and x0 = 1000 (green dot-dashed line); optimal power-
law exponent βopt as a function of the initial searcher–target distance x0 (right) for
X = 1 and Dβ = 1. For X = 0 see [47].

which for the long time limit yields ℘fa ∼ t−1−α+α/β. The reliability equals one since for
s→ 0 from (49) we have P = 1. Moreover, for the efficiency one obtains

E =
β

α
sin(π/β)

×
∫ ∞

0

H2,1
2,3

[
s|X − x0|β/α

D1/α
β

∣∣∣∣∣ (1− 1/β, 1/α), (1/2, β/(2α))

(0, β/α), (1− 1/β, 1/α), (1/2, β/(2α))

]
ds

=
β

α
sin

(
π

β

) D1/α
β

|X − x0|β/α
cos

(
πβ
2α

)
Γ[β/α]

sin
(

π
β
− π

α

) . (50)

For α = 1, we recover the efficiency of Lévy flights search (46), discussed in the pre-
vious subsection 3.1, while for β = 2 and 0 < α < 1 we recover the efficiency (22) for
subdiffusive search, considered in subsection 2.2. For a fixed power-law exponent α,
the power-law exponent β of maximum efficiency decreases with increasing the initial
searcher–target distance, as shown in figure 12. For example for α = 1, it shifts from
β ≈ 1.5 for x0 = 10 to β ≈ 1.25 for x0 = 100. From figure 13, we observe that for close
initial searcher–target distance |X− x0|, the optimal power-law exponent βopt is 2, and
it drops for growing initial searcher–target distance since its long jumps.

3.3. Exponential memory kernel

When the memory kernel behaves as an exponential function η(t) = e−rt, i.e. η̂(s) = 1
s+r

,
in the absence of the sink the corresponding equation describes Lévy flight with resetting
[67],

∂

∂t
Pr(x, t) = Dβ

∂β

∂|x|β Pr(x, t)− r Pr(x, t) + r δ(x− x0). (51)
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Figure 12. Relative efficiency for Lévy flights search with power-law memory kernel
η̂(s) = s−α as a function of the power-law exponent β for α = 1 (blue solid line),
α = 0.5 (red dashed line) and α = 0.3 (black dot-dashed line), target X = 0 and
Dβ = 1 for the initial searcher–target distance x0 = 10 (left) and x0 = 100 (right).

Figure 13. Optimal power-law exponent βopt as a function of the initial
searcher–target distance x0 for α = 1 (blue solid line), α = 0.5 (red dashed line)
and α = 0.3 (black dot-dashed line) with X = 1 and Dβ = 1.

In the presence of the sink, the FATD in the Laplace space becomes

℘̂fa(s) = sin(π/β)H2,1
2,3

[
(s+ r)1/β|X − x0|

D1/β
β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
,

(52)

which by inverse Laplace transform reads

℘fa(t) = sin(π/β)
e−rt

t
H2,1

3,3

[
|X − x0|
[Dβt]1/β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2), (0, 1/β)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
.

(53)
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Figure 14. Asymptotic behavior of search reliability (54) as a function of Lévy
power-law exponent β with |X− x0| = 1, and Dβ = 0.25, for r = 0.0001 (blue solid
line), r = 0.05 (red dashed line) and r = 0.1 (black dot-dashed line).

The reliability then becomes

P = sin(π/β)H2,1
2,3

[
r1/β |X − x0|

D1/β
β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
. (54)

The search reliability has a close relation with the power-law exponent β and the reset-
ting rate r, as well as the initial searcher-trap distance |X− x0|. For a fixed initial
separation and fixed r, we view search reliability as a function of power-law exponent
β. As shown in figure 14, we find the search reliability improves for growing power-law
exponent β. In addition, for fixed power-law exponent β, the search reliability grows
with decreasing the resetting rate r. According to the definition of the search efficiency,
we get

E =

∫ ∞

0

℘fa(t)

t
dt = β sin(π/β)

D2
β

|X − x0|2β

×
∫ ∞

0

e−rtH1,2
3,3

[
Dβt

|X − x0|β

∣∣∣∣∣ (1− 2β, β), (−2 + 1/β, 1), (1/2− β, β/2)

(−2 + 1/β, 1), (1/2− β, β/2), (−1, 1)

]
dt

= sin(π/β)rH1,3
4,3

[
D1/β

β r−1/β

|X − x0|

∣∣∣∣∣ (2, 1/β), (1, 1), (1/β, 1/β), (1/2, 1/2)(1/β, 1/β), (1/2, 1/2), (1, 1/β)

]

= sin(π/β)rH3,1
3,4

[
|X − x0|r1/β

D1/β
β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2), (0, 1/β)

(−1, 1/β), (0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
.

(55)
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3.4. Truncated power-law memory kernel

The case with a truncated power-law memory kernel η(t) = e−rt tα−1

Γ(α)
, 0 < α < 1, i.e.

η̂(s) = (s+ r)−α, in the absence of a sink, corresponds to the Lévy flight motion with
trapping in the presence of a resetting mechanism, governed by the Fokker–Planck
equation ∫ t

0

e−r(t−t′) (t− t′)−α

Γ(1− α)

∂

∂t′
Pr(x, t

′) dt′

= Dβ
∂β

∂|x|β Pr(x, t)−
∫ t

0

e−r(t−t′) (t− t′)−α

Γ(1− α)
[r Pr(x, t)− r δ(x− x0)]dt

′.

(56)

Substituting η̂(s) = (s+ r)−α into (39), the FATD is

℘̂fa(s) = sin(π/β)H2,1
2,3

[
(s+ r)α/β |X − x0|

D1/β
β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
,

(57)

where 0 < α < 1, r > 0. By inverse Laplace transformation we yield

℘fa(t) = sin(π/β)
e−rt

t
H2,1

3,3

[
|X − x0|
D1/β

β tα/β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2), (0,α/β)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
.

(58)

The reliability equals

P = sin(π/β)H2,1
2,3

[
rα/β |X − x0|

D1/β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2)

(0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
, (59)

while efficiency reads

E = sin(π/β)rH3,1
3,4

[
|X − x0|rα/β

D1/β
β

∣∣∣∣∣ (1− 1/β, 1/β), (1/2, 1/2), (0,α/β)

(−1,α/β), (0, 1), (1− 1/β, 1/β), (1/2, 1/2)

]
, (60)

which are derived on account of its definition.

4. Conclusions

We discuss the search problem from the perspective of the generalized diffusion equation.
First, we consider one-dimensional Brownian search with trapping, i.e. the MSD of jump
length is finite, combined with some representative cases of the memory kernel, which
enter the generalized waiting time PDF, we derive the concrete form of the FATD,
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search reliability and efficiency. Next, we consider a one-dimensional Lévy search with
trapping, i.e. the jump length of a one-dimensional searcher is power-law distribution
with 1 < β � 2. We also derive the general form of the FATD, search reliability and
efficiency. Finally, we generalize the above method to analyze the FATD when there are
multiple targets as well as combined search strategies.

For the case of one-dimensional Brownian search with trapping, the search reliability
equals one, which means the searcher will always arrive at the position of the target.
For a close initial distance between the searcher and the target, the efficiency of the
subdiffusion search process with small memory kernel exponent is maximal, which states
the fact that the subdiffusion search process with small memory kernel exponent is the
best search strategy. By the same method we find that the Brownian search outperforms
for longer initial search-trap distance. In addition, for long initial separation we also find
that the efficiency of subdiffusion search with large memory kernel exponent is bigger
than the one with small memory kernel exponent. However, this situation changes when
tempering of the memory kernel takes action, i.e. the efficiency of the subdiffusion search
process with small memory kernel exponent is bigger than the one with large memory
kernel exponent.

For the case of one-dimensional Lévy search with trapping, the search reliability
equals one. For close initial distance between the searcher and the target, Brownian
search outperforms than Lévy flight search. Combined with the above conclusion, subd-
iffusion search process with small memory kernel exponent is the best strategy for close
initial separation. For growing initial separation, the search efficiency is maximal for
Lévy flight search with smaller power-law exponent β due to its long jump. In addition,
there are two optimal power-law exponents when the memory kernel of the searcher is
power-law with smaller exponent α. For Lévy flight search with exponential memory
kernel, the search reliability is less than one. Moreover, the search reliability improves
for decreasing resetting rate r and increasing power-law exponent β, respectively. By
the same method, we derive the general form of the FATD both for Lévy search in
presence of multiple targets and combined Lévy searches in the presence of one target,
see appendices B and C.
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Appendix A. Mittag-Leffler and Fox H-functions

The three parameter Mittag-Leffler function is defined by [68]

Eγ
ρ,μ(t) =

∞∑
k=0

(γ)k
Γ(ρk + μ)

tk

k!
, (A.1)

where (γ)k =
Γ(γ+k)
Γ(γ)

is the Pochhammer symbol. Its Laplace transform reads

L
{
tμ−1Eγ

ρ,μ(vt
ρ)
}
=

sργ−μ

(sρ − v)γ
. (A.2)

For 0 < α < 2, by using the formula [69],

Eγ
α,β(−z) =

z−γ

Γ(γ)

∞∑
n=0

Γ(γ + n)

Γ(β − α(γ + n))

(−z)−n

n!
, z > 1, (A.3)

one finds the asymptotic behavior of the three parameter M–L function. For large
z (z � 1) one finds

Eγ
α,β(−z) ∼ z−γ

Γ(β − αγ)
− γ

z−(γ+1)

Γ(β − α(γ + 1))
, z � 1. (A.4)

The Fox H-function is defined as the inverse Mellin transform for a set of gamma
functions [70]

Hm,n
p,q

[
z

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]
= Hm,n

p,q

[
z

∣∣∣∣∣ (a1,A1), . . . , (ap,Ap)

(b1,B1), . . . , bq,Bq)

]
=

1

2πı

∫
Ω

θ(s)z−s ds,

(A.5)

where

θ(s) =

∏m
j=1Γ(bj +Bjs)

∏n
j=1Γ(1− aj −Ajs)∏q

j=m+1Γ(1− bj −Bjs)
∏p

j=n+1Γ(aj + Ajs)
, (A.6)

with 0 � n � p, 1 � m � q, ai, bj ∈ C, Ai,Bj ∈ R+, i = 1, . . . , p, and j = 1, . . . , q. The
contour Ω starting at c− i∞ and ending at c+ i∞ separates the poles of the function
Γ(bj + Bjs), j = 1, . . . ,m from those of the function Γ(1− ai −Ais), i = 1, . . . , n.

The Mellin-cosine transform of Fox H-function is given by [70]∫ ∞

0

κρ−1 cos(κx)Hm,n
p,q

[
aκδ

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]
dκ

=
π

xρ
Hn+1,m

q+1,p+2

⎡
⎣xδ

a

∣∣∣∣∣∣
(1− bq,Bq),

(
1+ρ
2
, δ
2

)
(ρ, δ), (1− ap,Ap),

(
1 + ρ

2
,
δ

2

)⎤⎦. (A.7)
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0

κρ−1 cos(κx)Hm,n
p,q

[
aκδ

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]
dκ

=
2ρ−1

√
π

xρ
Hm,n+1

p+2,q

⎡
⎣a(2

x

)δ

∣∣∣∣∣∣
(
2− ρ

2
, δ
2

)
, (ap,Ap),

(
1− ρ

2
, δ
2

)
(bq,Bq),

⎤
⎦

=
2ρ−1

√
π

xρ
Hn+1,m

q,p+2

⎡
⎣1
a

(x
2

)δ

∣∣∣∣∣∣
(1− bq,Bq)(
ρ

2
,
δ

2

)
, (1− ap,Ap),

(
1 + ρ

2
,
δ

2

)⎤⎦. (A.8)

The Mellin transform of the Fox H-function yields

∫ ∞

0

xξ−1Hm,n
p,q

[
ax

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]
dx = a−ξθ(ξ), (A.9)

where θ(ξ) is defined in equation (A.6). The Laplace transform of the Fox H-function is

L
{
tδHm,n

p,q

[
atσ

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]}
= s−1−δHm,n+1

p+1,q

[
as−σ

∣∣∣∣∣ (−δ, σ), (ap,Ap)

(bq,Bq)

]
, (A.10)

where R

{
δ + σmin1�j�m

(
bj
Bj

)}
> −1, δ ∈ C, s ∈ C(R(s) > 0), and a, σ, θ are posi-

tive. The parameter θ defined by θ =
∑n

j=1 Aj −
∑p

j=n+1 Aj +
∑m

j=1 Bj −
∑q

j=m+1 Bj. The
inverse Laplace transform of the H-function is as follows

L−1

{
s−ρHm,n

p,q

[
asσ

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]}
= tρ−1Hm,n

p+1,q

[
at−σ

∣∣∣∣∣ (ap,Ap), (ρ, σ),

(bq,Bq)

]
, (A.11)

where R

{
ρ+ σmax1�i�n

(
1
Ai

− ai
Ai

)}
> 0, ρ, a, s ∈ C (R{s} > 0), | arg a| < 1

2
π(θ − σ)

and σ > 0 [70].
Fox H-function has the following properties [70]

Hm,n
p,q

[
zδ

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]
=

1

δ
·Hm,n

p,q

[
z

∣∣∣∣∣ (ap,Ap/δ)

(bq,Bq/δ)

]
, (A.12)

zσHm,n
p,q

[
z

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]
= Hm,n

p,q

[
z

∣∣∣∣∣ (ap + σAp,Ap)

(bq + σBq,Bq)

]
, (A.13)

Hm,n
p,q

[
z

∣∣∣∣∣ (a1,A1), (a2,A2), . . . , (ap,Ap)

(b1,B1), . . . , (bq−1,Bq−1), (a1,A1)

]
= Hm,n−1

p−1,q−1

[
z

∣∣∣∣∣ (a2,A2), . . . , (ap,Ap)

(b1,B1), . . . , (bq−1,Bq−1)

]
,

(A.14)
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Hm,n
p,q

[
z

∣∣∣∣∣ (ap,Ap)

(bq,Bq)

]
= Hn,m

q,p

[
1

z

∣∣∣∣∣ (1− bq,Bq)

(1− ap,Ap)

]
. (A.15)

The Fox H-function as a special cases transforms to other known functions:

e−z = H1,0
0,1

[
z

∣∣∣∣∣ −(0, 1)
]
, (A.16)

1

(1± z)a
=

1

Γ(a)
H1,1

1,1

[
±z

∣∣∣∣∣ (1− a, 1)

(0, 1)

]
. (A.17)

Appendix B. Searching for multiple targets

We may also consider the problem of Lévy search in the presence of multiple targets,

∂

∂t
P (x, t) = Dβ

∂

∂t

∫ t

0

η(t− t′)
∂β

∂|x|β P (x, t′) dt′ −
N∑
j=1

℘fa,j(t)δ(x− xj). (B.1)

By Fourier–Laplace transformation we obtain

s
˜̂
P (k, s)− eıkx0 = −Dβ |k|βsη̂(s) ˜̂P (k, s)−

N∑
j=1

℘̂fa,j(s)e
ıkxj , (B.2)

from where we find

˜̂
P (k, s) =

eıkx0 −
∑N

j=1℘̂fa,j(s)e
ıkxj

s+Dβ|k|βsη̂(s)
=

eıkx0 −
∑N

j=1℘̂fa,j(s)e
ıkxj

s

1

1 +Dβ|k|βη̂(s)

=
eıkx0 −

∑N
j=1℘̂fa,j(s)e

ıkxj

s
H1,1

1,1

[
Dβη̂(s)|k|β

∣∣∣∣∣ (0, 1)(0, 1)

]
. (B.3)

From the condition P̂ (x = xj, s) = 0, by taking the inverse Fourier transform to
equation (B.3) we get for j = 1, 2, . . . ,N

∫ ∞

−∞
eık(x0−xj)H1,1

1,1

[
Dβη̂(s)|k|β

∣∣∣∣∣ (0, 1)(0, 1)

]
dk =

N∑
i=1

℘̂fa,i(s)

∫ ∞

−∞
eık(xi−xj)H1,1

1,1

[
Dβη̂(s)|k|β

∣∣∣∣∣ (0, 1)(0, 1)

]
dk.

It can be simplified as∫ ∞

0

cos(k|x0 − xj|)H1,1
1,1

[
Dβη̂(s)k

β

∣∣∣∣∣ (0, 1)(0, 1)

]
dk

=
N∑
i=1

℘̂fa,i(s)

∫ ∞

0

cos(k|xi − xj |)H1,1
1,1

[
Dβη̂(s)k

β

∣∣∣∣∣ (0, 1)(0, 1)

]
dk. (B.4)
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With the help of the Fox-H function, we have

√
π

|x0 − xj|
1

β
H2,1

1,3

[
|x0 − xj|
2[Dβη̂(s)]

1
β

∣∣∣∣∣ (1, 1/β)(1/2, 1/2), (1, 1/β), (1, 1/2)

]

= ℘̂fa,j(s)
1

β[Dβη̂(s)]1/β
π

sin π
β

+
∑
i �=j

℘̂fa,i(s)

√
π

|xi − xj|
1

β
H2,1

1,3

×
[

|xi − xj |
2[Dβη̂(s)]

1
β

∣∣∣∣∣ (1, 1/β)(1/2, 1/2), (1, 1/β), (1, 1/2)

]
. (B.5)

Further, we assume that W(x, t) is the solution of (B.1) without the sink term and
the initial position is assumed to be 0, as above we find it reads

W (x, s) =
2

s

1

β

√
π

|x| H
2,1
1,3

[
|x|

2[Dβη̂(s)]
1
β

∣∣∣∣∣ (1, 1/β)(1/2, 1/2), (1, 1/β), (1, 1/2)

]
. (B.6)

Let us use the simplified notation W(xi − xj, s) = Wij. Hence (B.5) can be simplified as

W0j = ℘̂fa,j(s)W0 +
∑
i �=j

℘̂fa,i(s)Wij, (B.7)

where W0 = W (0, s) = 2
sβ[Dβη̂(s)]1/β

π
sin(π/β)

.

The FATD is the sum of fluxes to both targets

℘̂fa(s) =

N∑
i=1

℘̂fa,i(s). (B.8)

We can derive all the splitting FATDs ℘̂fa,i(s) from (B.7) since it has a unique solution
for a system of N equations, so the FATD can be obtained. Since the calculation for
N targets is too complicated, we only focus here on two targets, respectively, placed at
x1 and x2. Then the FATD becomes

℘̂fa(s) =
W01 +W02

W21 +W0
=

W01

W0
+ W02

W0
W21

W0
+ 1

. (B.9)

For Wij the limit of small s reads

Wij 

2

sβ[Dβη̂(s)]1/β
π

sin π
β

+

√
π

s

Γ[1/2− β/2]

Γ[β/2]

|xi − xj|β−1

2β−1Dβη̂(s)
. (B.10)

For the long-time radio of Wij

W0
, we have
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Wij

W0

 1− γβ|xi − xj|β−1[Dβη̂(s)]

1/β−1, (B.11)

where γβ = βΓ[2−β]
π(β−1)

sin(π
β
) sin(πβ

2
). Correspondingly,

℘̂fa(s) 
 1− γβ[Dβη̂(s)]
1/β−1

2
(|x1 − x0|β−1 + |x2 − x0|β−1 − |x2 − x1|β−1).

(B.12)

From the expression, one can see that the search reliability P = ℘̂fa(s = 0) = 1 since
lims→0[1/η̂(s)] = 0.

For the special case of η(t) = 1, i.e. η̂(s) = 1/s, we recover the results of Brownian
search and Lévy flight search for two targets considered in [28].

Appendix C. Combined search

We may also consider the problem of combined Lévy search in the presence of one target,

∂

∂t
P (x, t) =

∂

∂t

∫ t

0

η(t− t′)

n∑
j=1

Dβj

∂βj

∂|x|βj P (x, t′) dt′ − ℘fa(t)δ(x−X). (C.1)

By Fourier–Laplace transform we have

s
˜̂
P (k, s)− eıkx0 = −

n∑
j=1

Dβj |k|βjsη̂(s)
˜̂
P (k, s)− ℘̂fa(s)e

ıkX , (C.2)

from where it follows

˜̂
P (k, s) =

eıkx0 − ℘̂fa(s)e
ıkX

s+
∑n

j=1 Dβj |k|βjsη̂(s)
=

1

s
× eıkx0 − ℘̂fa(s)e

ıkX

1 +
∑n

j=1 Dβj η̂(s)|k|βj
. (C.3)

Following the similar way, the FATD takes on the form

℘̂fa(s) =

∫∞
0

cos(k|X−x0|)
1

η̂(s)
+
∑n

j=1Dβj
kβj

dk∫∞
0

1
1

η̂(s)
+
∑n

j=1Dβj
kβj

dk
. (C.4)

The search reliability is simplified as

P =

∫ ∞
0

cos(k|X−x0|)∑n
j=1Dβj

kβj
dk∫ ∞

0
1∑n

j=1Dβj
kβj

dk
,

since we consider lims→0[1/η̂(s)] = 0. We recover the results of search reliability in [28]
if we consider a combination of two Lévy processes, which states the search reliability
is 1 if both 1 < βj � 2. In addition, the search reliability and efficiency for combined
Lévy–Brownian search were considered in [30] by the method of numerical integration
when the memory kernel behaves as η(t) = 1.
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