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Abstract. We study generalised linear regression and classification for a syn-
thetically generated dataset encompassing different problems of interest, such as
learning with random features, neural networks in the lazy training regime, and
the hidden manifold model. We consider the high-dimensional regime and using
the replica method from statistical physics, we provide a closed-form expression
for the asymptotic generalisation performance in these problems, valid in both
the under- and over-parametrised regimes and for a broad choice of generalised
linear model loss functions. In particular, we show how to obtain analytically
the so-called double descent behaviour for logistic regression with a peak at
the interpolation threshold, we illustrate the superiority of orthogonal against
random Gaussian projections in learning with random features, and discuss the
role played by correlations in the data generated by the hidden manifold model.
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Beyond the interest in these particular problems, the theoretical formalism intro-
duced in this manuscript provides a path to further extensions to more complex
tasks.

Keywords: cavity and replica method, deep learning, learning theory, machine
learning
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1. Introduction

One of the most important goals of learning theory is to provide generalisation bounds
describing the quality of learning a given task as a function of the number of samples.
Existing results fall short of being directly relevant for the state-of-the-art deep learning
methods [1, 2]. Consequently, providing tighter results on the generalisation error is
currently a very active research subject. The traditional learning theory approach to
generalisation follows for instance the Vapnik–Chervonenkis [3] or Rademacher [4] worst-
case type bounds, and many of their more recent extensions [5]. An alternative approach,
followed also in this paper, has been pursued for decades, notably in statistical physics,
where the generalisation ability of neural networks was analysed for a range of ‘typical-
case’ scenario for synthetic data arising from a probabilistic model [6–14]. While at this
point it is not clear which approach will lead to a complete generalisation theory of deep
learning, it is worth pursuing both directions.

The majority of works following the statistical physics approach study the gener-
alisation error in the so-called teacher-student framework, where the input data are
element-wise i.i.d. vectors, and the labels are generated by a teacher neural network.
In contrast, in most of real scenarios the input data do not span uniformly the input
space, but rather live close to a lower-dimensional manifold. The traditional focus onto
i.i.d. Gaussian input vectors is an important limitation that has been recently stressed
in [14, 15]. In [14], the authors proposed a model of synthetic data to mimic the latent
structure of real data, named the hidden manifold model (HMM), and analysed the
learning curve of one-pass stochastic gradient descent (SGD) algorithm in a two-layer
neural network with a small number of hidden units also known as committee machine.

Another key limitation of the majority of existing works stemming from statistical
physics is that the learning curves were only computed for neural networks with a
few hidden units. In particular, the input dimension is considered large, the number
of samples is a constant times the input dimension and the number of hidden units
is of order one. Tight learning curves were only very recently analysed for two-layer
neural networks with more hidden units. These studies addressed in particular the case
of networks that have a fixed first layer with random i.i.d. Gaussian weights [12, 13], or
the lazy-training regime where the individual weights change only infinitesimally during
training, thus not learning any specific features [16–18].

In this paper we compute the generalisation error and the corresponding learning
curves, i.e. the test error as a function of the number of samples for a model of high-
dimensional data that encompasses at least the following cases:
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• Generalised linear regression and classification for data generated by the HMM of
[14]. The HMM can be seen as a single-layer generative neural network with i.i.d.
inputs and a rather generic feature matrix [14, 19].

• Learning data generated by the teacher-student model with a random-features neural
network [20], with a very generic feature matrix, including deterministic ones. This
model is also interesting because of its connection with the lazy regime, that is
equivalent to the random features model with slightly more complicated features
[12, 13, 16].

We give a closed-form expression for the generalisation error in the high-dimensional
limit, obtained using a non-rigorous heuristic method from statistical physics known as
the replica method [21], that has already shown its remarkable efficacy in many problems
of machine learning [6, 8, 22, 23], with many of its predictions being rigorously proven,
e.g. [24, 25]. While in the present model it remains an open problem to derive a rigorous
proof for our results, we shall provide numerical support that the formula is indeed exact
in the high-dimensional limit, and extremely accurate even for moderately small system
sizes.

1.1. The model

We study high-dimensional regression and classification for a synthetic dataset
D = {(xμ, yμ)}nμ=1 where each sample μ is created in the following three steps: (i) first,

for each sample μ we create a vector cμ ∈ R
d as

cμ ∼ N (0, Id). (1.1)

(ii) We then draw θ0 ∈ R
d from a separable distribution Pθ and draw independent labels

{yμ}nμ=1 from a (possibly probabilistic) rule f 0:

yμ = f0
(

1√
d
cμ · θ0

)
∈ R. (1.2)

(iii) The input data points xμ ∈ R
p are created by a one-layer generative network with

fixed and normalised weights F ∈ R
d×p and an activation function σ :R→ R, acting

component-wise:

xμ = σ

(
1√
d
F�cμ

)
. (1.3)

We study the problem of supervised learning for the dataset D aiming at achieving a
low generalisation error εg on a new sample x new, ynew drawn by the same rule as above,
where:

εg =
1

4k
Exnew,ynew

[
(ŷw(x

new)− ynew)2
]

(1.4)

with k = 0 for regression task and k = 1 for classification task. Here, ŷw is the prediction
on the new label ynew of the form:

ŷw(x) = f̂ (x · ŵ) . (1.5)
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The weights ŵ ∈ R
p are learned by minimising a loss function with a ridge regularisation

term (for λ � 0) and defined as

ŵ = arg min
w

[
n∑

μ=1

�(yμ, xμ ·w) +
λ

2
‖w‖22

]
, (1.6)

where �(·, ·) can be, for instance, a logistic, hinge, or square loss. Note that although

our formula is valid for any f 0 and f̂, we take f0 = f̂ = sign, for the classification tasks
and f0 = f̂ = id for the regression tasks studied here. We now describe in more detail
the above-discussed reasons why this model is of interest for machine learning.

Hidden manifold model: the dataset D can be seen as generated from the HMM
introduced in [14]. From this perspective, although x μ lives in a p dimensional space, it
is parametrised by a latent d-dimensional subspace spanned by the rows of the matrix F
which are ‘hidden’ by the application of a scalar non-linear function σ. The labels yμ are
drawn from a generalised linear rule defined on the latent d-dimensional subspace via
equation (1.2). In modern machine learning parlance, this can be seen as data generated
by a one-layer generative neural network, such as those trained by generative adversarial
networks or variational auto-encoders with random Gaussian inputs cμ and a rather
generic weight matrix F [19, 26–28].

Random features: the model considered in this paper is also an instance of the
random features learning discussed in [20] as a way to speed up kernel-ridge-regression.
From this perspective, the cμs ∈ R

d are regarded as a set of d-dimensional i.i.d. Gaussian
data points, which are projected by a feature matrix F = (fρ)

p
ρ=1 ∈ R

d×p into a higher
dimensional space, followed by a non-linearity σ. In the p→∞ limit of infinite number
of features, performing regression on D is equivalent to kernel regression on the cμs

with a deterministic kernel K(cμ1 , cμ2) = Ef

[
σ(f · cμ1/

√
d) · σ(f · cμ2/

√
d)
]
where f ∈ R

d

is sampled in the same way as the rows of F. Random features are also intimately linked
with the lazy training regime, where the weights of a neural network stay close to their
initial value during training. The training is lazy as opposed to a ‘rich’ one where the
weights change enough to learn useful features. In this regime, neural networks become
equivalent to a random feature model with correlated features [16–18, 29–31].

1.2. Contributions and related work

The main contribution of this work is a closed-form expression for the generalisation
error εg, equation (2.1), that is valid in the high-dimensional limit where the number
of samples n, and the two dimensions p and d are large, but their respective ratios are
of order one, and for generic sequence of matrices F satisfying the following balance
conditions:

1
√
p

p∑
i=1

wa1
i wa2

i . . . was
i Fiρ1Fiρ2 . . .Fiρq = O(1), (1.7)

where {wa}ra=1 are r independent samples from the Gibbs measure (2.7), and
ρ1, ρ2, . . . , ρq ∈ {1, . . . , d}, a1, a2, . . . , as ∈ {1, . . . , r} are an arbitrary choice of subset of
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indices, with s, q ∈ Z+. The non-linearities f0, f̂, σ and the loss function � can be arbi-
trary. Our result for the generalisation error stems from the replica method and we
conjecture it to be exact for convex loss functions �. It can also be useful for non-convex
loss functions but in those cases it is possible that the so-called replica symmetry break-
ing [21] needs to be taken into account to obtain an exact expression. In the present
paper we hence focus on convex loss functions � and leave the more general case for
future work. The final formulas are simpler for nonlinearities σ that give zero when
integrated over a centred Gaussian variable, and we hence focus on those cases.

An interesting application of our setting is ridge regression, i.e. taking f̂(x)=x with
square loss, and random i.i.d. Gaussian feature matrices. For this particular case [13]
proved an equivalent expression. Indeed, in this case there is an explicit solution of
equation (1.6) that can be rigorously studied with random matrix theory. In a subsequent
work [32] derived heuristically a formula for the special case of random i.i.d. Gaussian
feature matrices for the maximum margin classification, corresponding to the hinge loss
function in our setting, with the difference, however, that the labels yμ are generated
from the xμ instead of the variable cμ as in our case.

Our main technical contribution is thus to provide a generic formula for the model
described in section 1.1 for any loss function and for fairly generic features F, including
for instance deterministic ones.

The authors of [14] analysed the learning dynamics of a neural network containing
several hidden units using a one-pass SGD for exactly the same model of data as here. In
this online setting, the algorithm is never exposed to a sample twice, greatly simplifying
the analysis as what has been learned at a given epoch can be considered independent
of the randomness of a new sample. Another motivation of the present work is thus
to study the sample complexity for this model (in our case only a bounded number of
samples is available, and the one-pass SGD would be highly suboptimal).

An additional technical contribution of our work is to derive an extension of the
equivalence between the considered data model and a model with Gaussian covariate,
that has been observed and conjectured to hold rather generically in both [14, 32]. While
we do not provide a rigorous proof for this equivalence, we show that it arises naturally
using the replica method, giving further evidence for its validity.

Finally, the analysis of our formula for particular machine learning tasks of interest
allows for an analytical investigation of a rich phenomenology that is also observed
empirically in real-life scenarios. In particular

• The double descent behaviour, as termed in [33] and exemplified in [34], is exhibited
for the non-regularized logistic regression loss. The peak of worst generalisation does
not corresponds to p = n as for the square loss [13], but rather corresponds to the
threshold of linear separability of the dataset. We also characterise the location of
this threshold, generalising the results of [11] to our model.

• When using projections to approximate kernels, it has been observed that orthogonal
features F perform better than random i.i.d. [35]. We show that this behaviour arises
from our analytical formula, illustrating the ‘unreasonable effectiveness of structured
random orthogonal embeddings’ [35].

https://doi.org/10.1088/1742-5468/ac3ae6 6
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• We compute the phase diagram for the generalisation error for the HMM and dis-
cuss the dependence on the various parameters, in particular the ratio between the
ambient and latent dimensions.

2. Main analytical results

We now state our two main analytical results. The replica computation used here
is in spirit similar to the one performed in a number of tasks for linear and gener-
alised linear models [6, 36–38], but requires a significant extension to account for the
structure of the data. We refer the reader to the supplementary material section C
(https://stacks.iop.org/JSTAT/12/124013/mmedia) for the detailed and lengthy deriva-
tion of the final formula. The resulting expression is conjectured to be exact and, as we
shall see, observed to be accurate even for relatively small dimensions in simulations.
Additionally, these formulas reproduce the rigorous results of [13], in the simplest par-
ticular case of a Gaussian projection matrix and ridge regression task. It remains a
challenge to prove them rigorously in broader generality.

2.1. Generalisation error from replica method

Let F be a feature matrix satisfying the balance condition stated in equation (1.7).
Then, in the high-dimensional limit where p, d,n→∞ with α = n/p, γ = d/p fixed,
the generalisation error, equation (1.4), of the model introduced in section (1.4) for
σ such that its integral over a centered Gaussian variable is zero (so that κ0 = 0 in
equation (2.10)) is given by the following easy-to-evaluate integral:

lim
n→∞

εg = Eλ,ν

[
(f0(ν)− f̂(λ))2

]
, (2.1)

where f 0(.) is defined in (1.2), f̂(.) in (1.5) and (ν,λ) are jointly Gaussian random
variables with zero mean and covariance matrix:

Σ =

(
ρ M


M
 Q


)
∈ R

2 (2.2)

with M
 = κ1m


s, Q


 = κ2
1q



s + κ2


q


w. The constants κ
, κ1 depend on the nonlinearity σ

via equation (2.10), and q
s , q


w,m



s, defined as:

ρ =
1

d
‖θ0‖2 q
s =

1

d
E‖Fŵ‖2 q
w =

1

p
E‖ŵ‖2 m


s =
1

d
E
[
(Fŵ) · θ0

]
. (2.3)

The values of these parameters correspond to the solution of the optimisation problem
in equation (1.6), and can be obtained as the fixed point solutions of the following set
of self-consistent saddle-point equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂ s =
ακ2

1

γV
Eξ

[∫
R

dy Z (y,ω0) (1− ∂ωη (y,ω1))

]
,

q̂s =
ακ2

1

γV 2
Eξ

[∫
R

dy Z (y,ω0) (η (y,ω1)− ω1)
2

]
,

m̂s =
ακ1

γV
Eξ

[∫
R

dy ∂ωZ (y,ω0) (η (y,ω1)− ω1)

]
,

V̂ w =
ακ2




V
Eξ

[∫
R

dy Z (y,ω0) (1− ∂ωη (y,ω1))

]
,

q̂w =
ακ2




V 2
Eξ

[∫
R

dy Z (y,ω0) (η (y,ω1)− ω1)
2

]
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vs =
1

V̂ s

(1− zgμ(−z)) ,

qs =
m̂2

s + q̂s

V̂ 2
s

[
1− 2zgμ(−z) + z2g′μ(−z)

]
− q̂w

(λ+ V̂ w)V̂ s

[
−zgμ(−z) + z2g′μ(−z)

]
,

ms =
m̂s

V̂ s

(1− z gμ(−z)) ,

Vw =
γ

λ+ V̂ w

[
1

γ
− 1 + zgμ(−z)

]
,

qw = γ
q̂w

(λ+ V̂ w)2

[
1

γ
− 1 + z2g′μ(−z)

]
,

−γ
m̂2

s + q̂s

(λ+ V̂ w)V̂ s

[
−zgμ(−z) + z2g′μ(−z)

]
,

(2.4)

written in terms of the following auxiliary variables ξ ∼ N (0, 1), z = λ+V̂ w

V̂ s
and functions:

η(y,ω) = arg min
x∈R

[
(x− ω)2

2V
+ �(y, x)

]
,

Z(y,ω) =

∫
dx√
2πV 0

e−
1

2V 0 (x−ω)2δ
(
y − f0(x)

) (2.5)

where V = κ2
1Vs + κ2


Vw, V 0 = ρ− M2

Q
, Q = κ2

1qs + κ2

qw, M = κ1ms, ω0 =

(
M/

√
Q
)
ξ

and ω1 =
√
Qξ. In the above, we assume that the matrix FF� ∈ R

d×d associated to the
feature map F has a well behaved spectral density, and denote gμ its Stieltjes transform.

The training loss on the dataset D = {xμ, yμ}nμ=1 can also be obtained from the
solution of the above equations as

lim
n→∞

εt =
λ

2α
q
w + Eξ,y [Z (y,ω


0) � (y, η(y,ω


1))] (2.6)

where as before ξ ∼ N (0, 1), y ∼ Uni(R) and Z, η are the same as in equation (2.5),
evaluated at the solution of the above saddle-point equations ω


0 =
(
M
/

√
Q

)
ξ,

ω

1 =

√
Q
ξ.

Sketch of derivation—we now sketch the derivation of the above result. A com-
plete and detailed account can be found in section C of the supplementary material.
The derivation is based on the key observation that in the high-dimensional limit the
asymptotic generalisation error only depends on the solution ŵ ∈ R

p of equation (1.5)
through the scalar parameters (q
s , q



w,m



s) defined in equation (2.3). The idea is there-

fore to rewrite the high-dimensional optimisation problem in terms of only these scalar
parameters.
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The first step is to note that the solution of equation (1.6) can be written as the
average of the following Gibbs measure

πβ(w|{xμ, yμ}) = 1

Zβ

e−β[
∑n

μ=1 �(y
μ,xμ·w)+ λ

2 ‖w‖22], (2.7)

in the limit β →∞. Of course, we have not gained much, since an exact calculation of
πβ is intractable for large values of n, p and d. This is where the replica method comes
in. It states that the distribution of the free energy density f = −logZβ (when seen as
a random variable over different realisations of dataset D) associated with the measure
μβ concentrates, in the high-dimensional limit, around a value fβ that depends only on
the averaged replicated partition function Zr

β obtained by taking r > 0 copies of Zβ :

fβ = lim
r→0+

d

dr
lim
p→∞

[
−1

p

(
E{xμ,yμ}Zr

β

)]
. (2.8)

Interestingly, E{xμ,yμ}Zr
β can be computed explicitly for r ∈ N, and the limit r → 0+ is

taken by analytically continuing to r > 0 (see section C of the supplementary material).
The upshot is that Zr can be written as

E{xμ,yμ}Zr
β ∝
∫

dqs dqw dms e
pΦ

(r)
β (ms,qs,qw) (2.9)

where Φβ—known as the replica symmetric potential—is a concave function depending
only on the following scalar parameters:

qs =
1

d
‖Fw‖2, qw =

1

p
‖w‖2, ms =

1

d
(Fw) · θ0

for w ∼ πβ . In the limit of p→∞, this integral concentrates around the extremum of the

potential Φ
(0)
β for any β. Since the optimisation problem in equation (1.5) is convex, by

construction as β →∞ the overlap parameters (q
s , q


w,m



s) satisfying this optimisation

problem are precisely the ones of equation (2.3) corresponding to the solution ŵ ∈ R
p

of equation (1.5).
In summary, the replica method allows to circumvent the hard-to-solve high-

dimensional optimisation problem equation (1.5) by directly computing the generali-
sation error in equation (1.4) in terms of a simpler scalar optimisation. Doing gradient

descent (GD) in Φ
(0)
β and taking β →∞ lead to the saddle-point equation (2.4).

2.2. Replicated Gaussian equivalence

The backbone of the replica derivation sketched above and detailed in section C of the
supplementary material is a central limit theorem type result coined as the Gaussian
equivalence theorem (GET) from [14] used in the context of the ‘replicated’ Gibbs mea-
sure obtained by taking r copies of (2.7). In this approach, we need to assume that the
‘balance condition’ (1.7) applies with probability one when the weights w are sampled
from the replicated measure. We shall use this assumption in the following, checking its
self-consistency via agreement with simulations.
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It is interesting to observe that, when applying the GET in the context of our
replica calculation, the resulting asymptotic generalisation error stated in section 2.1 is
equivalent to the asymptotic generalisation error of the following linear model:

xμ = κ01+ κ1
1√
d
F�cμ + κ
 zμ, (2.10)

with κ0 = E [σ(z)], κ1 ≡ E [zσ(z)], κ2

 ≡ E [σ(z)2]− κ2

0 − κ2
1, and zμ ∼ N (0, Ip). We

have for instance, (κ0, κ1, κ
) ≈
(
0, 2√

3π
, 0.2003

)
for σ = erf and (κ0, κ1, κ
) =(

0,
√

2
π
,
√
1− 2

π

)
for σ = sign, two cases explored in the next section. This equivalence

constitutes a result with an interest in its own, with applicability beyond the scope of
the generalised linear task equation (1.6) studied here.

Equation (2.10) is precisely the mapping obtained by [13], who proved its validity
rigorously in the particular case of the square loss and Gaussian random matrix F using
random matrix theory. The same equivalence arises in the analysis of kernel random
matrices [39, 40] and in the study of online learning [14]. The replica method thus
suggests that the equivalence actually holds in a much larger class of learning problem,
as conjectured as well in [32], and numerically confirmed in all our numerical tests. It
also potentially allows generalisation of the analysis in this paper for data coming from
a learned generative adversarial network, along the lines of [28, 41].

Figure 1 illustrates the remarkable agreement between the result of the general-
isation formula, equation (2.1) and simulations both on the data equation (1.3) with
σ(x) = sign(x) non-linearity, and on the Gaussian equivalent data equation (2.10) where
the non-linearity is replaced by rescaling by a constant plus noise. The agreement is
flawless as implied by the theory in the high-dimensional limit, testifying that the used
system size d = 200 is sufficiently large for the asymptotic theory to be relevant. We
observed similar good agreement between the theory and simulation in all the cases we
tested, in particular in all those presented in the following.

3. Applications of the generalisation formula

3.1. Double descent for classification with logistic loss

Among the surprising observations in modern machine learning is the fact that one can
use learning methods that achieve zero training error, yet their generalisation error does
not deteriorate as more and more parameters are added into the neural network. The
study of such ‘interpolators’ have attracted a growing attention over the last few years
[9, 12, 13, 33, 34, 42–44], as it violates basic intuition on the bias-variance trade-off [45].
Indeed classical learning theory suggests that generalisation should first improve then
worsen when increasing model complexity, following a U-shape curve. Many methods,
including neural networks, instead follow a so-called ‘double descent curve’ [33] that
displays two regimes: the ‘classical’ U-curve found at low number of parameters is fol-
lowed at high number of parameters by an interpolation regime where the generalisation
error decreases monotonically. Consequently neural networks do not drastically overfit
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Figure 1. Comparison between theory (full line), and simulations with dimension
d = 200 on the original model (dots), equation (1.3), with σ = sign, and the Gaus-
sian equivalent model (crosses), equation (2.10), for logistic loss, regularisation
λ = 10−3, n/d = 3. Labels are generated as yμ=sign

(
cμ · θ0

)
and f̂ = sign. Both

the training loss (green) and generalisation error (blue) are depicted. The theory
and the equivalence with the Gaussian model are observed to be very accurate even
at dimensions as small as d = 200.

even when using much more parameters than data samples [46], as actually observed
already in the classical work [45]. Between the two regimes, a ‘peak’ occurs at the
interpolation threshold [9, 22, 34, 47]. It should, however, be noted that existence of
this ‘interpolation’ peak is an independent phenomenon from the lack of overfitting in
highly over-parametrized networks, and indeed in a number of the related works these
two phenomena were observed separately [9, 22, 45, 47]. Scaling properties of the peak
and its relation to the jamming phenomena in physics are in particular studied in [43].

Among the simple models that allow to observe this behaviour, random projec-
tions—that are related to lazy training and kernel methods—are arguably the most
natural one. The double descent has been analysed in detail in the present model in the
specific case of a square loss on a regression task with random Gaussian features [13].
Our analysis allows to show the generality and the robustness of the phenomenon to
other tasks, matrices and losses. In figure 2 we compare the double descent as present
in the square loss (blue line) with the one of logistic loss (red line) for random Gaussian
features. We plot the value of the generalisation error at small values of the regulari-
sation λ (full line), and for optimal value of λ (dashed line) for a fixed ratio between
the number of samples and the dimension n/d as a function of the number of random
features per sample p/n. We also plot the value of the training error (lower panel) for a
small regularisation value, showing that the peaks indeed occur when the training loss
goes to zero. For the square loss the peak appears at 1/α = p/n = 1 when the system
of n linear equations with p parameters becomes solvable. For the logistic loss the peak
instead appears at a value 1/α∗ where the data D become linearly separable and hence
the logistic loss can be optimised down to zero. These values 1/α∗ depends on the value
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Figure 2. (Top) Generalisation error evaluated from equation (2.1) plotted against
the number of random Gaussian features per sample p/n = 1/α and fixed ratio
between the number of samples and dimension n/d = α/γ = 3 for logistic loss
(red), square loss (blue). Labels are generated as yμ = sign

(
cμ · θ0

)
, data as

xμ = sign
(
F�cμ

)
and f̂ = sign for two different values of regularisation λ, a small

penalty λ = 10−4 (full line) and a value of lambda optimised for every p/n (dashed
line). (Bottom) The training loss corresponding to λ = 10−4 is depicted.

n/d, and this dependence is plotted in figure 5. For very large dimension d, i.e. n/d→ 0
the data matrix X is close to i.i.d. random matrix and hence the α∗(n/d = 0) = 2 as
famously derived in classical work by Cover [48]. For n/d > 0 the α∗ is growing (1/α∗

decreasing) as correlations make data easier to linearly separate, similarly as in [11].
Figure 2 also shows that better error can be achieved with the logistic loss com-

pared to the square loss, both for small and optimal regularisations, except in a small
region around the logistic interpolation peak. In the Kernel limit, i.e. p/n→∞, the gen-
eralization error at optimal regularisation saturates at εg(p/n→∞) � 0.17 for square
loss and at εg(p/n→∞) � 0.16 for logistic loss. Figure 3 then depicts a 3D plot of the
generalisation error also illustrating the position of the interpolation peak.

3.2. Random features: Gaussian versus orthogonal

Kernel methods are a very popular class of machine learning techniques, achieving state-
of-the-art performance on a variety of tasks with theoretical guarantees [49–51]. In the
context of neural network, they are the subject of a renewal of interest in the context
of the neural tangent Kernel [17]. Applying kernel methods to large-scale ‘big data’
problems, however, poses many computational challenges, and this has motivated a
variety of contributions to develop them at scale, see, e.g. [50, 52–54]. Random features
[20] are among the most popular techniques to do so.
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Figure 3. Generalisation error of the logistic loss at fixed very small regularisation
λ = 10−4, as a function of n/d = α/γ and p/n = 1/α, for random Gaussian fea-
tures. Labels are generated with yμ = sign

(
cμ · θ0

)
, the data xμ = sign

(
F�cμ

)
and

f̂ = sign. The interpolation peak happening where data become linearly separable
is clearly visible here.

Here, we want to compare the performance of random projection with respect to
structured ones, and in particular orthogonal random projections [35] or deterministic
matrices such as real Fourier DCT and Hadamard matrices used in fast projection
methods [55–57]. Up to normalisation, these matrices have the same spectral density.
Since the asymptotic generalisation error only depends on the spectrum of FF�, all
these matrices share the same theoretical prediction when properly normalised, see
figure 4. In our computation, left- and right-orthogonal invariance is parametrised by
letting F = U�DV for U ∈ R

d×d, V ∈ R
p×p two orthogonal matrices drawn from the Haar

measure, and D ∈ R
d×p a diagonal matrix of rank min(d, p). In order to compare the

results with the Gaussian case, we fix the diagonal entries dk = max(
√
γ, 1) of D such

that an arbitrary projected vector has the same norm, on average, to the Gaussian
case.

Figure 4 shows that random orthogonal embeddings always outperform Gaussian
random projections, in line with empirical observations, and that they allow to reach the
kernel limit with fewer number of projections. Their behaviour is, however, qualitatively
similar to the one of random i.i.d. projections. We also show in figure 5 that orthogonal
projections allow to separate the data more easily than the Gaussian ones, as the phase
transition curve delimiting the linear separability of the logistic loss get shifted to the
left.
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Figure 4. Generalisation error against the number of features per sample p/n, for
a regression problem (left) and a classification one (right). Left (ridge regression):
we used n/d = 2 and generated labels as yμ = cμ · θ0, data as xμ = sign

(
F�cμ

)
and f̂(x) = x. The two curves correspond to ridge regression with Gaussian (blue)
versus orthogonal (red) projection matrix F for both λ = 10−8 (top) and optimal
regularisation λ (bottom). Right (logistic classification): we used n/d = 2 and gen-
erated labels as yμ = sign

(
cμ · θ0

)
, data as xμ = sign

(
F�cμ

)
and f̂ = sign. The

two curves correspond to a logistic classification with again Gaussian (blue) versus
orthogonal (red) projection matrix F for both λ = 10−4 and optimal regularisa-
tion λ. In all cases, full lines is the theoretical prediction, and points correspond
to gradient-descent simulations with d = 256. For the simulations of orthogonally
invariant matrices, we results for Hadamard matrices (dots) and DCT Fourier
matrices (diamonds).

3.3. The hidden manifold model phase diagram

In this subsection we consider the HMM where p-dimensional x data lie on a d-
dimensional manifold, we have mainly in mind d < p. The labels y are generated using
the coordinates on the manifold, equation (1.2).

In figure 6 we plot the generalisation error of classification with the square loss
for various values of the regularisation λ. We fix the ratio between the dimension of
the sub-manifold and the dimensionality of the input data to d/p = 0.1 and plot the
learning curve, i.e. the error as a function of the number of samples per dimension.
Depending on the value of the regularisation, we observe that the interpolation peak,
which is at α = 1 at very small regularisation (here the over-parametrised regime is on
the left-hand side), decreases for larger regularisation λ. A similar behaviour has been
observed for other models in the past, see e.g. [47]. Finally, figure 6 depicts the error for
optimised regularisation parameter in the black dashed line. For large number of samples
we observe the generalisation error at optimal regularisation to saturate in this case at
εg(α→∞)→ 0.0325. A challenge for future work is to see whether better performance
can be achieved on this model by including hidden variables into the neural network.

Figure 7 then shows the generalisation error for the optimised regularisation λ with
square loss as a function of the ratio between the latent and the data dimensions d/p.
In the limit d/p � 1 the data matrix becomes close to a random i.i.d. matrix and the
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Figure 5. The position of the interpolation peak in logistic regression with λ = 10−4,
where data become linearly separable, as a function of the ratio between the number
of samples n and the dimension d. Labels are generated with yμ = sign

(
cμ · θ0

)
,

the data xμ = sign
(
F�cμ

)
and f̂ = sign. The red line is with Gaussian random

features, the blue line with orthogonal features. We see that for linear separability
we need smaller number of projections p with orthogonal random features than
with Gaussian.

Figure 6. Generalisation error against the number of samples per dimension,
α = n/p, and fixed ratio between the latent and data dimension, d/p = 0.1, for
a classification task with square loss on labels generated as yμ = sign

(
cμ · θ0

)
, data

xμ = erf
(
F�cμ

)
and f̂ = sign, for different values of the regularisation λ (full lines),

including the optimal regularisation value (dashed).

labels are effectively random, thus only bad generalisation can be reached. Interestingly,
as d/p decreases to small values even the simple classification with regularised square
loss is able to ‘disentangle’ the hidden manifold structure in the data and to reach a
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Figure 7. Heat-map of the generalisation errors as a function of the number of
samples per data dimension n/p against the ratio of the latent and data dimension
d/p, for a classification task with square loss on labels yμ = sign

(
cμ · θ0

)
and data

xμ = erf
(
F�cμ

)
for the optimal values of the regularisation λ.

rather low generalisation error. The figure quantifies how the error deteriorates when
the ratio between the two dimensions d/p increases. Rather remarkably, for a low d/p
a good generalisation error is achieved even in the over-parametrised regime, where the
dimension is larger than the number of samples, p > n. In a sense, the square loss linear
classification is able to locate the low-dimensional subspace and find good generalisation
even in the over-parametrised regime as long as roughly d � n. The observed results are
in qualitative agreement with the results of learning with SGD in [14] where for very
low d/p good generalisation error was observed in the HMM, but a rather bad one for
d/p = 0.5.
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Note

After the completion of this work, the replica formula equation (2.4) for the generalisa-
tion error has been rigorously proven using Gordon’s Gaussian min-max inequalities in
[58]. Likewise, the Gaussian equivalence discussed in section 2.2 was rigorously proven
in [59, 60].

Appendix A. Definitions and notations

In this section we recall the models introduced in the main body of the article, and
introduce the notations used throughout the supplementary material.

A.1. The dataset

In this work we study a series of regression and classification tasks for a dataset
{xμ, yμ}nμ=1 with labels yμ ∈ R sampled identically from a generalised linear model :

yμ ∼ P 0
y

(
yμ
∣∣∣∣cμ · θ0

√
d

)
, (A.1)

where the output-channel P 0
y (·) is defined as:

P 0
y

(
yμ
∣∣∣∣cμ · θ0

√
d

)
=

∫
dξμP (ξμ) δ

(
yμ − f0

(
cμ · θ0

√
d

; ξμ
))

(A.2)

for some noise ξμ and for data points xμ ∈ R
p given by:

xμ = σ

(
1√
d

d∑
ρ=1

cμρfρ

)
. (A.3)

The vectors cμ ∈ R
d is assumed to be identically drawn from N (0, Id), and θ0 ∈ R

d

from a separable distribution Pθ. The family of vectors fρ ∈ R
p and the scalar function

σ :R→ R can be arbitrary.
Although our results are valid for the general model introduced above, the two

examples we will be exploring in this work are the noisy linear channel (for regression
tasks) and the deterministic sign channel (for classification tasks):

yμ =
cμ · θ0

√
d

+
√
Δξμ ⇔ P 0

y

(
y

∣∣∣∣cμ · θ0

√
d

)
=

n∏
μ=1

N
(
yμ;

cμ · θ0

√
d

, Δ

)
(A.4)

yμ = sign

(
cμ · θ0

√
d

)
⇔ P 0

y

(
y

∣∣∣∣cμ · θ0

√
d

)
=

n∏
μ=1

δ

(
yμ − sign

(
cμ · θ0

√
d

))
(A.5)

where ξμ ∼ N (0, 1) and Δ > 0.
This dataset can be regarded from two different perspectives.
Hidden manifold model: the dataset {xμ, yμ}μ=1,...,n is precisely the HMM intro-

duced in [14] to study the dynamics of online learning in a synthetic but structured
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dataset. From this perspective, although x μ lives in a p dimensional space, it is
parametrised by a latent d < p-dimensional subspace spanned by the basis {fρ}ρ=1,...,d

which is ‘hidden’ by the application of a scalar nonlinear function σ acting component-
wise. The labels yμ are then drawn from a generalised linear rule defined on the latent
d-dimensional space.

Random features model: the dataset {xμ, yμ}μ=1,...,n is tightly related to the
random features model studied in [20] as a random approximation for kernel ridge
regression. In this perspective, cμ ∈ R

d is regarded as a collection of d-dimensional data
points which are projected by a random feature matrix F = (fρ)

p
ρ=1 ∈ R

d×p into a higher
dimensional space, followed by a non-linearity σ. In the limit of infinite number of fea-
tures d, p→∞ with fixed ratio d/p, performing ridge regression of x μ is equivalent to
kernel ridge regression with a limiting kernel depending on the distribution of the feature
matrix F and on the non-linearity σ.

A.2. The task

In this work, we study the problem of learning the rule from equation (A.1) from the
dataset {(xμ, yμ)}μ=1,...,n introduced above with a generalised linear model :

ŷμ = f̂ (xμ · ŵ) (A.6)

where the weights w ∈ R
p are learned by minimising a loss function with a ridge

regularisation term:

ŵ = min
w

[
n∑

μ=1

�(yμ, xμ ·w) +
λ

2
‖w‖22

]
. (A.7)

for λ > 0.
It is worth stressing that our results hold for general �, f̂ and f 0—including non-

convex loss functions. However, for the purpose of the applications explored in this
manuscript, we will be mostly interested in the cases f̂(x) = f0(x) = x for regression

and f̂(x) = f0(x) = sign(x) for classification, and we will focus on the following two loss
functions:

�(yμ, xμ ·w) =

⎧⎨
⎩
1

2
(yμ − xμ ·w)2, square loss

log
(
1 + e−yμ(xμ·w)

)
, logistic loss.

(A.8)

Note that these loss functions are strictly convex. Therefore, for these losses, the
regularised optimisation problem in (A.7) has a unique solution.

Given a new pair (x new, ynew) drawn independently from the same distribution as
{(xμ, yμ)}nμ=1, we define the success of our fit through the generalisation error, defined
as:

εg =
1

4k
Exnew,ynew(y

new − ŷnew)2 (A.9)

where ŷnew = f̂(xnew · ŵ), and for convenience we choose k = 0 for the regression tasks
and k = 1 for the classification task, such that the generalisation error in this case counts
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misclassification. Note that for a classification problem, the generalisation error is just
one minus the classification error.

Similarly, we define the training loss on the dataset {xμ, yμ}nμ=1 as:

εt =
1

n
E{xμ,yμ}

[
n∑

μ=1

� (yμ, xμ · ŵ) +
λ

2
‖ŵ‖22

]
. (A.10)

Finally, all the results of this manuscript are derived in the high-dimensional limit , also
known as thermodynamic limit in the physics literature, in which we take p, d,n→∞
while keeping the ratios α = n/p, γ = d/p fixed.

Appendix B. Gaussian equivalence theorem

In this section we introduce the replicated Gaussian equivalence (rGE), a central result
we will need for our replica calculation of the generalisation error in section 2.1 of the
main body. The rGET is a stronger version of the GET that was introduced and proved
in [14]. Previously, particular cases of the GET were derived in the context of random
matrix theory [39, 40, 61, 62]. The Gaussian equivalence has also been stated and used
in [13, 32].

B.1. Gaussian equivalence theorem

Let F ∈ R
d×p be a fixed matrix, wa ∈ R

p, 1 � a � r be a family of vectors, θ0 ∈ R
d be a

fixed vector and σ :R→ R be a scalar function acting component-wise on vectors.
Let c ∈ R

d be a Gaussian vector N (0, Id). The GET is a statement about the (joint)
statistics of the following r + 1 random variables

λa =
1
√
p
wa · σ(u) ∈ R, ν =

1√
d
c · θ0 ∈ R (B.1)

in the asymptotic limit where d, p→∞ with fixed p/d and fixed r. For simplicity,
assume that σ(x) = −σ(−x) is an odd function. Further, suppose that in the previously
introduced limit the following two balance conditions hold:

Condition 1:

1√
d

d∑
ρ=1

FiρFjρ = O(1), (B.2)

for any ρ.
Condition 2:

Sa1,...,ak
ρ1,...,ρq

=
1
√
p

p∑
i=1

wa1
i wa2

i . . . wak
i Fiρ1Fiρ2 . . .Fiρq = O(1), (B.3)
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for any integers k � 0, q > 0, for any choice of indices ρ1, ρ2, . . . , ρq ∈ {1, . . . , d} all dis-
tinct from each other, and for any choice of indices a1, a2, . . . , ak ∈ {1, . . . , r}. Under the
aforementioned conditions, the following theorem holds:

Theorem 1. In the limit d, p→∞ with fixed p/d, the random variables {λa, ν} are
jointly normal, with zero mean and covariances:

E
[
λaλb
]
=

κ2



p
wa ·wb +

κ2
1

d
sa · sb, E

[
ν2
]
=

1

d
‖θ0‖2

E [λaν] =
κ1

d
sa · θ0 (B.4)

where:

sa =
1
√
p
Fwa ∈ R

d, a = 1, . . . , r (B.5)

and

κ0 = Ez [σ(z)] , κ1 = Ez [zσ(z)] , κ2

 = Ez

[
σ(z)2

]
− κ2

0 − κ2
1 (B.6)

where z ∼ N (0, 1).

B.2. Replicated Gaussian equivalence

Note that the GET holds for a fixed family {wa}ra=1 and matrix F ∈ R
d×p satisfying

the balance condition from equation (B.3). In the replica setting, we will need to apply
the GET under an average over r samples (referred to here as replicas) of the Gibbs
distribution μβ, introduced in equation (2.7) on the main. We therefore shall require the
assumption that the balance condition equation (B.3) holds for any sample of μβ. We
refer to this stronger version of the GET as the rGE. Although proving this result is out
of the scope of the present work, we check its self-consistency extensively with numerical
simulations.

Appendix C. Replica analysis

In this section we give a full derivation of the result in section 2 in the main manuscript
for the generalisation error of the problem defined in appendix A. Our derivation fol-
lows from a Gibbs formulation of the optimisation problem in equation (A.7) followed
by a replica analysis inspired by the toolbox of the statistical physics of disordered
systems.
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C.1. Gibbs formulation of problem

Given the dataset {xμ, yμ}nμ=1 defined in appendix A.1, we define the following Gibbs
measure over Rp:

μβ(w|{xμ, yμ}) = 1

Zβ

e−β[
∑n

μ=1 �(y
μ,xμ·w)+ λ

2 ‖w‖22] =
1

Zβ

n∏
μ=1

e−β�(yμ,xμ·w)

︸ ︷︷ ︸
≡Py(y|w·xμ)

p∏
i=1

e−
βλ
2 w2

i

︸ ︷︷ ︸
≡Pw(w)

(C.1)

for β > 0. When β →∞, the Gibbs measure peaks at the solution of the optimisation
problem in equation (A.7)—which, in the particular case of a strictly convex loss, is
unique. Note that in the second equality we defined the factorised distributions Py and
Pw, showing that μβ can be interpreted as a posterior distribution of w given the dataset
{xμ, yμ}, with Py and Pw being the likelihood and prior distributions respectively.

An exact calculation of μβ is intractable for large values of n, p and d. However, the
interest in μβ is that in the limit n, p, d→∞ with d/p and n/p fixed, the free energy
density associated to the Gibbs measure:

fβ = − lim
p→∞

1

p
E{xμ,yμ} log Zβ (C.2)

can be computed exactly using the replica method, and at β →∞ give us the optimal
overlaps:

qw =
1

p
E‖ŵ‖2 qx =

1

d
E‖Fŵ‖2 mx =

1

d
E
[
θ0 · Fŵ

]
(C.3)

that—as we will see—fully characterise the generalisation error defined in
equation (A.9).

C.2. Replica computation of the free energy density

The replica calculation of fβ is based on a large deviation principle for the free energy
density. Let

fβ({xμ, yμ}) = −1

p
log Zβ (C.4)

be the free energy density for one given sample of the problem, i.e. a fixed dataset
{xμ, yμ}nμ=1. We assume that the distribution P(f) of the free energy density, seen as
a random variable over different samples of the problem, satisfies a large deviation
principle, in the sense that, in the thermodynamic limit:

P (f) � epΦ(f), (C.5)

with Φ a concave function reaching its maximum at the free energy density f = fβ, with
Φ(fβ) = 0. This hypothesis includes the notion of self-averageness which states that the
free-energy density is the same for almost all samples in the thermodynamic limit.
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The value of fβ can be computed by computing the replicated partition function

E{xμ,yμ}Zr
β =

∫
df ep[Φ(f)−rf], (C.6)

and taking the limit

fβ = lim
r→0+

d

dr
lim
p→∞

[
−1

p

(
E{xμ,yμ}Zr

β

)]
. (C.7)

Although this procedure is not fully rigorous, experience from the statistical physics of
disordered systems shows that it gives exact results, and in fact the resulting expression
can be verified to match the numerical simulations.

Using the replica method we need to evaluate:

E{xμ,yμ}Zr
β =

∫
dθ0Pθ(θ

0)

∫ r∏
a=1

dwPw (w
a)

×
n∏

μ=1

∫
dyμEcμ

[
P 0
y

(
yμ
∣∣∣∣cμ · θ0

√
d

) r∏
a=1

Py

(
yμ|wa · σ

(
1√
d
F�cμ

))]
︸ ︷︷ ︸

(I)

(C.8)

where Pw and Py have been defined in (C.1). In order to compute this quantity, we
introduce, for each point μ in the database, the r+ 1 variables

νμ =
1√
d
cμ · θ0, (C.9)

λa
μ = wa · σ

(
1√
d
F�cμ

)
. (C.10)

Choosing cμ at random induces a joint distribution P (νμ,λ
a
μ). In the thermodynamic

limit p, d→∞ with fixed p/n, and for matrices F satisfying the balance condition in
equation (B.3), the rGE introduced in appendix B.2 tells us that, for a given μ, the
r+ 1 variables {νμ,λa

μ}ra=1 are Gaussian random values with zero mean and covariance
given by:

Σab =

(
ρ Ma

Ma Qab

)
∈ R

(r+1)×(r+1). (C.11)

The elements of the covariance matrixMa andQab are the rescaled version of the so-called
overlap parameters :

ρ =
1

d
‖θ0‖2, ma

s =
1

d
sa · θ0, qabs =

1

d
sa · sb, qabw =

1

p
wa ·wb, (C.12)

where sa = 1√
p
Fwa. They are thus given by:

Ma = κ1m
a
s , Qab = κ2


q
ab
w + κ2

1q
ab
s . (C.13)
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where κ1 = Ez [zσ(z)] and κ2

 = Ez [σ(z)

2]− κ2
1 as in equation (B.6). With this notation,

the asymptotic joint probability is simply written as:

P (νμ, {λa
μ}ra=1) =

1√
det (2πΣ)

e−
1
2

∑r
a,b=0 z

a
μ(Σ−1)

ab
zbμ (C.14)

with z0μ = νμ and zaμ = λa
μ for a = 1, . . . , r. The average over the replicated partition

function (C.8) therefore reads:

E{xμ,yμ}Zr
β =

∫
dθ0Pθ(θ

0)

∫ r∏
a=1

dwPw (w
a)

n∏
μ=1

∫
dyμ

×
∫

dνμP
0
y (y

μ|νμ)
∫ r∏

a=1

dλa
μP (νμ, {λa

μ})
r∏

a=1

Py

(
yμ|{λa

μ}
)
. (C.15)

C.2.1. Rewriting as a saddle-point problem. Note that after taking the average over
x, the integrals involved in the replicated partition function only couple through the
overlap parameters. It is therefore useful to introduce the following Dirac δ-functions to
unconstrain them, introducing the decomposition:

1 = d−(r+1)2
∫

dρδ
(
dρ− ‖θ0‖2

) ∫ r∏
a=1

dma
sδ
(
dma

s − sa · θ0
)

×
∫ ∏

1�a�b�r

dqabs δ
(
dqabs − sa · sb

) ∫ ∏
1�a�b�r

dqabw δ
(
pqabw −wa ·wb

)

= d−(r+1)2
∫

dρdρ̂

2π
e−iρ̂(dρ−‖θ0‖2)

∫ r∏
a=1

dma
s dm̂

a
s

2π
e−i
∑r

a=1 m̂
a
s(dma

s−sa·θ0) (C.16)

×
∫ ∏

1�a�b�r

dqabs dq̂abs
2π

e
−i

∑
1�a�b�r

q̂abs (dqabs −sa·sb)
∫ ∏

1�a�b�r

dqabw q̂abw
2π

e
−i

∑
1�a�b�r

q̂abw (pqabw −wa·wb)
.

Introducing the above in equation (C.15) and exchanging the integration order allows
to factorise the integrals over the d, p, n dimensions and rewrite:

E{xμ,yμ}Zr
β =

∫
dρdρ̂

2π

∫ r∏
a=1

dma
s dm̂

a
s

2π

∫ ∏
1�a�b�r

dqabs dq̂abs
2π

dqabw dq̂abw
2π

epΦ
(r)

(C.17)

where the integrals over the variables ma
s , q

ab
s and qabw run over R, while those over m̂a

s,

q̂abs and q̂abw run over iR. The function Φ(r), a function of all the overlap parameters, is
given by:

Φ(r) = −γρρ̂− γ

r∑
a=1

ma
sm̂

a
s −

∑
1�a�b�r

(
γqabs q̂abs + qwq̂w

)
+ αΨ(r)

y

(
ρ,ma

s, q
ab
s , qabw

)
+Ψ(r)

w

(
ρ̂, m̂a

s , q̂
ab
s , q̂

ab
w

)
(C.18)
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where we recall that α = n/p, γ = d/p, and we have introduced:

Ψ(r)
y = log

∫
dy

∫
dνP 0

y (y|ν)
∫ r∏

a=1

[dλaPy (y|λa)]P (ν, {λa})

Ψ(r)
w =

1

p
log

∫
dθ0Pθ(θ

0)e−ρ̂‖θ0‖2
∫ r∏

a=1

dwa Pw(w
a)e

∑
1�a�b�r

[q̂abw wa·wb+q̂abs sa·sb]−
∑r

a=1 m̂
a
ss

a·θ0

.

(C.19)

Note that sa = 1√
p
Fwa is a function of wa, and must be kept under the wa integral.

In the thermodynamic limit where p→∞ with n/p and d/p fixed, the integral in
equation (C.17) concentrates around the values of the overlap parameters that extremize

Φ(r), and therefore

f = − lim
r→0+

1

r
extr

{ρ,ρ̂,ma
s ,m̂

a
s}

{qabs ,q̂abs ,qabw ,q̂abw }

Φ(r). (C.20)

C.2.2. Replica symmetric ansatz. In order to proceed with the r→ 0+ limit, we restrict
the extremization above to the following replica symmetric ansatz:

ma
s = ms m̂a = m̂s for a = 1, . . . , r

qaas/w = rs/w q̂aas/w = −1

2
r̂s/w for a = 1, . . . , r

qabs/w = qs/w q̂abs/w = q̂s/w for 1 � a < b � r.

(C.21)

Note that, in the particular case of a convex loss function with λ > 0, the replica
symmetric ansatz is justified: the problem only admitting one solution, it a fortiori
coincides with the replica symmetric one. For non-convex losses, solutions that are not
replica symmetric (also known as replica symmetry breaking) are possible, and the energy
landscape of the free energy needs to be carefully analysed. In the practical applications
explored in this manuscript, we focus on convex losses with ridge regularisation, and
therefore the replica symmetric assumption is fully justified.

Before proceeding with the limit in equation (C.20), we need to verify that the above
ansatz is well defined—in other words, that we have not introduced a spurious order
one term in Φ that would diverge. This means we need to check that lim

r→0+
Φ = 0.

First, with a bit of algebra one can check that, within our replica symmetric ansatz:

lim
r→0+

Ψ(r)
y = 0. (C.22)

Therefore,

lim
r→0+

Φ(r) = −γρρ̂+ γ log

∫
R

dθ0Pθ

(
θ0
)
eρ̂θ

02

(C.23)

https://doi.org/10.1088/1742-5468/ac3ae6 24

https://doi.org/10.1088/1742-5468/ac3ae6


J.S
tat.

M
ech.

(2021)
124013

Generalisation error in learning with random features and the hidden manifold model:

where we have used the fact that Pθ is a factorised distribution to take the p→∞ limit.
In order for this limit to be 0, we need that ρ̂ = 0, which also fixes ρ to be a constant
given by the second moment of θ0:

ρ = Eθ0

[
θ0

2
]
. (C.24)

We now proceed with the limit in equation (C.20). Let us look first at Ψy. The non-trivial
limit comes from the fact that det Σ and Σ−1 are non-trivial functions of r. It is not
hard to see, however, that Σ−1 itself has replica symmetric structure, with components
given by:

(
Σ−1
)00

= ρ̃ =
R + (r − 1)Q

ρ(R+ (r − 1)Q)− rM 2
,

(
Σ−1
)aa

= R̃ =
ρR+ (r − 2)ρQ− (r − 1)M 2

(R−Q)(ρR+ (r − 1)ρQ− rM 2)(
Σ−1
)a0

= M̃ =
M

rM 2 − ρR− (r − 1)ρQ
,

(
Σ−1
)ab

= Q̃ =
M 2 − ρQ

(R−Q)(ρR+ (r − 1)ρQ− rM 2)

(C.25)

where M, Q and R are the rescaled overlap parameters in the replica symmetric ansatz,
that is:

M = κ1ms, Q = κ2

qw + κ2

1qs, R = κ2

rw + κ2

1rs. (C.26)

This allows us to write:

Ψ(r)
y = log

∫
dy

∫
dνP 0

y (y|ν) e−
ρ̃
2 ν

2

∫ r∏
a=1

dλaPy (y|λa) e−
Q̃
2

∑n
a,b=1 λ

aλb− R̃−Q̃
2

∑r
a=1 (λ

a)2−M̃ν
∑n

a=1 λ
a

− 1

2
log det (2πΣ) . (C.27)

In order to completely factor the integral above in the replica space, we use the
Hubbard–Stratonovich transformation:

e−
Q̃
2

∑r
a,b=1 λ

aλb = Eξ e
√

−Q̃ξ
∑r

a=1 λ
a

(C.28)

for ξ ∼ N (0, 1), such that

Ψ(r)
y = log

∫
dy

∫
dνP 0

y (y|ν) e−
ρ̃
2 ν

2

Eξ

[∫
dλPy (y|λ) e−

R̃−Q̃
2 λ2+

(√
−Q̃ξ−M̃ν

)
λ

]r
− 1

2
log det (2πΣ) . (C.29)
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Taking into account the r dependence of the inverse elements and of the determinant,
we can take the limit to get:

lim
r→0+

1

r
Ψ(r)

y = Eξ

∫
R

dy

∫
dν√
2πρ

P 0
y (y|ν) e−

1
2ρ ν

2

× log

∫
dλ√
2π

Py (y|λ) e
− 1

2
λ2

R−Q+

(√
Q−M2/ρ
R−Q ξ+ M/ρ

R−Qν

)
λ

− 1

2
log (R−Q)− 1

2

Q

R−Q
. (C.30)

Finally, making a change of variables and defining:

Z·/0
y (y;ω,V ) =

∫
dx√
2πV

e−
1
2V (x−ω)2P ·/0

y (y|x) (C.31)

allows us to rewrite the limit of Ψy—which abusing notation we still denote Ψy—as:

Ψy = Eξ

[∫
R

dyZ0
y

(
y ;

M√
Q
ξ, ρ− M 2

Q

)
log Zy

(
y ;
√

Qξ,R−Q
)]

. (C.32)

One can follow a very similar approach for the limit of Ψw, although in this case the
limit is much simpler, since there is no r dependence on the hat variables. The limit can
be written as:

Ψw = lim
p→∞

1

p
Eξ,η,θ0 log

∫
Rd

dsPs(s; η)e
− V̂ s

2 ‖s‖2+(
√
q̂sξ1d+m̂sθ

0)
�
s (C.33)

for ξ, η ∼ N (0, 1), and we have defined:

Ps(s ; η) =

∫
Rp

dwPw(w)e−
V̂ w
2 ‖w‖2+

√
q̂wη1

�
p wδ

(
s− 1

√
p
Fw

)
(C.34)

and we have defined the shorthands V̂ w = r̂w + q̂w and V̂ s = r̂s + q̂s.

C.2.3. Summary of the replica symmetric free energy density. Summarising the
calculation above, the replica symmetric free energy density reads:

f = extr

{
−γ

2
rsr̂s −

γ

2
qsq̂s + γmsm̂s −

1

2
rwr̂w − 1

2
qwq̂w

− αΨy(R,Q,M)−Ψw (r̂s, q̂s, m̂s, r̂w, q̂w)

}
(C.35)

with α = n
p
, γ = d

p
, and:

Q = κ2
1qs + κ2


qw, R = κ2
1rs + κ2


rw M = κ1ms. (C.36)
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The so-called potentials (Ψy, Ψw) are given by:

Ψw = lim
p→∞

1

p
Eξ,η,θ0 log

∫
Rd

dsPs(s ; η)e
− V̂ s

2 ‖s‖2+(
√
q̂sξ1d+m̂sθ

0)
�
s (C.37)

Ψy = Eξ

[∫
R

dyZ0
y

(
y ;

M√
Q
ξ, ρ− M 2

Q

)
logZy

(
y ;
√
Qξ,R−Q

)]
(C.38)

where:

Ps(s ; η) =

∫
Rp

dwPw(w)e−
V̂ w
2 ‖w‖2+

√
q̂wη1

�
p wδ

(
s− 1

√
p
Fw

)

Z·/0
y (y ;ω,V ) =

∫
dx√
2πV

e−
1
2V (x−ω)2P ·/0

y (y|x) .
(C.39)

C.3. Evaluating Ψw for ridge regularisation and Gaussian prior

Note that as long as the limit in Ψw is well defined, the equation (C.35) holds for any
Pθ and Pw. However, as discussed in appendix A.1, we are interested in θ0 ∼ N (0, Id)
and ridge regularisation so that Pw = exp

(
−βλ

2
‖w‖2

)
. In this case, we simply have:

P (s ; η) =
e

p
2

η2q̂w
βλ+V̂ w

(βλ+ V̂ w)p/2
N (s ;μ, Σ) (C.40)

with:

μ =

√
q̂wη

βλ+ V̂ w

F1p√
p

∈ R
d, Σ =

1

βλ+ V̂ w

FF�

p
∈ R

d×d. (C.41)

Therefore the argument of the logarithm in Ψw is just another Gaussian integral we can
do explicitly:

Es e
− V̂ s

2 ‖s‖2+b�s =
e

p
2

η2 q̂w
βλ+V̂ w(

βλ+ V̂ w

)p/2 e−
1
2μ

�Σ−1μ+ 1
2V̂ s

‖b+Σ−1μ‖2√
det
(
Id + V̂ sΣ

) e
− 1

2V̂ s
(b+Σ−1μ)

�
(Id+V̂ sΣ)

−1
(b+Σ−1μ)

(C.42)

where we have defined the shorthand b =
(√

q̂sξ1d + m̂sθ
0
)
∈ R

d. Inserting back in
equation (C.37) and taking the log,

Ψw = lim
p→∞

Eθ0,ξ,η

[
1

2

η2q̂w

βλ+ V̂ w

− 1

2
log
(
βλ+ V̂ w

)
− 1

2p
tr log

(
Id + V̂ sΣ

)
− 1

2p
μ�Σ−1μ

+
1

2pV̂ s

‖b+ Σ−1μ‖2 − 1

2pV̂ s

(
b+ Σ−1μ

)�(
Id + V̂ sΣ

)−1 (
b+Σ−1μ

)]
. (C.43)
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The averages over η, ξ, θ0 simplify this expression considerably:

Eη

[
μ�Σ−1μ

]
=

1

p

q̂w

(βλ+ V̂ w)2
(F1p)

�
Σ−1 (F1p) = d

q̂w

βλ+ V̂ w

Eη,ξ,θ0‖b+Σ−1μ‖2 = d(m̂2
s + q̂s) +

1

p
q̂w tr
(
FF�)−1

Eη,ξ,θ0
(
b+ Σ−1μ

)�(
Id + V̂ sΣ

)−1 (
b+ Σ−1μ

)
=

1

p
q̂w tr

[
FF�
(
Id + V̂ sΣ

)−1
]

+ (m̂2
s + q̂s)tr

(
Id + V̂ sΣ

)−1

.

(C.44)

Finally, we can combine the two terms:

tr
FF�

p
+ tr

[
FF�

p

(
Id + V̂ sΣ

)−1
]
=

V̂ s

βλ+ V̂ w

tr
(
Id + V̂ sΣ

)−1

, (C.45)

and write:

Ψw = −1

2
log
(
βλ+ V̂ w

)
− 1

2
lim
p→∞

1

p
tr log

(
Id +

V̂ s

βλ+ V̂ w

FF�

p

)

+
m̂2

s + q̂s

2V̂ s

⎡
⎣γ − lim

p→∞

1

p
tr

(
Id +

V̂ s

βλ+ V̂ w

FF�

p

)−1
⎤
⎦

+
1

2

q̂w

βλ+ V̂ w

⎡
⎣1− γ + lim

p→∞

1

p
tr

(
Id +

V̂ s

βλ+ V̂ w

FF�

p

)−1
⎤
⎦ . (C.46)

Note that Ψ only depends on the spectral properties of the matrix 1
p
FF� ∈ R

d×d, and

more specifically on its resolvent in the asymptotic limit. A case of particular interest
is when FF� has a well defined spectral measure μ on the p, d→∞ limit with γ = d/p
fixed. In that case, we can write:

lim
p→∞

1

p
tr

(
Id +

V̂ s

βλ+ V̂ w

FF�

p

)−1

= γ
βλ+ V̂ w

V̂ s

gμ

(
−βλ+ V̂ w

V̂ s

)
(C.47)

where gμ is the Stieltjes transform of μ, defined by:

gμ(z) =

∫
dμ(t)

t− z
. (C.48)

Similarly, the logarithm term can be expressed as the logarithm potential of μ—although
for the purpose of evaluating the generalisation error we will only need the derivative of
these terms, and therefore only the Stieltjes transforms and its derivative.
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In what follows, we will mostly focus on two kinds of projection matrices F:
Gaussian projections: for F ∈ R

d×p a random matrix with i.i.d. Gaussian entries
with zero mean and variance 1, μ is given by the well-known Marchenko–Pastur law,
and the corresponding Stieltjes transform is given by:

gμ(z) =
1− z − γ −

√
(z − 1− γ)2 − 4γ

2zγ
, z < 0. (C.49)

Orthogonally invariant projection: for F = U�DV with U ∈ R
d×d and V ∈ R

p×p

two orthogonal matrices and D ∈ R
d×p a rectangular diagonal matrix of rank min(d, p)

and diagonal entries dk, the empirical spectral density μp is given by:

μd(λ) =
1

d

min(r,p)∑
k=1

δ(λ− λk) =

(
1−min

(
1,

1

γ

))
δ(λ) +

1

p

min(d,p)∑
k=1

δ(λ− d2k). (C.50)

Therefore the choice of diagonal elements dk fully characterise the spectrum of FF�. In
order for the orthogonally invariant case to be comparable to the Gaussian case, we fix
dk in such a way that the projected vector Fw is of the same order in both cases, i.e.

d2k =

{
γ for γ > 1

1 for γ � 1
. (C.51)

With this choice, the Stieltjes transform of μ reads:

gμ(z) =

⎧⎪⎨
⎪⎩
−
(
1− 1

γ

)
1

z
+

1

γ

1

γ − z
for γ > 1

1

1− z
for γ � 1.

(C.52)

C.4. Gaussian equivalent model

It is interesting to note that the average over the dataset {xμ, yμ}nμ=1 of the replicated
partition function Zr

β in equation (C.15), obtained after the application of the GET, is
identical to the replicated partition function of the same task over the following dual
dataset {x̃μ, yμ}nμ=1, where:

x̃μ = κ01p + κ1
1√
d
F�cμ + κ
z

μ (C.53)

where zμ ∼ N (0, Ip), and the labels yμ ∼ Py are the same. Indeed, calling Z̃r
β the

replicated partition function for this equivalent dataset, and considering κ0 we have:

E{x̃μ,yμ}Z̃r
β =

∫
dθ0Pθ(θ

0)

∫ r∏
a=1

dwPw (wa)×

×
n∏

μ=1

∫
dyμEcμ,zμ

[
P 0
y

(
yμ
∣∣∣∣cμ · θ0

√
d

) r∏
a=1

Py

(
yμ|wa ·

(
κ1√
d
F�cμ + κ
z

μ

))]
︸ ︷︷ ︸

(I)

. (C.54)
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Rewriting (I):

(I) =

∫
dνμP

0
y (y

μ|νμ)
∫ r∏

a=1

dλa
μPy

(
yμ|λa

μ

)
×

× Ecμ,zμ

[
δ

(
νμ −

1√
d
cμ · θ0

) r∏
a=1

δ

(
λa
μ −

κ1√
d
wa · F�cμ + κ
w

a · zμ
)]

︸ ︷︷ ︸
≡P (ν,λ)

. (C.55)

It is easy to show that taking (κ0, κ1) to match those from equation (B.6), the variables(
νμ, {λa

μ}
)
are jointly Gaussian variables with correlation matrix given by Σ exactly as

in equation (C.11). This establishes the equivalence

Z̃r
β = Zr

β (C.56)

from which follows the equivalence between the asymptotic generalisation and test error
of these two models.

Appendix D. Saddle-point equations and the generalisation error

The upshot of the replica analysis is to exchange the p-dimensional minimisation problem
for w ∈ R

p in equation (A.7) for a one-dimensional minimisation problem for the param-
eters {rs, qs,ms, rw, qw} and their conjugate in equation (C.35). In particular, note that by
construction at the limit β →∞ the solution {q
s ,m


s, q


w} of equation (C.35) corresponds

to:

q
w =
1

p
‖ŵ‖2 q
s =

1

d
‖Fŵ‖2 m


s =
1

d
(Fŵ) · θ0 (D.1)

where ŵ is the solution of the solution of equation (A.7). As we will see, both the
generalisation error defined in equation (A.9) and the training loss can be expressed
entirely in terms of these overlap parameters.

D.1. Generalisation error as a function of the overlaps

Let {xnew, ynew} be a new sample independently drawn from the same distribution of our
data {xμ, yμ}nμ=1. The generalisation error can then be written as:

εg =
1

4k
Exnew,ynew

(
ynew − f̂

(
σ
(
F�cnew

)
· ŵ
))2

=
1

4k

∫
dy

∫
dνP 0

y (y|ν)
∫

dλ(y − f̂(λ))2Ecnew
[
δ
(
ν − cnew · θ0

)
δ
(
λ− σ

(
F�cnew

)
· ŵ
)]

(D.2)

where for convenience, we normalise k = 0 for the regression task and k = 1 for the clas-
sification task. Again, we apply the GET from appendix B to write the joint distribution
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over {ν,λ}:

P (ν,λ) =
1√

det (2πΣ)
e−

1
2 z

�Σ−1z, (D.3)

where z = (ν,λ)� ∈ R
2 and Σ is given by

Σ =

(
ρ M


M
 Q


)
, ρ =

1

d
‖θ0‖2 M
 =

κ1

d
(Fŵ) · θ0, Q
 =

κ2
1

d
‖Fŵ‖2 + κ2




p
‖ŵ‖2.

(D.4)

Inserting in equation (D.2) gives the desired representation of the generalisation error
in terms of the optimal overlap parameters:

εg =
1

4k

∫
dy

∫
dν P 0

y (y|ν)
∫

dλP (ν,λ)(y − f̂(λ))2. (D.5)

For linear labels y = c · θ0 in the regression problem, we simply have:

εg = ρ+Q
 − 2M
 (D.6)

while for the corresponding classification problem with y = sign
(
c · θ0

)
:

εg =
1

π
cos−1

(
M


√
Q


)
(D.7)

which, as expected, only depend on the angle between Fŵ and θ0.

D.2. Training loss

Similarly to the generalisation error, the asymptotic of the training loss, defined for the
training data {xμ, yμ}nμ=1 as:

εt =
1

n
E{xμ,yμ}

[
n∑

μ=1

� (yμ, xμ · ŵ) +
λ

2
‖ŵ‖22

]
, (D.8)

can also be written only in terms of the overlap parameters. Indeed, it is closely related
to the free energy density defined in equation (C.2). A close inspection on this definition
tells us that:

lim
n→∞

εt = lim
β→∞

∂βfβ. (D.9)

Taking the derivative of the free energy with respect to the parameter β and recalling
that p = αn, we can then get:

lim
n→∞

εt =
λ

2α
lim
p→∞

E{xμ,yμ}

[
‖ŵ‖22
p

]
− lim

β→∞
∂βΨy. (D.10)
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For what concerns the contribution of the regulariser, we simply note that in the
limit of p→∞, the average concentrates around the overlap parameter q
w. Instead, for
what concerns the contribution of the loss function, we can start by explicitly taking
the derivative with respect to β of Ψy in equation (C.32), i.e.:

∂βΨy = −Eξ

[∫
R

dy
Z0

y (y,ω


0)

Zy (y,ω


1)

∫
dx√
2πV 


1

e
− 1

2V 

1
(x−ω


1)
2−β�(y,x)

� (y, x)

]
, (D.11)

with Z·/0
y defined in equation (C.31). At this point, as explained more in details in

appendix D.4, we can notice that in the limit of β →∞, it holds:

lim
β→∞

∂β Ψy = −Eξ

[∫
R

dyZ0
y (y,ω



0) � (y, η (y,ω



1))

]
, (D.12)

with η (y,ω

1) given in equation (D.21). Combining the two results together we then

finally get:

lim
n→∞

εt →
λ

2α
q
w + Eξ

[∫
R

dyZ0
y (y,ω



0) � (y, η (y,ω



1))

]
. (D.13)

D.3. Solving for the overlaps

As we showed above, both the generalisation error and the training loss are completely
determined by the β →∞ solution of the extremization problem in equation (C.35). For
strictly convex losses �, there is a unique solution to this problem, that can be found by
considering the derivatives of the replica potential. This leads to a set of self-consistent
saddle-point equations that can be solved iteratively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r̂s = −2
ακ2

1

γ
∂rsΨy (R,Q,M)

q̂s = −2
ακ2

1

γ
∂qsΨy (R,Q,M)

m̂s =
ακ1

γ
∂ms

Ψy (R,Q,M)

r̂w = −2ακ2

∂rwΨy (R,Q,M)

q̂w = −2ακ2

∂qwΨy (R,Q,M)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rs = −2

γ
∂r̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

qs = −2

γ
∂q̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

ms =
1

γ
∂m̂sΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

rw = −2∂r̂wΨw (r̂s, q̂s, m̂s, r̂w, q̂w)

qw = −2∂q̂wΨw (r̂s, q̂s, m̂s, r̂w, q̂w) .

(D.14)
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In the case of an F with well-defined spectral density μ, we can be more explicit and
write:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vs =
1

V̂ s

(1− zgμ(−z))

qs =
m̂2

s + q̂s

V̂ 2
s

[
1− 2zgμ(−z) + z2g′μ(−z)

]
− q̂w

(βλ+ V̂ w)V̂ s

[
−zgμ(−z) + z2g′μ(−z)

]
ms =

m̂s

V̂ s

(1− zgμ(−z))

Vw =
γ

βλ+ V̂ w

[
1

γ
− 1 + zgμ(−z)

]
qw = γ

q̂w

(βλ+ V̂ w)2

[
1

γ
− 1 + z2g′μ(−z)

]
− γ

m̂2
s + q̂s

(βλ+ V̂ w)V̂ s

[
−zgμ(−z) + z2g′μ(−z)

]
(D.15)

where:

Vs/w = rs/w − qr/w V̂ s/w = r̂s/w + q̂r/w z =
βλ+ V̂ w

V̂ s

. (D.16)

We can also simplify slightly the derivatives of Ψy without loosing generality by applying
Stein’s lemma, yielding:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂ s = −ακ2
1

γ
Eξ

[∫
R

dyZ0
y

(
y;

M√
Q
ξ, ρ− M 2

Q

)
∂ωfy

(
y;
√

Qξ,R−Q
)]

q̂s =
ακ2

1

γ
Eξ

[∫
R

dyZ0
y

(
y;

M√
Q
ξ, ρ− M 2

Q

)
fy

(
y;
√

Qξ,R−Q
)2]

m̂s =
ακ1

γ
Eξ

[∫
R

dyZ0
y

(
y;

M√
Q
ξ, ρ− M 2

Q

)
f0y

(
y;

M√
Q
ξ, ρ− M 2

Q

)
fy

(
y;
√
Qξ,R−Q

)]

V̂ w = −ακ2

Eξ

[∫
R

dyZ0
y

(
y;

M√
Q
ξ, ρ− M 2

Q

)
∂ωfy

(
y;
√

Qξ,R−Q
)]

q̂w = ακ2

Eξ

[∫
R

dyZ0
y

(
y;

M√
Q
ξ, ρ− M 2

Q

)
fy

(
y;
√

Qξ,R−Q
)2]

(D.17)

with f
·/0
y (y ;ω,V ) = ∂ω log Z·/0

y . For a given choice of spectral density μ (corresponding
to a choice of projection F), label rule P 0

y and loss function �, the auxiliary func-

tions (Z0,Z) can be computed, and from them the right-hand side of the update
equations above. The equations can then be iterated until the convergence to the fixed
point minimising the free energy at fixed (α, γ, β). For convex losses and β →∞, the
fixed point of these equations gives the overlap corresponding to the estimator solving
equation (A.7).

D.4. Taking β→∞ explicitly

Although the saddle-point equations above can be iterated explicitly for any β > 0, it
is envisageable to take the limit β →∞ explicitly, since β is an auxiliary parameter we
introduced, and that was not present in the original problem defined in equation (A.7).
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Since the overlap parameters depend on β only implicitly through Zy and its
derivatives, we proceed with the following ansatz for their β →∞ scaling:

V ∞
s/w = βVs/w q∞s/w = qs/w m∞

s = ms

V̂ ∞
s/w =

1

β
V̂ s/w q̂∞s/w =

1

β2
q̂s/w m̂∞

s = m̂s.
(D.18)

This ansatz can be motivated as follows. Recall that:

Zy(y ;ω,V ) =

∫
dx√
2πV

e
−β
[
(x−ω)2

2βV +�(x,y)
]
=

∫
dx√
2πV

e−βL(x). (D.19)

Therefore, letting V = μ2
1Vs + μ2


Vw scale as V∞ = βV, at β →∞:

Zy(y ;ω,V ) =
β→∞

e−βL(η) (D.20)

where:

η(y ;ω,V ) = arg min
x∈R

[
(x− ω)2

2V ∞ + �(x, y)

]
. (D.21)

For convex losses � with λ > 0, this one-dimensional minimisation problem has a unique
solution that can be easily evaluated. Intuitively, this ansatz translates the fact the
variance of our estimator goes to zero as a power law at β →∞, meaning the Gibbs
measure concentrates around the solution of the optimisation problem equation (A.7).
The other scalings in equation (D.19) follow from analysing the dependence of the
saddle-point equations in V.

The ansatz in equation (D.18) allow us to take the β →∞ and rewrite the saddle-
point equations as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̂ ∞
s =

αμ2
1

γ
Eξ

[∫
R

dyZ0
y

(
1− ∂ωη

V ∞

)]

q̂∞s =
αμ2

1

γ
Eξ

[∫
R

dyZ0
y

(
η − ω

V ∞

)2
]

m̂∞
s =

αμ1

γ
Eξ

[∫
R

dy∂ωZ0
y

(
η − ω

V ∞

)]

V̂ ∞
w = αμ2


Eξ

[∫
R

dyZ0
y

(
1− ∂ωη

V ∞

)]

q̂∞w = αμ2

Eξ

[∫
R

dyZ0
y

(
η − ω

V ∞

)2
]

(D.22)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V ∞
s =

1

V̂ ∞
s

(1− zgμ(−z))

q∞s =
(m̂∞

s )
2 + q̂∞s(

V̂ ∞
s

)2 [
1−2zgμ(−z)+z2g′μ(−z)

]
− q̂∞w

(λ+ V̂ w)V̂ s

[
−zgμ(−z)+z2g′μ(−z)

]
m∞

s =
m̂∞

s

V̂ ∞
s

(1− zgμ(−z))

V ∞
w =

γ

λ+ V̂ ∞
w

[
1

γ
− 1 + zgμ(−z)

]
q∞w = γ

q̂∞w
(λ+ V̂ ∞

w )2

[
1

γ
− 1 + z2g′μ(−z)

]
− γ

(m̂∞
s )2 + q̂∞s

(λ+ V̂ ∞
w )V̂ ∞

s

[
−zgμ(−z) + z2g′μ(−z)

]
(D.23)

where Z0
y (y ;ω,V ) is always evaluated at (ω,V ) =

(
M∞
√
Q∞ ξ, ρ− M∞2

Q∞

)
, η(y ;ω,V) at

(ω,V ) =
(√

Q∞ξ,V ∞) and z = λ+V̂∞
w

V̂∞
s

.

D.5. Examples

In this section we exemplify our general result in two particular cases for which the
integrals in the right-hand side of equation (D.22) can be analytically performed: the
ridge regression task with linear labels and a classification problem with square loss and
ridge regularisation term. The former example appears in figure 4 (left) and the later in
figure 2 (blue curve), figures 6 and 7 of the main.

Ridge regression with linear labels: consider the task of doing ridge regression
�(y, x) = 1

2
(y − x)2, λ > 0 on the linear patterns y = 1√

d
Cθ0 +

√
Δz, with z ∼ N (0, In)

and θ
 ∼ N (0, Id). In this case, we have:

η(y ;ω,V ) =
ω + yV

1 + V
(D.24)

and the saddle-point equations for the hat overlap read:

V̂ ∞
s =

α

γ

κ2
1

1 + V ∞ q̂0s =
ακ2

1

γ

1 + Δ+Q∞ − 2M∞

(1 + V ∞)2
m̂s =

α

γ

κ1

1 + V ∞

V̂ ∞
w =

ακ2



1 + V ∞ q̂∞w = ακ2



1 + Δ+Q∞ − 2M∞

(1 + V ∞)2
. (D.25)

This particular example corresponds precisely to the setting studied in [32].
Classification with square loss and ridge regularisation: consider a classifica-

tion task with square loss �(y, x) = 1
2
(y − x)2 and labels generated as y = sign

(
1√
d
Cθ0
)
,
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Algorithm 1. Generating dataset {xμ, yμ}nμ=1.

Input: integer d, parameters α, γ ∈ R+, matrix F ∈ R
d×p,

vector θ0 ∈ R
d non-linear functions σ, f0 :R→ R

Assign p← �d/γ�, n← �αp�
Draw C ∈ R

n×d with entries cμρ ∼ N (0, 1) i.i.d.

Assign y← f0
(
Cθ0
)
∈ R

n component-wise
Assign X← σ (CF) ∈ R

n×p component-wise
Return: X,y

with θ0 ∼ N (0, Id). Then the saddle-point equations are simply:

V̂ ∞
s =

α

γ

κ2
1

1 + V ∞ q̂∞s =
α

γ
κ2
1

1 +Q∞ − 2
√
2M∞
√
π

(1 + V ∞)2
m̂s =

α

γ

√
2

π

κ1

1 + V ∞

V̂ ∞
w =

ακ2



1 + V ∞ q̂∞w = ακ2



1 +Q∞ − 2M∞
√
π

(1 + V ∞)
2 (D.26)

Appendix E. Numerical simulations

In this section, we provide more details on how the numerical simulations in the main
manuscript have been performed.

First, the dataset {xμ, yμ}nμ=1 is generated according to the procedure described in
section 1.1 of the main, which we summarise here for convenience in algorithm 1:

In all the examples from the main, we have drawn θ0 ∼ N (0, Id). For the regression
task in figure 4 we have taken f 0(x) = x, while in the remaining classification tasks
f 0(x) = sign(x). For Gaussian projections, the components of F are drawn from N (0, 1)
i.i.d., and in for the random orthogonal projections we draw two orthogonal matrices
U ∈ R

d×d, V ∈ R
p×p from the Haar measure and we let F = U�DV with D ∈ R

d×p a
diagonal matrix with diagonal entries dk = max(

√
γ, 1), k = 1, . . . , min(n, p).

Given this dataset, the aim is to infer the configuration ŵ, minimising a given loss
function with a ridge regularisation term. In the following, we describe how to accomplish
this task for both square and logistic loss.

Square loss: in this case, the goal is to solve the following optimisation problem:

ŵ = min
w

[
1

2

n∑
μ=1

(yμ − xμ ·w)2 +
λ

2
‖w‖22

]
(E.1)

which has a simple closed-form solution given in terms of the Moore–Penrose inverse:

ŵ =

⎧⎨
⎩
(
X�X+ λIp

)−1
X�y, if n > p

X�(XXT + λIn
)−1

y, if p > n.
(E.2)
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Algorithm 2. Averaged generalisation error.

Input: integer d, parameters α, γ,λ ∈ R+, non-linear functions σ, f
0, f̂ and integer nseeds

Assign p← �d/γ�, n← �αp�
Initialise Eg = 0
for i = 1 to nseeds do
Draw F, θ0

Assign X,y ← algorithm 1
Compute ŵ from equations (E.1) or (E.3) with X,y and λ
Generate new dataset Xnew,y new from algorithm 1

Assign Eg ← Eg +
1

4kn
‖ynew − f̂ (Xnewŵ) ‖22

end for

Return: εg =
Eg

nseeds

Logistic loss: in this case, the goal is to solve the following optimisation problem:

ŵ = min
w

[
n∑

μ=1

log
(
1 + e−yμ(xμ·w)

)
+

λ

2
‖w‖22

]
. (E.3)

To solve the above, we use the GD on the regularised loss. In our simulations,
we took advantage of Scikit-learn 0.22.1, an out-of-the-box open source library
for machine learning tasks in Python [63, 64]. The library provides the class
sklearn.linear –LogisticRegression , which implements GD with logistic loss and a fur-
ther �2-regularisation, if the parameter ‘penalty’ is set to ‘l2’. GD stops either if the
following condition is satisfied:

max{(∇w)i|i = 1, . . . , p} � tol, (E.4)

with ∇w being the gradient, or if a maximum number of iterations is reached. We set
tol to 10−4 and the maximum number of iterations to 104.

In both cases described above, the algorithm returns the estimator ŵ ∈ R
p, from

which all the quantities of interest can be evaluated. For instance, the generalisation
error can be simply computed by drawing a new and independent sample {Xnew, ynew}
using algorithm 1 with the same inputs F, σ, f 0 and θ0 and computing:

εg(n, p, d) =
1

4kn
‖ynew − f̂ (Xnewŵ) ‖22 (E.5)

with f̂(x) = x for the regression task and f̂(x) = sign(x) for the classification task.
The procedure outlined above is repeated nseeds times, for different and independent

draws of the random quantities F, θ0, and a simple mean is taken in order to obtain
the ensemble average of the different quantities. In most of the examples from the
main, we found that nseeds = 30 was enough to obtain a very good agreement with
the analytical prediction from the replica analysis. The full pipeline for computing the
averaged generalisation error is exemplified in algorithm 2.
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