
Journal of Statistical Mechanics:
Theory and Experiment

PAPER

When do neural networks outperform kernel
methods?*

To cite this article: Behrooz Ghorbani et al J. Stat. Mech. (2021) 124009

View the article online for updates and enhancements.

You may also like
A posterior contraction for Bayesian
inverse problems in Banach spaces
De-Han Chen, Jingzhi Li and Ye Zhang

-

Parameter sampling capabilities of
sequential and simultaneous data
assimilation: II. Statistical analysis of
numerical results
Kristian Fossum and Trond Mannseth

-

A novel manifold–manifold distance index
applied to looseness state assessment of
viscoelastic sandwich structures
Chuang Sun, Zhousuo Zhang, Ting Guo et
al.

-

This content was downloaded from IP address 18.118.137.243 on 05/05/2024 at 03:09

https://doi.org/10.1088/1742-5468/ac3a81
https://iopscience.iop.org/article/10.1088/1361-6420/ad2a03
https://iopscience.iop.org/article/10.1088/1361-6420/ad2a03
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114003
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114003
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114003
https://iopscience.iop.org/article/10.1088/0266-5611/30/11/114003
https://iopscience.iop.org/article/10.1088/0964-1726/23/6/065019
https://iopscience.iop.org/article/10.1088/0964-1726/23/6/065019
https://iopscience.iop.org/article/10.1088/0964-1726/23/6/065019

J.S
tat.

M
ech.

(2021)
124009

PAPER: ML 2021

When do neural networks outperform
kernel methods?∗

Behrooz Ghorbani1, Song Mei2,
Theodor Misiakiewicz3,∗∗ and Andrea Montanari1,3,4

1 Department of Electrical Engineering, Stanford University, United States
of America

2 Department of Statistics, University of California, Berkeley, United States
of America

3 Department of Statistics, Stanford University, United States of America
4 Google Research, Brain Team, United States of America
E-mail: ghorbani@google.com, songmei@berkeley.edu,
misiakie@stanford.edu and montanari@stanford.edu

Received 10 November 2021
Accepted for publication 14 November 2021
Published 29 December 2021

Online at stacks.iop.org/JSTAT/2021/124009
https://doi.org/10.1088/1742-5468/ac3a81

Abstract. For a certain scaling of the initialization of stochastic gradient
descent (SGD), wide neural networks (NN) have been shown to be well approx-
imated by reproducing kernel Hilbert space (RKHS) methods. Recent empirical
work showed that, for some classification tasks, RKHS methods can replace NNs
without a large loss in performance. On the other hand, two-layers NNs are known
to encode richer smoothness classes than RKHS and we know of special examples
for which SGD-trained NN provably outperform RKHS. This is true even in the
wide network limit, for a different scaling of the initialization. How can we recon-
cile the above claims? For which tasks do NNs outperform RKHS? If covariates
are nearly isotropic, RKHS methods suffer from the curse of dimensionality, while
NNs can overcome it by learning the best low-dimensional representation. Here
we show that this curse of dimensionality becomes milder if the covariates display
the same low-dimensional structure as the target function, and we precisely char-
acterize this tradeoff. Building on these results, we present the spiked covariates

∗This article is an updated version of: Ghorbani B, Mei S, Misiakiewicz T and Montanari A 2020 When do neural
networks outperform kernel methods? Advances in Neural Information Processing Systems vol 33 ed H Larochelle,
M Ranzato, R Hadsell, M F Balcan and H Lin (New York: Curran Associates) pp 14820–30.
∗∗Author to whom any correspondence should be addressed.

© 2021 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/21/124009+110$33.00

mailto:ghorbani@google.com
mailto:songmei@berkeley.edu
mailto:misiakie@stanford.edu
mailto:montanari@stanford.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ac3a81&domain=pdf&date_stamp=2021-12-30
https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

model that can capture in a unified framework both behaviors observed in earlier
work. We hypothesize that such a latent low-dimensional structure is present in
image classification. We test numerically this hypothesis by showing that specific
perturbations of the training distribution degrade the performances of RKHS
methods much more significantly than NNs.

Keywords: deep learning, machine learning, learning theory

Contents

1. Introduction.. 4
1.1. Overview.. 5

1.2. Notations and outline 6

2. Rigorous results for kernel methods and NT, RF NN expansions 7

2.1. The spiked covariates model 7
2.2. A sharp characterization of RKHS methods... 8

2.3. RF and NT models 9

2.4. Neural network models10

3. Further numerical experiments11

4. Discussion ...13

Acknowledgments . 14

Appendix A. Details of numerical experiments15

A.1. General training details ..15
A.2. Synthetic data experiments15

A.3. High-frequency noise experiment on FMNIST16
A.3.1. Experiment hyper-parameters18

A.4. High-frequency noise experiment on CIFAR-219
A.4.1. Experiment hyper-parameters20

A.5. Low-frequency noise experiments on FMNIST20

A.5.1. Experiment hyper-parameters21

A.6. Low-frequency noise experiments on CIFAR-10.....................................22

Appendix B. Technical background on function spaces on the sphere......23

B.1. Functional spaces over the sphere..24
B.2. Gegenbauer polynomials ...25

B.3. Hermite polynomials..26
B.4. Tensor product of spherical harmonics..27

B.5. Tensor product of Gegenbauer polynomials..28
B.6. Notations..30

Appendix C. General framework and main theorems30
C.1. Setup on the product of spheres. ...31

https://doi.org/10.1088/1742-5468/ac3a81 2

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

C.2. Reparametrization31

C.3. Notations33

C.4. Generalization error of kernel ridge regression33

C.5. Approximation error of the random features model34

C.6. Approximation error of the neural tangent model37

C.7. Connecting to the theorems in the main text39

Appendix D. Proof of theorem 5 39

D.1. Preliminaries ...39

D.2. Proof of theorem 5 ... 40

D.3. Auxiliary results...46

Appendix E. Proof of theorem 6(a): lower bound for the RF model 51

E.1. Preliminaries51

E.2. Proof of theorem 6(a): outline ... 53

E.3. Proof of proposition 1 ... 55

E.4. Proof of proposition 2 ... 56

Appendix F. Proof of theorem 6(b): upper bound for RF model 59

F.1. Preliminaries59

F.2. Properties of the limiting kernel..59

F.3. Proof of theorem 6(b) ... 61

Appendix G. Proof of theorem 7(a): lower bound for NT model 63

G.1. Preliminaries ...63

G.2. Proof of theorem 7(a): outline ... 65

G.3. Proof of proposition 3 ... 68

G.4. Proof of proposition 4 ... 71

G.4.1. Preliminaries ...71

G.4.2.Proof of proposition 4 .. 76

Appendix H. Proof of theorem 7(b): upper bound for NT model 83

H.1. Preliminaries ...83

H.2. Proof of theorem 7(b): outline ...84

H.3. Proof of theorem 8 ... 85

H.3.1. Properties of the limiting kernel..85

H.3.2.Proof of theorem 8 ..87

Appendix I. Proof of theorem 4 in the main text 89

Appendix J. Convergence of the Gegenbauer coefficients.....................91

J.1. Technical lemmas ..91

J.2. Proof of convergence in probability of the Gegenbauer coefficients97

Appendix K. Bound on the operator norm of Gegenbauer polynomials...99

K.1. Proof of proposition 5 ..101

https://doi.org/10.1088/1742-5468/ac3a81 3

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Appendix L. Technical lemmas... 106

L.1. Useful lemmas from [21] ..108

References ... 109

1. Introduction

In supervised learning we are given data {(yi, xi)}i�n∼iid P ∈ P(R× Rd), with xi ∈ Rd a
covariate vector and yi ∈ R the corresponding label, and would like to learn a function
f :Rd → R to predict future labels. In many applications, state-of-the-art systems use
multi-layer neural networks (NN). The simplest such model is provided by two-layers
fully-connected networks:

FN
NN :=

{
f̂NN(x; b,W) =

N∑
i=1

biσ(〈wi, x〉) : bi ∈ R,wi ∈ R
d, ∀ i ∈ [N]

}
.

(1)

FN
NN is a non-linearly parametrized class of functions: while nonlinearity poses a

challenge to theoreticians, it is often claimed to be crucial in order to learn rich repre-
sentation of the data. Recent efforts to understand NN have put the spotlight on two
linearizations of FN

NN, the random features [1] and the neural tangent [2] classes

FN
RF(W) :=

{
f̂RF(x;a ;W) =

N∑
i=1

aiσ(〈wi, x〉) :ai ∈ R, ∀ i ∈ [N]

}
, (2)

FN
NT(W) :=

{
f̂NT(x;S,W) =

N∑
i=1

〈si, x〉σ′(〈wi, x〉) : si ∈ R
d, ∀ i ∈ [N]

}
.

(3)

FN
RF(W) and FN

NT(W) are linear classes of functions, depending on the real-
ization of the input-layer weights W = (wi)i�N (which are chosen randomly).
The relation between NN and these two linear classes is given by the first-
order Taylor expansion: f̂NN(x; b+ εa,W+ εS)− f̂NN(x; b,W) = εf̂RF(x;a;W) +

εf̂NT(x;S(b) ;W) +O(ε2), where S(b) = (bisi)i�N . A number of recent papers show
that, if weights and stochastic gradient descent (SGD) updates are suitably scaled,
and the network is sufficiently wide (N sufficiently large), then SGD converges to a

function f̂NN that is approximately in FN
RF(W) + FN

NT(W), with W determined by the
SGD initialization [2–7]. This was termed the ‘lazy regime’ in [8].

Does this linear theory convincingly explain the successes of NN? Can the perfor-
mances of NN be achieved by the simpler NT or RF models? Is there any fundamental
difference between the two classes RF and NT? If the weights (wi)i�N are i.i.d. draws
from a distribution ν on Rd, the spaces FN

RF(W), FN
NT(W) can be thought as finite-

dimensional approximations of a certain reproducing kernel Hilbert space (RKHS):

https://doi.org/10.1088/1742-5468/ac3a81 4

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

H(h) := cl

({
f(x) =

N∑
i=1

cih(x, xi) : ci ∈ R, xi ∈ R
d,N ∈ N

})
, (4)

where cl(·) denotes closure. From this point of view, RF and NT differ in that
they correspond to slightly different choices of the kernel: hRF(x 1, x 2) :=∫
σ(〈w , x 1〉)σ(〈w , x 2〉)ν(dw) versus hNT(x1, x2) := 〈x1, x2〉

∫
σ′(wTx1)σ

′(wTx2)ν(dw).
Multi-layer fully-connected NNs in the lazy regime can be viewed as randomized approx-
imations to RKHS as well, with some changes in the kernel h. This motivates analogous
questions for H(h): can the performances of NN be achieved by RKHS methods?

Recent work addressed the separation between NN and RKHS from several points
of view, without providing a unified answer. Some empirical studies on various datasets
showed that networks can be replaced by suitable kernels with limited drop in perfor-
mances [9–16]. At least two studies reported a larger gap for convolutional networks
and the corresponding kernels [17, 18]. On the other hand, theoretical analysis provided
a number of separation examples, i.e. target functions f∗ that can be represented and
possibly efficiently learnt using NN, but not in the corresponding RKHS [19–24]. For
instance, if the target is a single neuron f∗(x) = σ(〈w ∗, x〉), then training a neural net-
work with one hidden neuron learns the target efficiently from approximately d log d
samples [25], while the corresponding RKHS has test error bounded away from zero
for every sample size polynomial in d [19, 21]. Further even in the infinite width limit,
it is known that two-layers NN can actually capture a richer class of functions than
the associated RKHS, provided SGD training is scaled differently from the lazy regime
[26–30].

Can we reconcile empirical and theoretical results?

1.1. Overview

In this paper we introduce a stylized scenario—which we will refer to as the spiked
covariates model—that can explain the above seemingly divergent observations in a uni-
fied framework. The spiked covariates model is based on two building blocks: (1) target
functions depending on low-dimensional projections; (2) approximately low-dimensional
covariates.

(a) Target functions depending on low-dimensional projections. We investigate the
hypothesis that NNs are more efficient at learning target functions that depend on
low-dimensional projections of the data (the signal covariates). Formally, we con-
sider target functions f∗ :R

d → R of the form f∗(x) = ϕ(UTx), where U ∈ Rd×d0 is a
semi-orthogonal matrix, d0
 d, and ϕ :Rd0 → R is a suitably smooth function. This
model captures an important property of certain applications. For instance, the
labels in an image classification problem do not depend equally on the whole Fourier
spectrum of the image, but predominantly on the low-frequency components.

As for the example of a single neuron f∗(x) = σ(〈w ∗, x 〉), we expect RKHS to suffer
from a curse of dimensionality in learning functions of low-dimensional projections.
Indeed, this is well understood in low dimension or for isotropic covariates [20, 21].

https://doi.org/10.1088/1742-5468/ac3a81 5

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

(b) Approximately low-dimensional covariates . RKHS behave well on certain image
classification tasks [10, 12, 17], and this seems to contradict the previous point.
However, the example of image classification naturally brings up another impor-
tant property of real data that helps to clarify this puzzle. Not only we expect
the target function f∗(x) to depend predominantly on the low-frequency compo-
nents of image x , but the image x itself to have most of its spectrum concen-
trated on low-frequency components (linear denoising algorithms exploit this very
observation).

More specifically, we consider the case in which x = Uz 1 +U ⊥z 2, where U ∈ Rd×d0,
U⊥ ∈ Rd×(d−d0), and [U|U⊥] ∈ Rd×d is an orthogonal matrix. Moreover, we assume z1 ∼
Unif(Sd0−1(r1

√
d0)), z2 ∼ Unif(Sd−d0−1(r2

√
d− d0)), and r21 � r22. We find that, if r1/r2

(which we will denote later as the covariates signal-to-noise ratio) is sufficiently large,
then the curse of dimensionality becomes milder for RKHS methods. We characterize
precisely how the performance of these methods depend on the covariate signal-to-noise
ratio r1/r2, the signal dimension d0, and the ambient dimension d.

Notice that the spiked covariate model is highly stylized. For instance, while we
expect real images to have a latent low-dimensional structure, this is best modeled in a
nonlinear fashion (e.g. sparsity in wavelet domain [31]). Nevertheless the spiked covariate
model captures the two basic mechanisms, and provides useful qualitative predictions.
As an illustration, consider adding noise to the high-frequency components of images in a
classification task. This will make the distribution of x more isotropic, and—according
to our theory—deteriorate the performances of RKHS methods. On the other hand,
NN should be less sensitive to this perturbation. (Notice that noise is added both to
train and test samples.) In figure 1 we carry out such an experiment using FMNIST
data (d = 784, n = 60 000, 10 classes). We compare two-layers NN with the RF and
NT models. We choose the architectures of NN, NT, RF as to match the number of
parameters: namely we used N = 4096 for NN and NT and N = 321 126 for RF. We
also fit the corresponding RKHS models (corresponding to N =∞) using kernel ridge

regression (KRR), and two simple polynomial models: f�(x) =
∑�

k=0〈Bk, x
⊗k〉, for � ∈

{1, 2}. In the unperturbed dataset, all of these approaches have comparable accuracies
(except the linear fit). As noise is added, RF, NT, and RKHS methods deteriorate
rapidly. While the accuracy of NN decreases as well, it significantly outperforms other
methods.

1.2. Notations and outline

Throughout the paper, we use bold lowercase letters {x , y , z , . . .} to denote vectors and
bold uppercase letters {A,B ,C , . . .} to denote matrices. We denote by Sd−1(r) = {x ∈
R

d : ‖x‖2 = r} the set of d-dimensional vectors with radius r and Unif(Sd−1(r)) be the
uniform probability distribution on Sd−1(r). Further, we let N(μ, τ 2) be the Gaussian
distribution with mean μ and variance τ 2.

Let Od(·) (respectively od(·), Ωd(·), ωd(·)) denote the standard big-O (respec-
tively little-o, big-omega, little-omega) notation, where the subscript d emphasizes
the asymptotic variable. We denote by od,P(·) the little-o in probability notation:
h1(d) = od,P(h2(d)), if h1(d)/h2(d) converges to 0 in probability.

https://doi.org/10.1088/1742-5468/ac3a81 6

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure 1. Test accuracy on Fashion MNIST (FMNIST) images perturbed by adding
noise to the high-frequency Fourier components of the images (see examples on the
right). (Left) Comparison of the accuracy of various methods as a function of the
added noise. (Center) Eigenvalues of the empirical covariance of the images. As the
noise increases, the images distribution becomes more isotropic.

In section 2, we introduce the spiked covariates model and characterize the perfor-
mance of KRR, RF, NT, and NN models. Section 3 presents numerical experiments
with real and synthetic data. Section 4 discusses our results in the context of earlier
work.

2. Rigorous results for kernel methods and NT, RF NN expansions

2.1. The spiked covariates model

Let d0 = �dη� for some η ∈ (0, 1). LetU ∈ Rd×d0 andU⊥ ∈ Rd×(d−d0) be such that [U |U ⊥]
is an orthogonal matrix. We denote the subspace spanned by the columns of U by
V ⊆ Rd which we will refer to as the signal subspace, and the subspace spanned by the
columns of U ⊥ by V⊥ ⊆ Rd which we will refer to as the noise subspace. In the case
η ∈ (0, 1), the signal dimension d0 = dim(V) is much smaller than the ambient dimension
d. Our model for the covariate vector x i is

xi = Uz0,i +U⊥z1,i, (z0,i, z1,i) ∼ Unif(Sd0−1(r
√
d0))⊗Unif(Sd−d0−1(

√
d− d0)).

We call z 0,i the signal covariates, z 1,i the noise covariates, and r the covariates signal-
to-noise ratio (or covariates SNR). We will take r > 1, so that the variance of the signal
covariates z 0,i is larger than that of the noise covariates z 1,i. In high dimension, this
model is—for many purposes—similar to an anisotropic Gaussian model xi ∼ N(0, (r2 −
1)UUT + I). As shown below, the effect of anisotropy on RKHS methods is significant

https://doi.org/10.1088/1742-5468/ac3a81 7

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

only if the covariate SNR r is polynomially large in d. We shall therefore set r = dκ/2

for a constant κ > 0.
We are given i.i.d. pairs (yi, xi)1�i�n, where yi = f∗(x i) + εi, and εi ∼ N(0, τ 2) is

independent of x i. The function f∗ only depends on the projection of x i onto the
signal subspace V (i.e. on the signal covariates z 0,i): f∗(xi) = ϕ(UTxi), with ϕ ∈
L2(Sd0−1(r

√
d0)).

For the RF and NT models, we will assume that input layer weights to be i.i.d.
wi ∼ Unif(Sd−1(1)). For our purposes, this is essentially the same as wij ∼ N(0, 1/d)
independently, but slightly more convenient technically.

We will consider a more general model in appendix C, in which the distribution of
x i takes a more general product-of-uniforms form, and we assume a general f∗ ∈ L2.

2.2. A sharp characterization of RKHS methods

Given h :[−1, 1]→ R, consider the rotationally invariant kernel Kd(x 1, x 2) =
h(〈x 1, x 2〉/d). This class includes the kernels that are obtained by taking the wide limit
of the RF and NT models (here expectation is with respect to (G1,G2) ∼ N(0, I2))

hRF(t) :=E{σ(G1)σ(tG1 +
√
1− t2G2)}, hNT(t) := tE{σ′(G1)σ

′(tG1 +
√
1− t2G2)}.

(These formulae correspond to w i ∼ N(0, Id), but similar formulae hold for wi ∼
Unif(Sd−1(

√
d)).) This correspondence holds beyond two-layers networks: under i.i.d.

Gaussian initialization, the NT kernel for an arbitrary number of fully-connected layers
is rotationally invariant (see the proof of proposition 2 of [2]), and hence is covered by
the present analysis.

Any RKHS method with kernel h outputs a model of the form f̂(x;a) =∑
i�naih(〈x, xi〉/d), with RKHS norm given by ‖f̂(· ;a)‖2h =

∑
i,j�nh(〈xi, xj〉/d)aiaj. We

consider KRR on the dataset {(yi, xi)}i�n with regularization parameter λ, namely:

â(λ) := arg min
a∈RN

{
n∑

i=1

(
yi − f̂(xi;a)

)2

+ λ‖f̂(· ;a)‖2h

}
= (H+ λIn)

−1y,

where H = (Hij)ij∈[n], with Hij = h(〈x i, x j〉/d). We denote the prediction error of KRR
by

RKRR(f∗,λ) = Ex

[(
f∗(x)− yT(H+ λIn)

−1h(x)
)2]

,

where h(x) = (h(〈x, x1〉/d), . . . , h(〈x, xn〉/d))T.
Recall that we assume the target function f∗(xi) = ϕ(UTxi). We denote P�k :L

2 → L2

to be the projection operator onto the space of degree k orthogonal polynomials, and
P>k = I− P�k. Our next theorem shows that the impact of the low-dimensional latent
structure on the generalization error of KRR is characterized by a certain ‘effective
dimension’, deff .

Theorem 1. Let h ∈ C∞([−1, 1]). Let � ∈ Z�0 be a fixed integer. We assume that

h(k)(0) > 0 for all k � �, and assume that there exists a k > � such that h(k)(0) > 0. (Recall

that h is positive semidefinite whence h(k)(0) � 0 for all k.)

https://doi.org/10.1088/1742-5468/ac3a81 8

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Define the effective dimension deff = max{d0, d/r2} = dmax(1−κ,η). If ωd(d
�
eff log

(deff)) � n � d�+1−δ
eff for some δ > 0, then for any regularization parameter λ = Od(1),

the prediction error of KRR with kernel h is∣∣RKRR(f∗;λ)− ‖P>�f∗‖2L2

∣∣ � od,P(1) · (‖f∗‖2L2 + τ 2). (5)

Remarkably, the effective dimension deff = dmax(1−κ,η) depends both on the signal
dimension dim(V) = dη and on the covariate SNR r = dκ/2. Sample size n = d�eff is nec-
essary to learn a degree � polynomial. If we fix η ∈ (0, 1) and take κ = 0+, we get
deff ≈ d: this corresponds to almost isotropic xi. We thus recover theorem 4 in [21]. If
instead κ > 1− η, then most variance of xi falls in the signal subspace V, and we get
deff = dη = dim(V): the test error is effectively the same as if we had oracle knowledge
of the signal subspace V and performed KRR on signal covariates z0,i = UTxi. Theorem
1 describes the transition between these two regimes.

2.3. RF and NT models

How do the results of the previous section generalize to finite-width approximations
of the RKHS? In particular, how do the RF and NT models behave at finite N? In
order to simplify the picture, we focus here on the approximation error. Equivalently,
we assume the sample size to be n =∞ and consider the minimum population risk for
M ∈ {RF,NT}

RM,N (f∗;W) := inf
f̂∈FN

M (W)
E

{[
f∗(x)− f̂(x)

]2}
. (6)

The next two theorems characterize the asymptotics of the approximation error for RF
and NT models. We give generalizations of these statements to other settings and under
weaker assumptions in appendix C.

Theorem 2 (Approximation error for RF). Assume σ ∈ C∞(R), with kth derivative

σ(k)(x)2 � c0,k e
c1,kx

2/2 for some c0,k > 0, c1,k < 1, and all x ∈ R and all k. Define its kth
Hermite coefficient μk(σ) :=EG∼N(0,1)[σ(G)Hek(G)]. Let � ∈ Z�0 be a fixed integer, and

assume μk(σ) �= 0 for all k � �. Define deff = dmax(1−κ,η). If d�+δ
eff � N � d�+1−δ

eff for some
δ > 0 independent of N, d, then∣∣RRF,N (f∗;W)− ‖P>�f∗‖2L2

∣∣ � od,P(1) · ‖P>�f∗‖L2‖f∗‖L2. (7)

Theorem 3 (Approximation error for NT). Assume σ ∈ C∞(R), with kth derivative

σ(k)(x)2 � c0,k e
c1,kx

2/2, for some c0,k > 0, c1,k < 1, and all x ∈ R and all k. Let � ∈ Z�0,
and assume μk(σ) �= 0 for all k � �+ 1. Further assume that, for all L ∈ Z�0, there
exist k1, k2 with L < k1 < k2, such that μk1(σ

′) �= 0, μk2(σ
′) �= 0, and μk1(x

2σ′)/μk1(σ
′) �=

μk2(x
2σ′)/μk2(σ

′). Define deff = dmax(1−κ,η). If d�+δ
eff � N � d�+1−δ

eff for some δ > 0 indepen-
dent of N, d, then∣∣RNT,N (f∗;W)− ‖P>�+1f∗‖2L2

∣∣ � od,P(1) · ‖P>�+1f∗‖L2‖f∗‖L2. (8)

Here, the definitions of effective dimension deff is the same as in theorem 1. While
for the test error of KRR as in theorem 1, the effective dimension controls the sample

https://doi.org/10.1088/1742-5468/ac3a81 9

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

complexity n in learning a degree � polynomial, in the present case it controls the number
of neurons N that is necessary to approximate a degree � polynomial. In the case of RF,
the latter happens as soon as N � d�eff, while for NT it happens as soon as N � d�−1eff .
If we take η ∈ (0, 1) and κ = 0+, the above theorems, again, recover theorems 1 and 2
of [21].

Notice that NT has higher approximation power than RF in terms of the number
of neurons . This is expected, since NT models contain Nd instead of N parameters. On
the other hand, NT has less power in terms of number of parameters: to fit a degree
�+ 1 polynomial, the parameter complexity for NT is Nd = d�effd while the parameter
complexity for RF is N = d�+1

eff
 d�effd. While the NT model has p = Nd parameters,
only pNT

eff = Ndeff of them appear to matter. We will refer to pNT
eff ≡ Ndeff as the effective

number of parameters of NT models.
Finally, it is natural to ask what are the behaviors of RF and NT models at finite

sample size. Denote by RM,N,n(f∗ ;W) the corresponding test error (assuming for instance
ridge regression, with the optimal regularization λ). Of course the minimum population
risk provides a lower bound: RM,N,n(f∗;W) � RM,N(f∗;W). Moreover, we conjecture that
the risk is minimized at infinite N, RM,N,n(f∗ ;W)�Rn(f∗ ; hM). Altogether this implies the
lower bound RM,N,n(f∗ ;W)�max(RM,N(f∗ ;W),Rn(f∗; hM)). We also conjecture that this
lower bound is tight, up to terms vanishing as N, n, d→∞.

Namely (focusing on NT models), if Ndeff � n, and d�1eff � Ndeff � d�1+1
eff then the

approximation error dominates and RM,N ,n(f∗;W) = ‖P>�1f∗‖2L2 + od,P(1)‖f∗‖2L2 . If on

the other hand Ndeff �n, and d�2eff � n � d�2+1
eff then the generalization error dominates

and RM,N ,n(f∗;W) = ‖P>�2f∗‖2L2 + od,P(1)‖f∗‖2L2 .

2.4. Neural network models

Consider the approximation error for NNs

RNN,N (f∗) := inf
f̂∈FN

NN

E

{[
f∗(x)− f̂(x)

]2}
. (9)

Since ε−1[σ(〈wi + εai, x〉)− σ(〈wi, x〉)]ε→0→〈ai, x〉σ′(〈wi, x〉), we have ∪WFN/2
NT (W) ⊆

cl(FN
NN), and RNN,N(f∗) � infW RNT,N/2(f∗,W). By choosing W = (w̄i)i�N , with w̄i = Uv̄i

(see section 2.1 for definition of U), we obtain that FN
NT(W) contains all functions

of the form f̄(UTx), where f̄ is in the class of functions FN
NT(V) on R

d0 . Hence if
f∗(x) = ϕ(UTx), RNN,N(f∗) is at most the error of approximating ϕ(z) on the small sphere
z ∼ Unif(Sd0−1) within the class FN

NT(V). As a consequence, by theorem 3, if d�+δ
0 � N �

d�+1−δ
0 for some δ > 0, then RNN,N (f∗) � RNT,N/2(f∗,W) � (1 + od,P(1)) · ‖P>�+1f∗‖2L2 .

Theorem 4 (Approximation error for NN). Assume that σ ∈ C∞(R) satisfies the
same assumptions as in theorem 3. Further assume that supx∈R|σ′′(x)| <∞. If d�+δ

0 �
N � d�+1−δ

0 for some δ > 0 independent of N, d, then the approximation error of NN
models (3) is

RNN,N (f∗) � (1 + od(1)) · ‖P>�+1f∗‖2L2. (10)

Moreover, the quantity RNN,N(f∗) is independent of κ � 0.

https://doi.org/10.1088/1742-5468/ac3a81 10

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure 2. Finite-width two-layers NN and their linearizations RF and NT. Mod-
els are trained on 220 training observations drawn i.i.d. from the distribution of
section 2.1. Continuous lines: NT; dashed lines: RF; dot-dashed: NN. Various
curves (colors) refer to values of the exponent κ (larger κ corresponds to stronger
low-dimensional component). (Right) Curves for RF and NT as a function of the
rescaled quantity log(pMeff)/ log(deff).

As a consequence of theorems 3 and 4, there is a separation between NN and (uni-
formly sampled) NT models when deff �= d0, i.e. κ < 1− η. As κ increases, the gap
between NN and NT becomes smaller and smaller until κ = 1− η.

3. Further numerical experiments

We carried out extensive numerical experiments on synthetic data to check our predic-
tions for RF, NT, RKHS methods at finite sample size n, dimension d, and width N.
We simulated two-layers fully-connected NN in the same context in order to compare
their behavior to the behavior of the previous models. Finally, we carried out numerical
experiments on FMNIST and CIFAR-10 data to test whether our qualitative predictions
apply to image datasets. Throughout we use ReLU activations.

In figure 2 we investigate the approximation error of RF, NT, and NN models. We
generate data (yi, xi)i�1 according to the model of section 2.1, in d = 1024 dimensions,
with a latent space dimension d0 = 16, hence η = 2/5. The per-coordinate variance in
the latent space is r2 = dκ, with κ ∈ {0.0, . . . , 0.9}. Labels are obtained by yi = f∗(xi) =
ϕ(UTxi) where ϕ :Rd0 → R is a degree-4 polynomial, without a linear component. Since

https://doi.org/10.1088/1742-5468/ac3a81 11

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure 3. (Left) Comparison of the test error of NN (dot-dashed) and NTK KRR
(solid) on the distribution of the section 2.1. Various curves (colors) refer to values
of the exponent κ. (Right) KRR test error as a function of the number of observa-
tions adjusted by the effective dimension. Horizontal lines correspond to the best
polynomial approximation.

we are interested in the minimum population risk, we use a large sample size n = 220: we
expect the approximation error to dominate in this regime. (See appendix A for further
details.)

We plot the normalized risk RRF,N(f∗,W)/R0, RNT,N(f∗,W)/R0, RNN,N(f∗)/R0,
R0 := ‖f∗‖2L2 , for various widths N. These are compared with the error of the best poly-
nomial approximation of degrees � = 1 to 3 (which correspond to ‖P>�f∗‖2L2/‖f∗‖2L2).
As expected, as the number of parameters increases, the approximation error of each
function class decreases. NN provides much better approximations than any of the lin-
ear classes, and RF is superior to NT given the same number of parameters . This is
captured by theorems 2 and 3: to fit a degree �+ 1 polynomial, the parameter com-
plexity for NT is Nd = d�effd while for RF it is N = d�+1

eff
 d�effd. We denote the effective
number of parameters for NT by pNT

eff = Ndeff and the effective number of parameter for
RF by pRFeff = N . The right plot reports the same data, but we rescale the x -axis to be
log(pMeff)/ log(deff). As predicted by the asymptotic theory of theorems 2 and 3, various
curves for NT and RF tend to collapse on this scale. Finally, the approximation error
of RF and NT depends strongly on κ: larger κ leads to smaller effective dimension and
hence smaller approximation error. In contrast, the error of NN, besides being smaller
in absolute terms, is much less sensitive to κ.

In figure 3 we compare the test error of NN (with N = 4096) and KRR for the NT ker-
nel (corresponding to the N→∞ limit in the lazy regime), for the same data distribution
as in the previous figure. We observe that the test error of KRR is substantially larger
than the one of NN, and deteriorates rapidly as κ gets smaller (the effective dimension
gets larger). In the right frame we plot the test error as a function of log(n)/log(deff): we
observe that the curves obtained for different κ approximately collapse, confirming that
deff is indeed the right dimension parameter controlling the sample complexity. Notice
that also the error of NN deteriorates as κ gets smaller, although not so rapidly: this
behavior deserves further investigation. Notice also that the KRR error crosses the level
of best degree-� polynomial approximation roughly at log(n)/log(deff) ≈ �.

https://doi.org/10.1088/1742-5468/ac3a81 12

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure 4. Comparison between multilayer NNs and the corresponding NT mod-
els under perturbations in frequency domain. (Left) Fully connected networks on
FMNIST data. (Right) Comparison of CNN and convolutional neural tangent ker-
nel (CNTK) KRR classification accuracy on CIFAR-10. We progressively replace
the lowest frequencies of each image with Gaussian noise with matching covariance
structure. Right: accuracy for FMNIST.

The basic qualitative insight of our work can be summarized as follows. Kernel meth-
ods are effective when a low-dimensional structure in the target function is aligned with
a low-dimensional structure in the covariates. In image data, both the target function
and the covariates are dominated by the low-frequency subspace. In figure 1 we tested
this hypothesis by removing the low-dimensional structure of the covariate vectors: we
simply added noise to the high-frequency part of the image. In figure 4 we try the
opposite, by removing the component of the target function that is localized on low-
frequency modes. We decompose each images into a low-frequency and a high-frequency
part. We leave the high-frequency part unchanged, and replace the low-frequency part
by Gaussian noise with the first two moments matching the empirical moments of the
data.

In the left frame, we consider FMNIST data and compare fully-connected NNs with
two or three layers (and N = 4096 nodes at each hidden layer) with the corresponding
NT KRR model (infinite width). In the right frame, we use CIFAR-10 data and compare
a Myrtle-5 network (a lightweight convolutional architecture [16, 32]) with the corre-
sponding NT KRR. We observe the same behavior as in figure 1. While for the original
data NT is comparable to NN, as the proportion of perturbed Fourier modes increases,
the performance of NT deteriorates much more rapidly than the one of NN.

4. Discussion

The limitations of linear methods—such as KRR—in high dimension are well under-
stood in the context of nonparametric function estimation. For instance, a basic result
in this area establishes that estimating a Sobolev function f∗ in d dimensions with mean
square error ε requires roughly ε−2−d/α samples, with α the smoothness parameter [33].

https://doi.org/10.1088/1742-5468/ac3a81 13

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

This behavior is achieved by kernel smoothing and by KRR: however these methods are
not expected to be adaptive when f∗(x) only depends on a low-dimensional projection of
x, i.e. f∗(x) = ϕ(UTx) for an unknown U ∈ Rd0×d, d0
 d. On the contrary, fully-trained
NN can overcome this problem [20].

However, these classical statistical results have some limitations. First, they focus
on the low-dimensional regime: d is fixed, while the sample size n diverges. This is
probably unrealistic for many machine learning applications, in which d is at least of
the order of a few hundreds. Second, classical lower bounds are typically established for
the minimax risk, and hence they do not necessarily apply to specific functions.

To bridge these gaps, we developed a sharp characterization of the test error in
the high-dimensional regime in which both d and n diverge, while being polynomially
related. This characterization holds for any target function f∗, and expresses the limiting
test error in terms of the polynomial decomposition. We also present analogous results
for finite-width RF and NT models.

Our analysis is analogous and generalizes the recent results of [21]. However, while

[21] assumed the covariates xi to be uniformly distributed over the sphere Sd−1(
√
d),

we introduced and analyzed a more general model in which the covariates mostly lie in
the signal subspace with dimension d0
 d, and the target function is also dependent
on that subspace. In fact our results follow as special cases of a more general model
discussed in appendix C.

Depending on the relation between signal dimension d0, ambient dimension d, and the
covariate signal-to-noise ratio r, the model presents a continuum of different behaviors.
At one extreme, the covariates are fully d-dimensional, and RKHS methods are highly
suboptimal compared to NN. At the other, covariates are close to d0-dimensional and
RKHS methods are instead more competitive with NN.

Finally, the Fourier decomposition of images is a simple proxy for the decomposition
of the covariate vector x into its low-dimensional dominant component (low frequency)
and high-dimensional component (high frequency) [34].

Acknowledgments

This work was partially supported by the NSF Grants CCF-1714305, IIS-1741162, DMS-
1418362, DMS-1407813 and by the ONR Grant N00014-18-1-2729.

Data availability statement

The code used to produce our results can be accessed at https://github.com/bGhorbani/
linearized neural networks.

https://doi.org/10.1088/1742-5468/ac3a81 14

https://github.com/bGhorbani/linearized_neural_networks
https://github.com/bGhorbani/linearized_neural_networks
https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Appendix A. Details of numerical experiments

A.1. General training details

All models studied in the paper are trained with squared loss and �2 regulariza-
tion. For multi-class datasets such as FMNIST, one-hot encoded labels are used for
training. All models discussed in the paper use ReLU non-linearity. Fully-connected
models are initialized according to mean-field parameterization [26, 35, 36]. All NN
are optimized with SGD with 0.9 momentum. The learning-rate evolves according to
the cosine rule

lrt = lr0 max

((
1 + cos

(
tπ

T

))
,
1

15

)
(11)

where lr0 = 10−3 and T = 750 is the total number of training epochs. To ensure the
stability of the optimization for wide models, we use 15 linear warm-up epochs in the
beginning.

When N� 1, training RF and NT with SGD is unstable (unless extremely small
learning-rates are used). This makes the optimization prohibitively slow for large
datasets. To avoid this issue, instead of SGD, we use conjugate gradient method
(CG) for optimizing RF and NT. Since these two models are strongly convex5,
the optimizer is unique. Hence, using CG will not introduce any artifacts in the
results.

In order to use CG, we first implement a function to perform Hessian-vector prod-
ucts in TensorFlow [37]. The function handle is then passed to scipy.sparse.cg for
CG. Our Hessian-vector product code uses tensor manipulation utilities implemented
by [38].

Unfortunately, scipy.sparse.cg does not support one-hot encoded labels. To avoid
running CG for each class separately, when the labels are one-hot encoded, we use
Adam optimizer [39] instead. When using Adam, the learning-rate still evolves as (11)
with lr0 = 10−5. The batch-size is fixed at 104 to encourage fast convergence to the
minimum.

For NN, RF and NT, the training is primary done in TensorFlow (v1.12) [37]. For
KRR, we generate the kernel matrix first and directly fit the model in regular python.
The kernels associated with two-layer models are calculated analytically. For deeper
models, the kernels are computed using neural-tangents library in JAX [40, 41].

A.2. Synthetic data experiments

The synthetic data follows the distribution outlined in the main text. In particular,

xi = (ui, zi), yi = ϕ(ui), ui ∈ R
d0 , zi ∈ R

d−d0, (12)

5Note that all models are trained with �2 regularization.

https://doi.org/10.1088/1742-5468/ac3a81 15

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Table A.1. Hyper-parameter details for synthetic data experiments.

Experiment Model �2 regularization grid

Approximation error (figure 2) NN {10αi}20i=1, αi uniformly spaced in [−8,−4]
NT {10αi}10i=1, αi uniformly spaced in [−4, 2]
RF {10αi}10i=1, αi uniformly spaced in [−5, 2]

Generalization error (figure 3) NN {10αi}25i=1, αi uniformly spaced in [−8,−2]
NT KRR {10αi}10i=1, αi uniformly spaced in [0, 6]

where ui and zi are drawn i.i.d. from the hyper-spheres with radii r
√
d0 and

√
d

respectively. We choose

r = dκ/2, d0 = dη, (13)

where d is fixed to be 1024 and η = 2
5
. We change κ in the interval {0, . . . , 0.9}. For each

value of κ we generate 220 training and 104 test observations6.
The function ϕ is the sum of three orthogonal components {ϕi}3i=1 with ‖ϕi‖2 = 1.

To be more specific,

ϕi(x) ∝
d0−i∑
j=1

α
(i)
j

j+i∏
k=j

xk, α
(i)
j

i.i.d.∼ exp(1). (14)

This choice of ϕi guarantees that each ϕi is in the span of degree i+ 1 spherical
harmonics.

In the experiments presented in figure 2, for NN and NT, the number of hidden units
N takes 30 geometrically spaced values in the interval [5, 104]. NN models are trained
using SGD with momentum 0.9 (the learning-rate evolution is described above). We
use batch-size of 512 for the warm-up epochs and batch-size of 1024 for the rest of the
training. For RF, N takes 24 geometrically spaced values in the interval [100, 711 680].
The limit N = 711 680 corresponds to the largest model size we are computationally
able to train at this scale. All models are trained with �2 regularization. The �2 regu-
larization grids used for these experiments are presented in table A.1. In all our experi-
ments, we choose the �2 regularization parameter that yields the best test performance7.
In total, we train approximately 10 000 different models just for this subset of
experiments.

In figure 3 of the main text, we compared the generalization performance of NTK
KRR with NN. We use the same training and test data as above to perform this analysis.
The number of training data points, n, takes 24 different values ranging from 50 to 105.
The number of test data points is always fixed at 104.

6 Strictly speaking, the model outlined in the main text requires zi to be generated from the hyper-sphere of radius
√
d− d0. In

order to work with round numbers, in our experiments we use
√
d instead of

√
d− d0. The numerical difference between these two

choices is negligible.
7 Due to the large size of the test set, choosing these hyper-parameter based on the test set performance has a negligible over-fitting
effect. In addition, in studying the approximation error overfitting is not relevant.

https://doi.org/10.1088/1742-5468/ac3a81 16

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure A.1. (Left) The pictorial representation of the filter matrix F used for the
FMNIST experiments. The matrix entries with value zero are represented by color
blue while the entries with value one are represented by red. Coordinates on top
left-hand side correspond to lower frequency components while coordinates closer
to bottom right-hand side represent the high-frequency directions. (Right) The
absolute value of the frequency components of FMNIST images averaged over the
training data. The projection of the dataset into the low-frequency region chosen
by the filter retains over 95% of the variation in the data.

A.3. High-frequency noise experiment on FMNIST

In effort to make the distribution of the covariates more isotropic, in this experiment,
we add high-frequency noise to both the training and test data.

Let x ∈ Rk×k be an image. We first remove the global average of the image and then
add high-frequency Gaussian noise to x in the following manner:

(a) We convert x to frequency domain via discrete cosine transform (DCT II-
orthogonal to be precise). We denote the representation of the image in the
frequency domain x̃ ∈ Rk×k.

(b) We choose a filter F ∈ {0, 1}k×k. F determines on which frequencies the noise

should be added. The noise matrix Z̃ is defined as Z � F where Z ∈ Rk×k has
i.i.d. N(0, 1) entries.

(c) We define x̃noisy = x̃+ τ(‖x̃‖/‖Z̃‖)Z̃. The constant τ controls the noise magnitude.

(d) We perform inverse discrete cosine transform (DCT III-orthogonal) on x̃noisy to
convert the image to pixel domain. We denote the noisy image in the pixel domain
as x noisy.

(e) Finally, we normalize the x noisy so that it has norm
√
d.

https://doi.org/10.1088/1742-5468/ac3a81 17

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure A.2. The eigenvalues of the empirical covariance matrix of the FMNIST
training data. As the noise intensity increases, the distribution of the eigenvalues
becomes more isotropic. Note that due to the conservative choice of the filter F,
noise is not added to all of the low-variance directions. These left-out directions
corresponds to the small eigenvalues appearing in the left-hand side of the plot.

In the frequency domain, a grayscale image is represented by a matrix x̃ ∈ Rk×k.
Qualitatively speaking, elements (x̃)i,j with small values of i and j correspond to the
low-frequency component of the image and elements with large indices correspond to
high-frequency components. The matrix F is chosen such that no noise is added to low
frequencies. Specifically, we choose

Fi,j =

{
1 if (k − i)2 + (k − j)2 � (k − 1)2

0 otherwise.
(15)

This choice of F mirrors the average frequency domain representation of FMNIST
images (see figure A.1 for a comparison). Figures A.2 and A.4 respectively show the
eigenvalues of the empirical covariance of the dataset for various noise levels. As dis-
cussed in the main text, the distribution of the covariates becomes more isotropic as
more and more high-frequency noise is added to the images.

Figure A.3 shows the normalized squared loss and the classification accuracy of
the models as more and more high-frequency noise is added to the data. The nor-
malization factor R0 = 0.9 corresponds to the risk achievable by the (trivial) predictor
[ŷj(x)]1�j�10 = 0.1.

A.3.1. Experiment hyper-parameters. For NT and NN, the number of hidden units
N = 4096. For RF, we fix N = 321 126. These hyper-parameter choices ensure that the
models have approximately the same number of trainable parameters. NN is trained

https://doi.org/10.1088/1742-5468/ac3a81 18

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure A.3. The normalized test squared error (left) and the test accuracy (right)
of the models trained and evaluated on FMNIST data with high-frequency noise.

Table A.2. Details of regularization parameters used for high-frequency noise
experiments.

Dataset Model �2 regularization grid

FMNIST NN {10αi}20i=1, αi uniformly spaced in [−6,−2]
NT {10αi}20i=1, αi uniformly spaced in [−5, 3]
RF {10αi}20i=1, αi uniformly spaced in [−5, 3]

NT KRR {10αi}20i=1, αi uniformly spaced in [−1, 5]
RF KRR {10αi}20i=1, αi uniformly spaced in [−1, 5]

CIFAR-2 NN {10αi}20i=1, αi uniformly spaced in [−6,−2]
NT {10αi}20i=1, αi uniformly spaced in [−4, 4]
RF {10αi}40i=1, αi uniformly spaced in [−2, 10]

NT KRR {10αi}20i=1, αi uniformly spaced in [−2, 4]
RF KRR {10αi}20i=1, αi uniformly spaced in [−2, 4]

with SGD with 0.9 momentum and learning-rate described by (11). The batch-size for
the warm-up epochs is 500. After the warm-up stage is over, we use batch-size of 1000
to train the network. Since CG is not available in this setting, NT and RF are optimized
using Adam for T = 750 epochs with batch-size of 104. The �2 regularization grids used
for training these models are listed in table A.2.

A.4. High-frequency noise experiment on CIFAR-2

We perform a similar experiment on a subset of CIFAR-10. We choose two classes
(airplane and cat) from the ten classes of CIFAR-10. This choice provides us with 104

training and 2000 test data points. Given that the number of training observations is
not very large, we reduce the covariate dimension by converting the images to grayscale.
This transformation reduces the covariate dimension to d = 1024.

https://doi.org/10.1088/1742-5468/ac3a81 19

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure A.4. (Left) FMNIST images with various high-frequency noise levels.
(Right) CIFAR-2 images with various levels of high-frequency Gaussian noise. The
images are converted to grayscale to make the covariate dimension manageable.

Figure A.5 demonstrates the evolution of the model performances as the noise
intensity increases. In the noiseless regime (τ = 0), all models have comparable per-
formances. However, as the noise level increases, the performance gap between NN and
RKHS methods widens. For reference, the accuracy gap between NN and NT KRR
is only 0.6% at τ = 0. However, at τ = 3, this gap increases to 4.5%. The normal-
ization factor R0 = 0.25 corresponds to the risk achievable by the trivial estimator
ŷ(x) = 0.5.

A.4.1. Experiment hyper-parameters. For NT and NN, the number of hidden units
N = 4096. For RF, we fix N = 4.2× 106. These hyper-parameter choices ensure that
the models have approximately the same number of trainable parameters. NN is trained
with SGD with 0.9 momentum and learning-rate described by (11). The batch-size is
fixed at 250. NT is optimized via CG with 750 maximum iterations. The �2 regularization
grids used for training these models are listed in table A.2.

A.5. Low-frequency noise experiments on FMNIST

To examine the ability of NN and RKHS methods in learning the information in low-
variance components of the covariates, we replace the low-frequency components of the
image with Gaussian noise. To be specific, we follow the following steps to generate the
noisy datasets:

https://doi.org/10.1088/1742-5468/ac3a81 20

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure A.5. Normalized test squared error (left) and test classification accuracy
(right) of the models on noisy CIFAR-2. As the noisy intensity increases, the per-
formance gap between NN and RKHS methods widens. For reference, the accuracy
gap between NN and NT KRR is only 0.6% at τ = 0. However, at τ = 3, this gap
increases to 4.5%. For finite-width models, N is chosen such that the number of
trainable parameters is approximately equal across the models. For NN and NT,
N = 4096 and for RF, N = 4.2× 106. We use the noise filter described in (15).

(a) We normalize all images to have mean zero and norm
√
d.

(b) Let Dtrain denote the set of training images in the DCT-frequency domain. We
compute the mean μ and the covariance Σ of the elements of Dtrain.

(c) We fix a threshold α ∈ N where 1 � α � k.

(d) Let x be an image in the dataset (test or train). We denote the representation
of x in the frequency domain with x̃. For each image, we draw a noise matrix
z ∼ N (μ, Σ). We have

[x̃noisy]i,j =

{
(z)i,j if i, j � α

x̃i,j otherwise.

(e) We perform IDCT on x̃noisy to get the noisy image x noisy.

The fraction of the frequencies replaced by noise is α2/k2. Figure A.8 shows several
examples of noisy images for different thresholds α.

A.5.1. Experiment hyper-parameters. For NN trained for this experiment, we fix the
number of hidden units per-layer to N = 4096. This corresponds to approximately 3.2×
106 trainable parameters for two-layer networks and 2× 107 trainable parameters for
three-layer networks. Both models are trained using SGD with momentum with learning

https://doi.org/10.1088/1742-5468/ac3a81 21

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Table A.3. Details of regularization parameters used for low-frequency noise
experiments.

Dataset Model �2 regularization grid

FMNIST NN depth 2 {10αi}20i=1, αi uniformly spaced in [−6,−2]
NN depth 3 {10αi}10i=1, αi uniformly spaced in [−7,−5]

NTK KRR depth 2 {10αi}20i=1, αi uniformly spaced in [−1, 5]
NTK KRR depth 3 {10αi}20i=1, αi uniformly spaced in [−4, 3]

Linear model {10αi}30i=1, αi uniformly spaced in [−1, 5]
CIFAR-10 Myrtle-5 {10αi}10i=1, αi uniformly spaced in [−5,−2]

KRR (Myrtle-5 NTK) {10αi}20i=1, αi uniformly spaced in [−6, 1]

Figure A.6. Normalized test squared error (left) and test classification accuracy
(right) of the models on FMNIST with low-frequency Gaussian noise.

rate described by (11) (with lr0 = 10−3). For the warm-up epochs, we use batch-size of
500. We increase the batch-size to 1000 after the warm-up stage. The regularization
grids used for training our models are presented in table A.3 (figure A.6).

A.6. Low-frequency noise experiments on CIFAR-10

To test whether our insights are valid for convolutional models, we repeat the same
experiment for CNNs trained on CIFAR-10. The noisy data is generated as follows:

(a) Let Dtrain denote the set of training images in the DCT-frequency domain. Note
that CIFAR-10 images have three channels. To convert the images to frequency
domain, we apply two-dimensional discrete cosine transform (DCT-II orthogonal)
to each channel separately. We compute the mean μ and the covariance Σ of the
elements of Dtrain.

(b) We fix a threshold α ∈ N where 1 � α � 32.

https://doi.org/10.1088/1742-5468/ac3a81 22

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure A.7. Performance of Myrtle-5 and KRR with CNTK on noisy CIFAR-10.
CNTK is generated from the Myrtle-5 architecture using neural-tangents JAX
library. When no noise is present in the data, the CNN achieves 87.7% and the
CNTK achieves 77.6% classification accuracy. After randomizing only 1.5% of
the frequencies (corresponding to α = 4) CNTK classification performance falls
to 58.2% while the CNN retains 84.7% accuracy.

(c) Let x ∈ R32×32×3 be an image in the dataset (test or train). We denote the repre-
sentation of x in the DCT-frequency domain with x̃ ∈ R32×32×3. For each image, we
draw a noise matrix z ∼ N (μ, Σ). We have

[x̃noisy]i,j,k =

{
(z)i,j,k if i, j � α

x̃i,j,k otherwise.

(d) We perform IDCT on x̃noisy to get the noisy image x noisy.

(e) We normalize the noisy data to have zero per-channel mean and unit per-channel
standard deviation. The normalization statistics are computed using only the
training data.

We use Myrtle-5 architecture for our analysis. The Myrtle family is a collection
of simple light-weight high-performance purely convolutional models. The simplicity of
these models coupled with their good performance makes them a natural candidate for
our analysis. The network only uses convolutions and average pooling. In particular, we
do not use any batch-normalization [42] layers in this network (see [16] for details). We
fix the number of channels in all convolutional layers to be N = 512. This corresponds
to approximately 7× 106 parameters. Similar to the fully-connected networks, our con-
volutional models are also optimized via SGD with 0.9 momentum (learning rate evolves
as (11) with lr0 = 0.1 and T = 70). We fix the batch-size to 128. To keep the experi-
mental setting as simple as possible, we do not use any data augmentation for training
the network. The results of the numerical experiments are reported in figure A.7.

https://doi.org/10.1088/1742-5468/ac3a81 23

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Figure A.8. The effect of low-frequency noise for various cut-off thresholds, α. The
left panel corresponds to the noisy FMNIST images and the right panel corresponds
to CIFAR-10 images. In order to plot CIFAR-10 images, we rescale them to the
interval [0, 1].

Appendix B. Technical background on function spaces on the sphere

B.1. Functional spaces over the sphere

For d � 1, we let Sd−1(r) = {x ∈ Rd : ‖x‖2 = r} denote the sphere with radius r in Rd.

We will mostly work with the sphere of radius
√
d, Sd−1(

√
d) and will denote by μd−1 the

uniform probability measure on Sd−1(
√
d). All functions in the following are assumed to

be elements of L2(Sd−1(
√
d),μd−1), with scalar product and norm denoted as 〈·, ·〉L2 and

‖ · ‖L2 :

〈f, g〉L2 ≡
∫
Sd−1(

√
d)

f(x)g(x)μd−1(dx). (16)

For � ∈ Z�0, let Ṽd,� be the space of homogeneous harmonic polynomials of degree
� on Rd (i.e. homogeneous polynomials q(x) satisfying Δq(x) = 0), and denote by Vd,�

the linear space of functions obtained by restricting the polynomials in Ṽd,� to Sd−1(
√
d).

With these definitions, we have the following orthogonal decomposition

L2(Sd−1(
√
d),μd−1) =

∞⊗
�=0

Vd,�. (17)

https://doi.org/10.1088/1742-5468/ac3a81 24

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

The dimension of each subspace is given by

dim(Vd,�) = B(d, �) =
2�+ d− 2

�

(
�+ d− 3

�− 1

)
. (18)

For each � ∈ Z�0, the spherical harmonics {Y (d)
�,j }1�j∈�B(d,�) form an orthonormal basis of

Vd,�:

〈Y (d)
ki , Y

(d)
sj 〉L2 = δijδks.

Note that our convention is different from the more standard one, that defines the
spherical harmonics as functions on Sd−1(1). It is immediate to pass from one convention

to the other by a simple scaling. We will drop the superscript d and write Y�,j = Y
(d)
�,j

whenever clear from the context.
We denote by Pk the orthogonal projections to V d,k in L2(Sd−1(

√
d),μd−1). This can

be written in terms of spherical harmonics as

Pkf(x) ≡
B(d,k)∑
l=1

〈f, Ykl〉L2Ykl(x). (19)

We also define P�� ≡
∑�

k=0Pk, P>� ≡ I− P�� =
∑∞

k=�+1Pk, and P<� ≡ P��−1, P�� ≡
P>�−1.

B.2. Gegenbauer polynomials

The �th Gegenbauer polynomial Q
(d)
� is a polynomial of degree �. Consistently with our

convention for spherical harmonics, we view Q
(d)
� as a function Q

(d)
� :[−d, d]→ R. The set

{Q(d)
� }��0 forms an orthogonal basis on L2([−d, d], μ̃1

d−1), where μ̃1
d−1 is the distribution

of
√
d〈x, e1〉 when x ∼ μd−1, satisfying the normalization condition:

∫ d

−d
Q

(d)
k (t)Q

(d)
j (t)dμ̃1

d−1 =
wd−2

dwd−1

∫ d

−d
Q

(d)
k (t)Q

(d)
j (t)

(
1− t2

d2

)(d−3)/2

dt

=
1

B(d, k)
δjk, (20)

where we denoted wd−1 =
2πd/2

Γ(d/2)
the surface area of the sphere S

d−1(1). In particular,

these polynomials are normalized so that Q
(d)
� (d) = 1.

Gegenbauer polynomials are directly related to spherical harmonics as follows. Fix
v ∈ Sd−1(

√
d) and consider the subspace of V� formed by all functions that are invariant

under rotations in Rd that keep v unchanged. It is not hard to see that this subspace

has dimension one, and coincides with the span of the function Q
(d)
� (〈v, · 〉).

We will use the following properties of Gegenbauer polynomials.

https://doi.org/10.1088/1742-5468/ac3a81 25

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

(a) For x, y ∈ S
d−1(

√
d)

〈Q(d)
j (〈x, ·〉),Q(d)

k (〈y, ·〉)〉L2 =
1

B(d, k)
δjkQ

(d)
k (〈x, y〉). (21)

(b) For x, y ∈ Sd−1(
√
d)

Q
(d)
k (〈x, y〉) = 1

B(d, k)

B(d,k)∑
i=1

Y
(d)
ki (x)Y

(d)
ki (y). (22)

(c) Recurrence formula

t

d
Q

(d)
k (t) =

k

2k + d− 2
Q

(d)
k−1(t) +

k + d− 2

2k + d− 2
Q

(d)
k+1(t). (23)

(d) Rodrigues formula

Q
(d)
k (t) = (−1/2)kdk Γ((d− 1)/2)

Γ(k + (d− 1)/2)

(
1− t2

d2

)(3−d)/2(
d

dt

)k(
1− t2

d2

)k+(d−3)/2

. (24)

Note in particular that property (b) implies that—up to a constant—Q
(d)
k (〈x, y〉) is

a representation of the projector onto the subspace of degree-k spherical harmonics

(Pkf)(x) = B(d, k)

∫
Sd−1(

√
d)

Q
(d)
k (〈x, y〉)f(y)μd−1(dy). (25)

B.3. Hermite polynomials

The Hermite polynomials {Hek}k�0 form an orthogonal basis of L2(R, γ), where γ(dx) =

e−x
2/2 dx/

√
2π is the standard Gaussian measure, and Hek has degree k. We will follow

the classical normalization (here and below, expectation is with respect to G ∼ N(0, 1)):

E {Hej(G)Hek(G)} = k!δjk. (26)

As a consequence, for any function g ∈ L2(R, γ), we have the decomposition

g(x) =
∞∑
k=0

μk(g)

k!
Hek(x), μk(g) ≡ E {g(G)Hek(G)} . (27)

Notice that for functions g that are k-weakly differentiable with g(k) the kth weak
derivative, we have

μk(g) = EG[g
(k)(G)]. (28)

The Hermite polynomials can be obtained as high-dimensional limits of the Gegen-
bauer polynomials introduced in the previous section. Indeed, the Gegenbauer polynomi-
als are constructed by Gram–Schmidt orthogonalization of the monomials {xk}k�0 with
respect to the measure μ̃1

d−1, while Hermite polynomial are obtained by Gram–Schmidt

https://doi.org/10.1088/1742-5468/ac3a81 26

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

orthogonalization with respect to γ. Since μ̃1
d−1 ⇒ γ (here⇒ denotes weak convergence),

it is immediate to show that, for any fixed integer k,

lim
d→∞

Coeff{Q(d)
k (
√
dx)B(d, k)1/2} = Coeff

{
1

(k!)1/2
Hek(x)

}
. (29)

Here and below, for P a polynomial, Coeff{P (x)} is the vector of the coefficients of P .

B.4. Tensor product of spherical harmonics

We will consider in this paper the product space

PSd ≡
Q∏
q=1

S
dq−1

(√
dq

)
, (30)

and the uniform measure on PSd , denoted μd ≡ μd1−1 ⊗ . . .⊗ μdQ−1 =
⊗

q∈[Q]μdq−1, where

we recall μdq−1 ≡ Unif(Sdq−1(
√

dq)). We consider the functional space of L2(PSd , μd)
with scalar product and norm denoted as 〈·, ·〉L2 and ‖ · ‖L2 :

〈f, g〉L2 ≡
∫
PSd

f(x)g(x)μd(dx).

For � = (�1, . . . , �Q) ∈ Z
Q
�0, let Ṽ

d
� ≡ Ṽ d1,�1 ⊗ . . .⊗ Ṽ dQ,�Q be the span of tensor products

of Q homogeneous harmonic polynomials, respectively of degree �q on Rdq in variable
xq. Denote by V d

� the linear space of functions obtained by restricting the polynomials

in Ṽ d
� to PSd . With these definitions, we have the following orthogonal decomposition

L2(PSd,μd) =
⊕
�∈ZQ

�0

V d
� . (31)

The dimension of each subspace is given by

B(d, �) ≡ dim(V d
�) =

Q∏
q=1

B(dq, �q),

where we recall

B(d, �) =
2�+ d− 2

�

(
�+ d− 3

�− 1

)
.

We recall that for each � ∈ Z�0, the spherical harmonics {Y (d)
�j }j∈[B(d,�)] form an

orthonormal basis of V
(d)
� on Sd−1(

√
d). Similarly, for each � ∈ Z

Q
�0, the tensor prod-

uct of spherical harmonics {Y d
�,s}s∈[B(d,�)] form an orthonormal basis of V d

� , where
s = (s1, . . . , sQ) ∈ [B(d , �)] signify sq ∈ [B(dq, �q)] for q = 1, . . . ,Q and

https://doi.org/10.1088/1742-5468/ac3a81 27

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Y d
�,s ≡ Y

(d1)
�1,s1

⊗ Y
(d2)
�2,s2

⊗ . . .⊗ Y
(dQ)
�Q,sQ

=

Q⊗
q=1

Y
(dq)
�q,sq

.

We have the following orthonormalization property

〈Y d
�,s, Y

d
�′,s′ 〉L2 =

Q∏
q=1

〈
Y

(dq)
�qsq

, Y
(dq)
�′qs

′
q

〉
L2(Sdq−1(

√
dq))

=

Q∏
q=1

δ�q ,�′q δsq ,s′q = δ�,�′δs,s′ .

We denote by Pk the orthogonal projections on V d
k in L2(PSd , μd). This can be written

in terms of spherical harmonics as

Pkf(x) ≡
∑

s∈[B(d,k)]

〈f, Y d
k,s〉L2Y d

k,s(x). (32)

We will denote for any Q ⊂ Z
Q
�0, PQ the orthogonal projection on

⊕
k∈QV

d
k , given by

PQ =
∑
k∈Q

Pk.

Similarly, the projection on Qc, the complementary of the set Q in Z
Q
�0, is given by

PQc =
∑
k/∈Q

Pk.

B.5. Tensor product of Gegenbauer polynomials

We recall that μ̃1
d−1 denotes the distribution of

√
d〈x, ed〉 when x ∼ Unif(Sd−1(

√
d)). We

consider similarly the projection of PSd on one coordinate per sphere. We define

psd ≡
Q∏
q=1

[−dq, dq], μ̃1
d ≡ μ̃1

d1−1 ⊗ . . .⊗ μ̃1
dQ−1 =

Q⊗
q=1

μ̃1
dq−1, (33)

and consider L2(psd, μ̃1
d).

Recall that the Gegenbauer polynomials {Q(d)
k }k�0 form an orthogonal basis of

L2([−d, d], μ̃1
d−1).

Define for each k ∈ Z
Q
�0, the tensor product of Gegenbauer polynomials

Qd
k ≡ Q

(d1)
k1

⊗ . . .⊗Q
(dq)
kQ

=

Q⊗
q=1

Q
(dq)
kq

. (34)

We will use the following properties of the tensor product of Gegenbauer polynomials:

https://doi.org/10.1088/1742-5468/ac3a81 28

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Lemma 1 (Properties of products of Gegenbauer). Consider the tensor product of
Gegenbauer polynomials {Qd

k}k∈ZQ
�0

defined in equation (34). Then

(a) The set {Qd
k}k∈ZQ

�0
forms an orthogonal basis on L2(psd, μ̃1

d), satisfying the normal-

ization condition: for any k, k′ ∈ Z
Q
�0,〈

Qd
k ,Q

d
k′
〉
L2(psd)

=
1

B(d, k)
δk,k′ . (35)

(b) For x = (x(1), . . . , x(Q)) and y = (y(1), . . . , y(Q)) ∈ PSd, and k, k′ ∈ Z
Q
�0,〈

Qd
k

(
{〈x(q), ·〉}q∈[Q]

)
,Qd

k′
(
{〈y(q), ·〉}q∈[Q]

)〉
L2(PSd) =

1

B(d, k)
δk,k′Q

d
k

(
{〈x(q), y(q)〉}q∈[Q]

)
.

(36)

(c) For x = (x(1), . . . , x(Q)) and y = (y(1), . . . , y(Q)) ∈ PSd, and k ∈ Z
Q
�0,

Qd
k

(
{〈x(q), y(q)〉}q∈[Q]

)
=

1

B(d, k)

∑
s∈B(d,k)

Y d
k,s(x)Y

d
k,s(y). (37)

Notice that lemma 1(c) implies that Qd
k is (up to a constant) a representation of the

projector onto the subspace V d
k

[Pkf](x) = B(d, k)

∫
PSd

Qd
k

(
{〈x(q), y(q)〉}q∈[Q]

)
f(y)μd(dy).

Proof of lemma 1. Part (a) comes from the normalization property (20) of Gegenbauer
polynomials,〈

Qd
k,Q

d
k′
〉
L2(psd)

=
〈
Qd

k

(
{
√
dq〈eq, ·〉}q∈[Q]

)
,Qd

k′

(
{
√

dq〈eq, ·〉}q∈[Q]

)〉
L2(PSd)

=

Q∏
q=1

〈
Q

(dq)
kq

(√
dq〈eq, ·〉

)
,Q

(dq)
k′q

(√
dq〈eq, ·〉

)〉
L2(Sdq−1(

√
dq))

=

Q∏
q=1

1

B(dq, kq)
δkq ,k′q

=
1

B(d, k)
δk,k′ ,

where the {eq}q∈[Q] are unit vectors in Rdq respectively.

https://doi.org/10.1088/1742-5468/ac3a81 29

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Part (b) comes from equation (21),〈
Qd

k

(
{〈x(q), ·〉}q∈[Q]

)
,Qd

k′
(
{〈y(q), ·〉}q∈[Q]

)〉
L2(PSd)

=

Q∏
q=1

〈
Q

(dq)
kq

(
〈x(q), ·〉

)
,Q

(dq)
k′q

(
〈y(q), ·〉

)〉
L2(Sdq−1(

√
dq))

=

Q∏
q=1

1

B(dq, kq)
δkq ,k′qQ

(dq)
kq

(
〈x(q), y(q)〉

)
=

1

B(d, k)
δk,k′Q

d
k

(
{〈x(q), y(q)〉}q∈[Q]

)
,

while part (c) is a direct consequence of equation (22). �

B.6. Notations

Throughout the proofs, Od(·) (resp. od(·)) denotes the standard big-O (resp. little-o)
notation, where the subscript d emphasizes the asymptotic variable. We denote Od,P(·)
(resp. od,P(·)) the big-O (resp. little-o) in probability notation: h1(d) = Od,P(h2(d)) if for
any ε > 0, there exists Cε > 0 and dε ∈ Z>0, such that

P(|h1(d)/h2(d)| > Cε) � ε, ∀ d � dε,

and respectively: h1(d) = od,P(h2(d)), if h1(d)/h2(d) converges to 0 in probability.

We will occasionally hide logarithmic factors using the Õd(·) notation (resp. õd(·)):
h1(d) = Õd(h2(d)) if there exists a constant C such that h1(d) � C(log d)Ch2(d). Sim-

ilarly, we will denote Õd,P(·) (resp. õd,P(·)) when considering the big-O in probability
notation up to a logarithmic factor.

Furthermore, f = ωd(g) will denote f(d)/g(d)→∞.

Appendix C. General framework and main theorems

In this section, define a more general model than the model considered in the main
text. In the general model, we will assume the covariate vectors will follow a product
of uniform distributions on the sphere, and assume a target function in L2 space. We
establish more general versions of theorems 1–3 on the two-spheres cases in the main
text as theorems 5–7. We will prove theorems 5–7 in the following sections. At the end
of this section, we will show that theorems 5–7 will imply theorems 1–3 in the main
text.

https://doi.org/10.1088/1742-5468/ac3a81 30

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

C.1. Setup on the product of spheres

Assume that the data x lies on the product of Q spheres,

x =
(
x(1), . . . , x(Q)

)
∈
∏
q∈[Q]

S
dq−1(rq),

where dq = dηq and rq = d(ηq+κq)/2. Let d = (d1, . . . , dq) = (dη1 , . . . , dηq) and κ =
(κ1, . . . , κQ), where ηq > 0 and κq � 0 for q = 1, . . . ,Q. We will denote this space

PSd
κ =

∏
q∈[Q]

S
dq−1(rq). (38)

Furthermore, assume that the data is generated following the uniform distribution on
PSd

κ, i.e.

x
i.i.d.∼ Unif(PSd

κ) =
⊗
q∈[Q]

Unif
(
S
dq−1(rq)

)
≡ μκ

d . (39)

We have x ∈ RD and ‖x‖2 = R where D = dη1 + · · ·+ dηQ and R =
(dη1+κ1 + · · ·+ dηQ+κQ)1/2.

We will make the following assumption that will simplify the proofs. Denote

ξ ≡ max
q∈[Q]

{ηq + κq}, (40)

then ξ is attained on only one of the sphere, whose coordinate will be denoted qξ, i.e.
ξ = ηqξ + κqξ and ηq + κq < ξ for q �= qξ.

Let σ :R→ R be an activation function and (wi)i∈[N]∼iidUnif(SD−1) the weights. We
introduce the random feature function class

FRF(W) =

{
f̂RF(x;a) =

N∑
i=1

aiσ(〈wi, x〉
√
D/R) :ai ∈ R, ∀ i ∈ [N]

}
,

and the neural tangent function class

FNT(W) =

{
f̂RF(x;a) =

N∑
i=1

〈ai, x〉σ′(〈wi, x〉
√
D/R) :ai ∈ R

D, ∀ i ∈ [N]

}
.

We will denote θi =
√
Dwi. Notice that the normalization in the definition of the func-

tion class insures that the scalar product 〈x , θi〉/R is of order 1. This corresponds to
normalizing the data.

We consider the approximation of f by functions in function classes FRF(Θ) and
FNT(Θ).

C.2. Reparametrization

Recall (θi)i∈[N] ∼ Unif(SD−1(
√
D)) independently. We decompose θi = (θ

(1)
i , . . . , θ

(Q)
i)

into Q sections corresponding to the dq coordinates associated to the qth sphere. Let us

https://doi.org/10.1088/1742-5468/ac3a81 31

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

consider the following reparametrization of (θi)i∈[N]
i.i.d.∼ Unif(SD−1(

√
D)):(

θ
(1)
i , . . . , θ

(Q)
i , τ

(1)
i , . . . , τ

(Q)
i

)
,

where

θ
(q)
i ≡

√
dqθ

(q)
i /‖θ(q)

i ‖2, τ
(q)
i ≡ ‖θ(q)

i ‖2/
√

dq, for q = 1, . . . ,Q.

Hence

θi =
(
τ
(1)
i · θ(1)

i , . . . , τ
(Q)
i · θ(Q)

i

)
.

It is easy to check that the variables (θ(1), . . . , θ(Q)) are independent and independent

of (τ
(1)
i , . . . , τ

(Q)
i), and verify

θ
(q)
i ∼ Unif(Sdq−1(

√
dq)), τ

(q)
i ∼ d−1/2q

√
Beta

(
dq
2
,
D − dq

2

)
, for q = 1, . . . ,Q.

We will denote θi ≡ (θ
(1)
i , . . . , θ

(Q)
i) and τ i ≡ (τ

(1)
i , . . . , τ

(Q)
i). With these notations, we

have

θi ∈
∏
q∈[Q]

S
dq−1(

√
dq) ≡ PSd,

where PSd is the ‘normalized space of product of spheres’, and(
θi

)
i∈[N]

i.i.d.∼
⊗
q∈[Q]

Unif(Sdq−1(
√

dq)) ≡ μd.

Similarly, we will denote the rescaled data x ∈ PSd,

x =
(
x(1), . . . , x(Q)

)
∼
⊗
q∈[Q]

Unif(Sdq−1(
√
dq)),

obtained by taking x(q) =
√

dqx
(q)/rq = d−κq/2x(q) for each q ∈ [Q].

The proof will proceed as follows: first, noticing that τ (q) concentrates around 1 for
every q = 1, . . . ,Q, we will restrict ourselves without loss of generality to the following
high probability event

Pd,N ,ε ≡
{
Θ|τ (q)

i ∈ [1− ε, 1 + ε], ∀ i ∈ [N], ∀ q ∈ [Q]
}
⊂ S

D−1(
√
D)N ,

where ε > 0 will be chosen sufficiently small. Then, we rewrite the activation function

σ(〈·, ·〉/R) :SD−1(
√
D)× PSd

κ → R,

as a function, for a random τ (but close to (1, . . . , 1))

σd,τ : PS
d × PSd → R,

https://doi.org/10.1088/1742-5468/ac3a81 32

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

given for θ = (θ, τ) by

σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
= σ

⎛⎝∑
q∈[Q]

τ (q)rq
R

· 〈θ
(q), x(q)〉√

dq

⎞⎠ .

We can therefore apply the algebra of tensor product of spherical harmonics and use
the machinery developed in [21].

C.3. Notations

Recall the definitions d = (d1, . . . , dq), κ = (κ1, . . . , κQ), dq = dηq , rq = d(ηq+κq)/2, D =
dη1 + · · ·+ dηQ and R = (dη1+κ1 + · · ·+ dηQ+κQ)1/2. Let us denote ξ = maxq∈[Q]{ηq + κq}
and qξ = argminq∈[Q]{ηq + κq}.

Recall that (θi)i∈[N] ∼ Unif(SD−1(
√
D)) independently. Let Θ = (θ1, . . . , θN). We

denote Eθ to be the expectation operator with respect to θ ∼ Unif(SD−1(
√
D)) and

EΘ the expectation operator with respect to Θ = (θ1, . . . , θN) ∼ Unif(SD−1(
√
D))⊗N .

We will denote Eθ the expectation operator with respect to θ ≡ (θ(1), . . . , θ(Q)) ∼ μd,
EΘ the expectation operator with respect to Θ = (θ1, . . . , θN), and Eτ the expectation
operator with respect to τ (we recall τ ≡ (τ (1), . . . , τ (Q))) or (τ 1, . . . , τN) (where the τ i

are independent) depending on the context. In particular, notice that Eθ = EτEθ and
EΘ = EτEΘ.

We will denote EΘε
the expectation operator with respect to Θ = (θ1, . . . , θN)

restricted to Pd,N ,ε and Eτ ε
the expectation operator with respect to τ restricted to

[1− ε, 1 + ε]Q. Notice that EΘε
= Eτ ε

EΘ.
Let Ex to be the expectation operator with respect to x ∼ μd

κ, and Ex the expectation
operator with respect to x ∼ μd.

C.4. Generalization error of kernel ridge regression

We consider the KRR solution âi, namely

â = (H+ λIn)
−1y,

where the kernel matrix H = (Hij)ij∈[n] is assumed to be given by

Hij = h̄d(〈xi, xj〉/R2) = Eθ∼Unif(PSd)[σ(〈θ, x〉/R)σ(〈θ, y〉/R)],

and y = (y1, . . . , yn)
T = f+ ε, with

f = (fd(x1), . . . , fd(xn))
T,

ε = (ε1, . . . , εn)
T.

The prediction function at location x gives

f̂λ(x) = yT(H+ λIn)
−1h(x),

https://doi.org/10.1088/1742-5468/ac3a81 33

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

with

h(x) = [h̄d(〈x, x1〉/R2), . . . , h̄d(〈x, xn〉/R2)]T.

The test error of empirical KRR is defined as

RKRR(fd,X,λ) ≡ Ex

[(
fd(x)− yT(H+ λIn)

−1h(x)
)2]

.

We define the set QKRR(γ) ⊆ Z
Q
�0 as follows (recall that ξ ≡ maxq∈[Q](ηq + κq)):

QKRR(γ) =

{
k ∈ Z

Q
�0

∣∣∣∣ Q∑
q=1

(ξ − κq)kq � γ

}
, (41)

and the function m :R�0 → R�0 which at γ associates

m(γ) = min
k/∈QKRR(γ)

∑
q∈[Q]

(ξ − κq)kq.

Notice that by definition m(γ) > γ.
We consider sequences of problems indexed by the integer d, and we view the problem

parameters (in particular, the dimensions dq, the radii rq, the kernel hd, and so on) as
functions of d.

Assumption 1. Let {hd}d�1 be a sequence of functions hd :[−1, 1]→ R such that
Hd(x 1, x 2) = hd(〈x 1, x 2〉/d) is a positive semidefinite kernel.

(a) For γ > 0 (which is specified in the theorem), we denote L = maxq∈[Q]�γ/ηq�.
We assume that hd is L-weakly differentiable. We assume that for 0 � k � L, the

kth weak derivative verifies almost surely h
(k)
d (u) � C for some constants C > 0

independent of d. Furthermore, we assume there exists k > L such that h
(k)
d (0) �

c > 0 with c independent of d.

(b) For γ > 0 (which is specified in the theorem), we define

K = max
k∈QKRR(γ)

|k|.

We assume that σ verifies for k � K, h
(k)
d (0) � c, with c > 0 independent of d.

Theorem 5 (Risk of the KRR model). Let {fd ∈ L2(PSd
κ,μ

κ
d)}d�1 be a sequence of

functions. Assume wd(d
γ log d) � n � Od(d

m(γ)−δ) for some γ > 0 and δ > 0. Let {hd}d�1

be a sequence of functions that satisfies assumption 1 at level γ. Let X = (xi)i∈[n]
with (xi)i∈[n] ∼ Unif(PSd

κ) independently, and yi = fd(xi) + εi and εi ∼iid N(0, τ
2) for some

τ 2 � 0. Then for any ε > 0, and for any λ = Od(1), with high probability we have∣∣RKRR(fd,X,λ)− ‖PQcfd‖2L2

∣∣ � ε(‖fd‖2L2 + τ 2). (42)

See appendix D for the proof of this theorem.

https://doi.org/10.1088/1742-5468/ac3a81 34

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

C.5. Approximation error of the random features model

We consider the minimum population error for the random features model

RRF(fd,W) = inf
f∈FRF(W)

E
[
(f∗(x)− f(x))2

]
.

Let us define the sets:

QRF(γ) =

{
k ∈ Z

Q
�0

∣∣∣∣ Q∑
q=1

(ξ − κq)kq < γ

}
, (43)

QRF(γ) =

{
k ∈ Z

Q
�0

∣∣∣∣ Q∑
q=1

(ξ − κq)kq � γ

}
. (44)

Assumption 2. Let σ be an activation function.

(a) There exists constants c0, c1, with c0 > 0 and c1 < 1 such that the activation
function σ verifies σ(u)2 � c0 exp(c1u

2/2) almost surely for u ∈ R.

(b) For γ > 0 (which is specified in the theorem), we denote L = maxq∈[Q]�γ/ηq�. We
assume that σ is L-weakly differentiable. Define

K = min
k∈QRF(γ)c

|k|.

We assume that for K � k � L, the kth weak derivative verifies almost surely
σ(k)(u)2 � c0 exp(c1u

2/2) for some constants c0 > 0 and c1 < 1.
Furthermore we will assume that σ is not a degree-�γ/ηqξ� polynomial where

we recall that qξ corresponds to the unique argminq∈[Q]{ηq + κq}.
(c) For γ > 0 (which is specified in the theorem), we define

K = max
k∈QRF(γ)

|k|.

We assume that σ verifies for k � K, μk(σ) �= 0. Furthermore we assume that for
k � K, the kth weak derivative verifies almost surely σ(k)(u)2 � c0 exp(c1u

2/2) for
some constants c0 > 0 and c1 < 1.

Assumption 2(a) implies that σ ∈ L2(R, γ) where γ(dx) = e−x
2/2 dx/

√
2π is the

standard Gaussian measure. We recall the Hermite decomposition of σ,

σ(x) =
∞∑
k=0

μk(σ)

k!
Hek(x), μk(σ) ≡ EG∼N(0,1)[σ(G)Hek(G)]. (45)

Theorem 6 (Risk of the RF model). Let {fd ∈ L2(PSd
κ,μ

κ
d)}d�1 be a sequence of

functions. Let W = (wi)i∈[N] with (wi)i∈[N] ∼ Unif(SD−1) independently. We have the
following results.

https://doi.org/10.1088/1742-5468/ac3a81 35

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

(a) Assume N � od(d
γ) for a fixed γ > 0. Let σ satisfy assumptions 2(a) and (b) at

level γ. Then, for any ε > 0, the following holds with high probability:∣∣RRF(fd,W)−RRF(PQfd,W)− ‖PQcfd‖2L2

∣∣ � ε‖fd‖L2‖PQcfd‖L2 , (46)

where Q ≡ QRF(γ) is defined in equation (43).

(b) Assume N � wd(d
γ) for some positive constant γ > 0, and σ satisfy assumptions

2(a) and (c) at level γ. Then for any ε > 0, the following holds with high probability:

0 � RRF(PQfd,W) � ε‖PQfd‖2L2 , (47)

where Q ≡ QRF(γ) is defined in equation (44).

See appendix E for the proof of the lower bound (46), and appendix F for the proof
of the upper bound (47).

Remark 1. This theorems shows that for each γ /∈ (ξ − κ1)Z�0 + · · ·+ (ξ − κQ)Z�0, we
can decompose our functional space as

L2(PSd
κ,μ

κ
d) = F(β,κ, γ)⊕ F c(β,κ, γ),

where

F(β,κ, γ) =
⊕

k∈QRF(γ)

Vd
k,

F c(β,κ, γ) =
⊕

k/∈QRF(γ)

Vd
k,

such that for N = d γ, RF model fits the subspace of low degree polynomials F(β,κ, γ)
and cannot fit F c(β,κ, γ), i.e.

RRF(fd,W) ≈ ‖PQRF(γ)cfd‖2L2 .

Remark 2. In other words, we can fit a polynomial of degree k ∈ Z
Q
�0, if and only if

d(ξ−κ1)k1 · . . . · d(ξ−κQ)kQ = dk11,eff . . . d
kQ
Q,eff = od(N).

Each subspace has therefore an effective dimension dq,eff ≡ dξ−κq = d
(ξ−κq)/ηq
q �

D(ξ−κq)/maxq∈[Q]ηq . This can be understood intuitively as follows,

σ (〈θ, x〉/R) = σ

⎛⎝∑
q∈[Q]

〈θ(q), x(q)〉/R

⎞⎠ .

The term qξ (recall that qξ = argmaxq(ηq + κq) and ξ = ηqξ + κqξ) verifies

〈θ(qξ), x(qξ)〉/R = Θd(1) and has the same effective dimension dqξ ,eff = dηqξ has in

the uniform case restricted to the sphere Sdηq−1(
√
dηq) (the scaling of the sphere do not

matter because of the global normalization factor R−1). However, for ηq + κq < ξ, we

https://doi.org/10.1088/1742-5468/ac3a81 36

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

have 〈θ(q), x(q)〉/R = Θd(d
(ηq+κq−ξ)/2) and we will need dξ−κq−ηq more neurons to capture

the dependency on the qth sphere coordinates. The effective dimension is therefore
given by dq,eff = dq · dξ−κq−ηq = dξ−κq .

C.6. Approximation error of the neural tangent model

We consider the minimum population error for the random features model

RNT(fd,W) = inf
f∈FNT(W)

E
[
(f∗(x)− f(x))2

]
.

For k ∈ Z
Q
�0, we denote by S(k) ⊆ [Q] the subset of indices q ∈ [Q] such that kq > 0.

We define the sets

QNT(γ) =

{
k ∈ Z

Q
�0

∣∣∣∣ Q∑
q=1

(ξ − κq)kq < γ +

(
ξ − min

q∈S(k)
κq

)}
, (48)

QNT(γ) =

{
k ∈ Z

Q
�0

∣∣∣∣ Q∑
q=1

(ξ − κq)kq � γ +

(
ξ − min

q∈S(k)
κq

)}
. (49)

Assumption 3. Let σ :R→ R be an activation function.

(a) The activation function σ is weakly differentiable with weak derivative σ′. There
exists constants c0, c1, with c0 > 0 and c1 < 1 such that the activation function σ
verifies σ′(u)2 � c0 exp(c1u

2/2) almost surely for u ∈ R.

(b) For γ > 0 (which is specified in the theorem), we denote L = maxq∈[Q]�γ/ηq�. We
assume that σ′ is L-weakly differentiable. Define

K = min
k∈QNT(γ)c

|k|.

We assume that for K − 1 � k � L, the kth weak derivative verifies almost surely
σ(k+1)(u)2 � c0 exp(c1u

2/2) for some constants c0 > 0 and c1 < 1.
Furthermore, we assume that σ′ verifies a non-degeneracy condition. Recall that

μk(h) ≡ EG∼N(0,1)[h(G)Hek(G)] denote the kth coefficient of the Hermite expansion
of h ∈ L2(R, γ) (with γ the standard Gaussian measure). Then there exists k1, k2 �
2L+ 7[maxq∈[Q] ξ/ηq] such that μk1(σ

′),μk2(σ
′) �= 0 and

μk1(x
2σ′)

μk1(σ
′)

�= μk2(x
2σ′)

μk2(σ
′)

. (50)

(c) For γ > 0 (which is specified in the theorem), we define

K = max
k∈QNT(γ)

|k|.

We assume that σ verifies for k � K + 1, μk(σ
′) = μk+1(σ) �= 0. Furthermore

we assume that for k � K + 1, the kth weak derivative verifies almost surely
σ(k+1)(u)2 � c0 exp(c1u

2/2) for some constants c0 > 0 and c1 < 1.

https://doi.org/10.1088/1742-5468/ac3a81 37

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Assumption 3(a) implies that σ′ ∈ L2(R, γ) where γ(dx) = e−x
2/2 dx/

√
2π is the

standard Gaussian measure. We recall the Hermite decomposition of σ′:

σ′(x) =
∞∑
k=0

μk(σ
′)

k!
Hek(x), μk(σ

′) ≡ EG∼N(0,1)[σ
′(G)Hek(G)]. (51)

In assumption 3(b), it is useful to notice that the Hermite coefficients of x2σ′(x)
can be computed from the ones of σ′(x) using the relation μk(x

2σ′) = μk+2(σ
′) + [1 +

2k]μk(σ
′) + k(k − 1)μk−2(σ

′).

Theorem 7 (Risk of the NT model). Let {fd ∈ L2(PSd
κ,μ

κ
d)}d�1 be a sequence of

functions. Let W = (wi)i∈[N] with (wi)i∈[N] ∼ Unif(SD−1) independently. We have the
following results.

(a) Assume N � od(d
γ) for a fixed γ > 0. Let σ satisfy assumptions 3(a) and (b) at

level γ. Then, for any ε > 0, the following holds with high probability:∣∣RNT(fd,W)−RNT(PQfd,W)− ‖PQcfd‖2L2

∣∣ � ε‖fd‖L2‖PQcfd‖L2 , (52)

where Q ≡ QNT(γ) is defined in equation (48).

(b) Assume N � wd(d
γ) for some positive constant γ > 0, and σ satisfy assumptions

3(a) and (c) at level γ. Then for any ε > 0, the following holds with high probability:

0 � RNT(PQfd,W) � ε‖PQfd‖2L2 , (53)

where Q ≡ QNT(γ) is defined in equation (49).

See appendix G for the proof of lower bound, and appendix H for the proof of upper
bound.

Remark 3. This theorems shows that each for each γ > 0 such thatQNT(γ)
c ∩QNT(γ) =

∅, we can decompose our functional space as

L2(PSd
κ,μ

κ
d) = F(β,κ, γ)⊕ F c(β,κ, γ),

where

F(β,κ, γ) =
⊕

k∈QNT(γ)

Vd
k ,

F c(β,κ, γ) =
⊕

k/∈QNT(γ)

Vd
k ,

such that for N = d γ, NT model fits the subspace of low degree polynomials F(β,κ, γ)
and cannot fit F c(β,κ, γ) at all, i.e.

RNT(fd,W) ≈ ‖PQNT(γ)cfd‖2L2.

https://doi.org/10.1088/1742-5468/ac3a81 38

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Remark 4. In other words, we can fit a polynomial of degree k ∈ Z
Q
�0, if and only if

d(ξ−κ1)k1 · . . . · d(ξ−κQ)kQ = dk11,eff . . . d
kQ
Q,eff = od(d

βN),

where β = ξ − minq∈S(k) κq.

C.7. Connecting to the theorems in the main text

Let us connect the above general results to the two-spheres setting described in the
main text. We consider two spheres with η1 = η, κ1 = κ for the first sphere, and η2 = 1,
κ2 = 0 for the second sphere. We have ξ = max(η + κ, 1).

Let wd(d
γ log d) � n � Od(d

γ+δ) with δ > 0 constant sufficiently small, then by
theorem 5 the function subspace learned by KRR is given by the polynomials of degree
k1 in the first sphere coordinates and k2 in the second sphere with

max(η, 1− κ)k1 + max(η + κ, 1)k2 < γ.

We consider functions that only depend on the first sphere, i.e. k2 = 0 and denote
deff = dmax(η,1−κ). Then the subspace of approximation is given by the k polynomials in
the first sphere such that dkeff � dγ. Furthermore, one can check that the assumptions
listed in theorem 1 in the main text verifies assumption 1.

Similarly, for wd(d
γ) � N � Od(d

γ+δ) with δ > 0 constant sufficiently small, theorem
6 implies that the RF models can only approximate k polynomials in the first sphere such
that dkeff � dγ. Furthermore, assumptions listed in theorem 2 in the main text verifies
assumption 2.

In the case of NT, we only consider k = (k1, 0) and S(k) = {1}. We get minq∈S(k) κq =
κ. The subspace approximated is given by the k polynomials in the first sphere such
that dkeff � dγdeff. Furthermore, assumptions listed in theorem 3 in the main text verifies
assumption 3.

Appendix D. Proof of theorem 5

The proof follows closely the proof of theorem 4 in [21].

D.1. Preliminaries

Let us rewrite the kernel functions {hd}d�1 as functions on the product of normalized
spheres: for x = {x(q)}q∈[Q] and y = {y(q)}q∈[Q] ∈ PSd

κ:

hd(〈y, x〉/R2) = hd

⎛⎝∑
q∈[Q]

(r2q/R
2
√

dq) · 〈y(q), x(q)〉/
√

dq

⎞⎠
≡ hd

(
{〈y(q), x(q)〉/

√
dq}q∈[Q]

)
. (54)

https://doi.org/10.1088/1742-5468/ac3a81 39

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Consider the expansion of hd in terms of tensor product of Gegenbauer polynomials.
We have

hd(〈y, x〉/R2) =
∑
k∈ZQ

�0

λd
k(hd)B(d, k)Qd

k

(
{〈y(q), x(q)〉}q∈[Q]

)
,

where

λd
k(hd) = Ex

[
hd

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
,

where the expectation is taken over x = (x(1), . . . , x(Q)) ∼ μd.

Lemma 2. Let {hd}d�1 be a sequence of kernel functions that satisfies assumption 1.

Assume wd(d
γ) � n � od(d

m(γ)) for some γ > 0. Consider Q = QKRR(γ) as defined in
equation (41). Then there exists constants c,C > 0 such that for d large enough,

max
k/∈Q

λd
k(hd) � Cd−m(γ),

min
k∈Q

λd
k(hd) � cd−γ.

Proof of lemma 2. Notice that by lemma 18,

λd
k(hd) =

⎛⎝∏
q∈[Q]

αkq
q

⎞⎠ ·R(d, k) · Ex

⎡⎣⎛⎝∏
q∈[Q]

(
1− (x

(q)
1)2

dq

)kq
⎞⎠ · h(|k|)

d

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠⎤⎦ ,

where αq = d
−1/2
q r2q/R

2 = (1 + od(1))d
ηq/2+κq−ξ. By assumption 1(a), we have

λd
k(hd)B(d, k) � C

∏
q∈[Q]

d(κq−ξ)kq .

Furthermore, by assumption 1(b) and dominated convergence,

Ex

⎡⎣⎛⎝∏
q∈[Q]

(
1− (x

(q)
1)2

dq

)kq
⎞⎠ · h(|k|)

d

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠⎤⎦→ h
(|k|)
d (0) � c > 0,

for k � K. The lemma then follows from the same proof as in lemmas 9 and 10, where
we adapt the proofs of lemmas 19 and 20 to hd . �

D.2. Proof of theorem 5

Step 1. Rewrite the y , E , H , M matrices.
The test error of empirical KRR gives

RKRR(fd,X,λ) ≡ Ex

[(
fd(x)− yT(H+ λIn)

−1h(x))
)2]

= Ex[fd(x)
2]− 2yT(H+ λIn)

−1E+ yT(H+ λIn)
−1M(H+ λIn)

−1y,

https://doi.org/10.1088/1742-5468/ac3a81 40

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where E = (E1, . . . ,En)
T and M = (Mij)ij∈[n], with

Ei = Ex[fd(x)hd(〈x, xi〉/d)],
Mij = Ex[hd(〈xi, x〉/d)hd(〈xj, x〉/d)].

Let B =
∑

k∈QB(d, k). Define for any k ∈ Z
Q
�0,

Dk = λd
k(hd)IB(d,k),

Yk = (Y d
k,s(xi))i∈[n],s∈[B(d,k)] ∈ R

n×B(d,k),

λk = (λd
k,s(fd))

T
s∈[B(d,k)] ∈ R

B(d,k),

DQ = diag
((

λd
k(hd)IB(d,k)

)
k∈Q

)
∈ R

B×B

YQ = (Yk)k∈Q ∈ R
n×B,

λQ =
((

λT
k

)
k∈Q

)T
∈ R

B.

Let the spherical harmonics decomposition of fd be

fd(x) =
∑
k∈ZQ

�0

∑
s∈[B(d,k)]

λd
k,s(fd)Y

d
k,s(x),

and the Gegenbauer decomposition of hd be

hd

(
x
(1)
1 , . . . , x

(Q)
1

)
=
∑
k∈ZQ

�0

λd
k(hd)B(d, k)Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)
.

We write the decompositions of vectors f , E , H , and M . We have

f = YQλQ +
∑
k∈Qc

Ykλk,

E = YQDQλQ +
∑
k∈Qc

YkDkλk,

H = YQDQY
T
Q +

∑
k∈Qc

YkDkY
T
k ,

M = YQD
2
QY

T
Q +

∑
k∈Qc

YkD
2
kY

T
k .

From lemma 4, we can rewrite

H = YQDQY
T
Q + κh(In +Δh),

M = YQD
2
QY

T
Q + κuΔu,

where κh = Θd(1), κu = Od(d
−m(γ)), ‖Δh‖op = od,P(1) and ‖Δu‖op = Od,P(1).

https://doi.org/10.1088/1742-5468/ac3a81 41

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Step 2. Decompose the risk
The rest of the proof follows closely from theorem 4 in [21]. We decompose the risk

as follows

RKRR(fd,X,λ) = ‖fd‖2L2 − 2T1 + T2 + T3 − 2T4 + 2T5,

where

T1 = fT(H+ λIn)
−1E,

T2 = fT(H+ λIn)
−1M(H+ λIn)

−1f,

T3 = εT(H+ λIn)
−1M(H+ λIn)

−1ε,

T4 = εT(H+ λIn)
−1E,

T5 = εT(H+ λIn)
−1M(H+ λIn)

−1f.

Further, we denote fQ, fQc , EQ, and EQc ,

fQ = YQλQ, EQ = YQDQλQ,

fQc =
∑
k∈Qc

Ykλk, EQc =
∑
k∈Qc

YkDkλk.

Step 3. Term T 2

Note we have

T2 = T21 + T22 + T23,

where

T21 = fT
Q(H+ λIn)

−1M(H+ λIn)
−1fQ,

T22 = 2fT
Q(H+ λIn)

−1M(H+ λIn)
−1fQc ,

T23 = fT
Qc(H+ λIn)

−1M(H+ λIn)
−1fQc .

By lemma 6, we have

‖n(H+ λIn)
−1M(H+ λIn)

−1 −YQY
T
Q/n‖op = od,P(1), (55)

hence

T21 = λQY
T
Q(H+ λIn)

−1M(H+ λIn)
−1YQλQ

= λT
QY

T
QYQY

T
QYQλQ/n

2 + [‖YQλQ‖22/n] · od,P(1).

By lemma 3, we have (with ‖Δ‖2 = od,P(1))

λT
QY

T
QYQY

T
QYQλQ/n

2 = λT
Q(IB +Δ)2λQ = ‖λQ‖22(1 + od,P(1)).

https://doi.org/10.1088/1742-5468/ac3a81 42

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Moreover, we have

‖YQλQ‖22/n = λT
Q(IB +Δ)λQ = ‖λQ‖22(1 + od,P(1)).

As a result, we have

T21 = ‖λQ‖22(1 + od,P(1)) = ‖PQfd‖2L2(1 + od,P(1)). (56)

By equation (55) again, we have

T23 =

(∑
k∈Qc

λT
kY

T
k

)
(H+ λIn)

−1M(H+ λIn)
−1

(∑
k∈Qc

Ykλk

)

=

(∑
k∈Qc

λT
kY

T
k

)
YQY

T
Q

(∑
k∈Qc

Ykλk

)
/n2 +

⎡⎣∥∥∥∥∥∑
k∈Qc

Ykλk

∥∥∥∥∥
2

2

/n

⎤⎦ · od,P(1).
By lemma 5, we have

E

[(∑
k∈Qc

λT
kY

T
k

)
YQY

T
Q

(∑
k∈Qc

Ykλk

)]
/n2 =

∑
u,v∈Qc

λT
u{E[(YT

uYQY
T
QYv)]/n

2}λv

=
B

n

∑
k∈Qc

‖λk‖22.

Moreover

E

⎡⎣∥∥∥∥∥∑
k∈Qc

Ykλk

∥∥∥∥∥
2

2

/n

⎤⎦ =
∑
k∈Qc

‖λk‖22 = ‖PQcfd‖2L2.

This gives

T23 = od,P(1) · ‖PQcfd‖2L2. (57)

Using Cauchy Schwarz inequality for T 22, we get

T22 � 2(T21T23)
1/2 = od,P(1) · ‖PQfd‖L2‖PQcfd‖L2. (58)

As a result, combining equations (56)–(58), we have

T2 = ‖PQfd‖2L2 + od,P(1) · ‖fd‖2L2. (59)

Step 4. Term T 1. Note we have

T1 = T11 + T12 + T13,

https://doi.org/10.1088/1742-5468/ac3a81 43

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where

T11 = fT
Q(H+ λIn)

−1EQ,

T12 = fT
Qc(H+ λIn)

−1EQ,

T13 = fT(H+ λIn)
−1EQc .

By lemma 7, we have

‖YT
Q(H+ λIn)

−1YQDQ − IB‖op = od,P(1),

so that

T11 = λT
QY

T
Q(H+ λIn)

−1YQDQλQ = ‖λQ‖22(1 + od,P(1)) = ‖PQfd‖22(1 + od,P(1)). (60)

Using Cauchy Schwarz inequality for T 12, and by the expression of M = YQD
2
QY

T
Q +

κuΔu with ‖Δu‖op = Od,P(1) and κu = Od(d
−m(λ)), we get with high probability

|T12| =
∣∣∣∣∣∑
k∈Qc

λT
kY

T
k(H+ λIn)

−1YQDQλQ

∣∣∣∣∣
�
∥∥∥∥∥∑
k∈Qc

λT
kY

T
k(H+ λIn)

−1YQDQ

∥∥∥∥∥
2

‖λQ‖2

=

[(∑
k∈Qc

λT
kY

T
k

)
(H+ λIn)

−1YQD
2
QY

T
Q(H+ λIn)

−1

(∑
k∈Qc

λT
kY

T
k

)]1/2
‖λQ‖2

�
[(∑

k∈Qc

λT
kY

T
k

)
(H+ λIn)

−1M(H+ λIn)
−1

(∑
k∈Qc

λT
kY

T
k

)]1/2
‖λQ‖2

= T
1/2
23 ‖λQ‖2 = od,P(1) · ‖PQfd‖L2‖PQcfd‖L2. (61)

For term T 13, we have

|T13| = |fT(H+ λIn)
−1EQc | � ‖f ‖2‖(H+ λIn)

−1‖op‖EQc‖2.

Note we have E[‖f ‖22] = n‖fd‖2L2 , and ‖(H+ λIn)
−1‖op � 2/(κh + λ) with high probabil-

ity, and

E[‖EQc‖22] = n
∑
k∈Qc

λd
k(hd)

2‖Pkfd‖2L2 � n

[
max
k∈Qc

λd
k(hd)

2

]
‖PQcfd‖2L2 .

As a result, we have

|T13| � Od(1) · ‖PQcfd‖L2‖fd‖L2

[
n2 max

k∈Qc
λd
k(hd)

2

]1/2
/(κh + λ)

= od,P(1) · ‖PQcfd‖L2‖fd‖L2 , (62)

https://doi.org/10.1088/1742-5468/ac3a81 44

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where the last equality used the fact that n � Od(d
m(γ)−δ) and lemma 2. Combining

equations (60)–(62), we get

T1 = ‖PQfd‖2L2 + od,P(1) · ‖fd‖2L2. (63)

Step 5. Terms T 3,T 4 and T 5. By lemma 6 again, we have

Eε[T3]/τ
2 = tr((H+ λIn)

−1M(H+ λIn)
−1) = tr(YQY

T
Q/n

2) + od,P(1).

By lemma 3, we have

tr(YQY
T
Q/n

2) = tr(YT
QYQ)/n

2 = nB/n2 + od,P(1) = od,P(1).

This gives

T3 = od,P(1) · τ 2. (64)

Let us consider T 4 term:

Eε[T
2
4]/τ

2 = Eε[ε
T(H+ λIn)

−1EET(H+ λIn)
−1ε]/τ 2

= ET(H+ λIn)
−2E.

For any integer L, denote L ≡ [0,L]Q ∩ Z
Q
�0, and YL = (Yk)k∈L and DL = (Dk)k∈L. Then

notice that by lemmas 3, 6 and the definition of M , we get

‖DLY
T
L(H+ λIn)

−2YLDL‖op = ‖(H+ λIn)
−1YLD

2
LY

T
L(H+ λIn)

−1‖op
� ‖(H+ λIn)

−1M(H+ λIn)
−1‖op.

� ‖YQY
T
Q/n‖op/n+ oP,d(1) · /n

= od,P(1).

Therefore,

ET(H+ λIn)
−2E = lim

L→∞
ET
L(H+ λIn)

−2EL

= lim
L→∞

λT
L[DLY

T
L(H+ λIn)

−2YLDL]λL

� ‖(H+ λIn)
−1M(H+ λIn)

−1‖op · lim
L→∞

‖λL‖22

� od,P(1) · ‖fd‖2L2 ,

which gives

T4 = od,P(1) · τ‖fd‖L2 = od,P(1) · (τ 2 + ‖fd‖2L2). (65)

https://doi.org/10.1088/1742-5468/ac3a81 45

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We decompose T 5 using f = fQ + fQc ,

T5 = T51 + T52,

where

T51 = εT(H+ λIn)
−1M(H+ λIn)

−1fQ,

T52 = εT(H+ λIn)
−1M(H+ λIn)

−1fQc .

First notice that

‖M1/2(H+ λIn)
−2M1/2‖op = ‖(H+ λIn)

−1M(H+ λIn)
−1‖op = od,P(1).

Then by lemma 6, we get

Eε[T
2
51]/τ

2 = Eε[ε
T(H+ λIn)

−1M(H+ λIn)
−1fQf

T
Q(H+ λIn)

−1M(H+ λIn)
−1ε]/τ 2

= fT
Q[(H+ λIn)

−1M(H+ λIn)
−1]2fQ

� ‖M1/2(H+ λIn)
−2M1/2‖op‖M1/2(H+ λIn)

−1fQ‖22
= od,P(1) · T21

= od,P(1) · ‖PQfd‖2L2 .

Similarly, we get

Eε[T
2
52]/τ

2 = od,P(1) · T23 = od,P(1) · ‖PQcfd‖2L2.

By Markov’s inequality, we deduce that

T5 = od,P(1) · τ(‖PQfd‖L2 + ‖PQcfd‖L2) = od,P(1) · (τ 2 + ‖fd‖2L2). (66)

Step 6. Finish the proof.
Combining equations (59) and (63)–(66), we have

RKRR(fd,X,λ) = ‖fd‖2L2 − 2T1 + T2 + T3 − 2T4 + 2T5

= ‖PQcfd‖2L2 + od,P(1) · (‖fd‖2L2 + τ 2),

which concludes the proof.

D.3. Auxiliary results

Lemma 3. Let {Y d
k,s}k∈ZQ

�0,s∈[B(d,k)] be the collection of tensor product of spherical

harmonics on PSd. Let (xi)i∈[n]∼iidUnif(PSd). Denote

Yk = (Y d
k,s(xi))i∈[n],s∈[B(d,k)] ∈ R

n×B(d,k).

https://doi.org/10.1088/1742-5468/ac3a81 46

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Assume that n � wd(d
γ log d) and consider

R =

⎧⎨⎩k ∈ Z
Q
�0

∣∣∣∣∑
q∈[Q]

ηqkq < m(γ)

⎫⎬⎭ .

Denote A =
∑

k∈RB(d, k) and

YR = (Yk)k∈R ∈ R
n×A.

Then we have

YT
RYR/n = IA +Δ,

with Δ ∈ RA×A and E[‖Δ‖op] = od(1).

Proof of lemma 3. Let Ψ = YT
RYR/n ∈ RA×A. We can rewrite Ψ as

Ψ =
1

n

n∑
i=1

hih
T
i ,

where hi = (Y d
k,s(xi))k∈R,s∈[B(d,k)] ∈ RA. We use matrix Bernstein inequality. Denote Xi =

hihi − IA ∈ RA×A. Then we have E[Xi] = 0, and

‖Xi‖op � ‖hi‖22 + 1 =
∑
k∈R

∑
s∈[B(d,k)]

Y d
k,s(xi)

2 + 1

=
∑
k∈R

B(d, k)Qd
k

(
{〈x(q)

i , x
(q)
i 〉}q∈[Q]

)
+ 1 = A+ 1,

where we use formula (22) and the normalization Qd
k(d1, . . . , dQ) = 1. Denote V =

‖
∑n

i=1E[X
2
i]‖op. Then we have

V = n‖E[(hih
T
i − IA)

2]‖op = n‖E[hih
T
i hih

T
i − 2hih

T
i + IA]‖op

= n‖(A− 1)IA‖op = n(A− 1),

where we used hT
i hi = ‖hi‖22 = A and E[hi(xi)h

T
i (xi)] = (E[Y d

k,s(xi)Y
d
k′,s′(xi)])ks,k′s′ = IA.

As a result, we have for any t > 0,

P(‖Ψ− IA‖op � t) � A exp{−n2t2/[2n(A− 1) + 2(A+ 1)nt/3]}
� exp{−(n/A)t2/[10(1 + t)] + log A}. (67)

Notice that there exists C > 0 such that A � Cmaxk∈R
∏

q∈[Q]d
ηqkq � Cdγ (by definition

of m(γ) and R) and therefore n � wd(A logA). Integrating the tail bound (67) proves
the lemma. �

https://doi.org/10.1088/1742-5468/ac3a81 47

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Lemma 4. Let σ be an activation function satisfying assumption 1. Let wd(d
γ log d) �

n � Od(d
m(γ)−δ) for some γ > 0 and δ > 0. Then there exists sequences κh and κu such

that

H =
∑
k∈ZQ

�0

YkDkY
T
k = YQDQY

T
Q + κh(In +Δh), (68)

M =
∑
k∈ZQ

�0

YkD
2
kY

T
k = YQD

2
QY

T
Q + κmΔm, (69)

where κh = Θd(1), κm = Od(d
−m(γ)), ‖Δh‖op = od,P(1) and ‖Δm‖op = Od,P(1).

Proof of lemma 4. Define

R =

⎧⎨⎩k ∈ Z
Q
�0

∣∣∣∣∑
q∈[Q]

ηqkq < m(γ)

⎫⎬⎭ ,

S =

⎧⎨⎩k ∈ Z
Q
�0

∣∣∣∣∑
q∈[Q]

ηqkq � m(γ)

⎫⎬⎭ ,

such that R ∪ S = Z
Q
�0. The proof comes from bounding the eigenvalues of the matrix

YkY
T
k for k ∈ R and k ∈ S separately. From corollary 1, we have

sup
k∈S

‖YkY
T
k/B(d, k)− In‖op = od,P(1).

Hence, we can write∑
k∈S

YkDkY
T
k = κh(In +Δh,1), (70)

with κh =
∑

k∈Sλ
d
k(hd)B(d, k) = Od(1). From assumption 1(b) and a proof similar

to lemma 20, there exists k = (0, . . . , k, . . . , 0) (for k > L at position qξ) such that

lim infd→∞ λd
k(hd)B(d, k) > 0. Hence, κh = Θd(1).

From lemma 3 we have for k ∈ R ∩Qc,

YT
kYk/n = IB(d,k) +Δ,

with ‖Δ‖op = od,P(1). We deduce that ‖YkY
T
k‖op = Od,P(n). Hence,

‖YkDkY
T
k‖op = Od,P(nλ

d
k(hd)) = od,P(1),

where we used lemma 2. We deduce that∑
k∈R∩Qc

YkDkY
T
k = κhΔh,2, (71)

https://doi.org/10.1088/1742-5468/ac3a81 48

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

with ‖Δh,2‖op = od,P(1) where we used κ−1h = Od(1). Combining equations (70) and (71)
yields equation (68).

Similarly, we get∑
k∈Qc

YkD
2
kY

T
k =

∑
k∈R∩Qc

[λd
k(hd)

2n]YkY
T
k/n+

∑
k∈S

[λd
k(hd)

2B(d, k)]YkY
T
k/B(d, k).

Using lemma 2, we have λd
k(hd)

2n � Cd−2m(γ)n = Od,P(d
−m(γ)) and λd

k(hd)
2B(d, k) �

Cλd
k(hd) � C ′d−m(γ). Hence equation (69) is verified with

κm =
∑

k∈R∩Qc

λd
k(hd)

2n+
∑
k∈S

λd
k(hd)

2B(d, k).

�

Lemma 5. Let {Y d
k,s}k∈ZQ

�0,s∈[B(d,k)] be the collection of product of spherical harmonics

on L2(PSd, μd). Let (xi)i∈[n]∼iid Unif(PSd). Denote

Yk = (Y d
k,s(xi))i∈[n],s∈[B(d,k)] ∈ R

n×B(d,k).

Then for u, v, t ∈ Z
Q
�0 and u �= v, we have

E[YT
uYtY

T
t Yv] = 0.

For u, t ∈ Z
Q
�0, we have

E[YT
uYtY

T
t Yu] = [B(d, t)n+ n(n− 1)δu,t]IB(d,u).

Proof. We have

E[YT
uYtY

T
t Yv] =

∑
i,j∈[n]

∑
m∈[B(d,t)]

(E[Y d
u,p(xi)

(
Y d
t,m(xi)Y

d
t,m(xj)

)
Y d
v,q(xj)])p∈[B(d,u)],q∈[B(d,v)]

=
∑
i∈[n]

⎛⎝E

⎡⎣Y d
u,p(xi)

⎛⎝ ∑
m∈[B(d,t)]

Y d
t,m(xi)Y

d
t,m(xi)

⎞⎠Y d
v,q(xi)

⎤⎦⎞⎠
p∈[B(d,u)],q∈[B(d,v)]

+
∑

i �=j∈[n]

∑
m∈[B(d,t)]

(E[Y d
u,p(xi)Y

d
t,m(xi)Y

d
t,m(xj)Y

d
v,q(xj)])p∈[B(d,u)],q∈[B(d,v)]

= B(d, t)
∑
i∈[n]

(E[Y d
u,p(xi)Y

d
v,q(xi)])p∈[B(d,u)],q∈[B(d,v)]

+
∑

i �=j∈[n]

∑
m∈[B(d,t)]

(δu,tδp,mδt,vδq,m)p∈[B(d,u)],q∈[B(d,v)]

= (B(d, t)nδu,vδp,q + n(n− 1)δu,tδt,vδp,q)p∈[B(d,u)],q∈[B(d,v)]. (72)

https://doi.org/10.1088/1742-5468/ac3a81 49

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

This proves the lemma. �

Lemma 6. Let σ be an activation function satisfying assumption 1. Assume
ωd(d

γ log d) � n � Od(d
m(γ)−δ) for some γ > 0 and δ > 0. We have

‖n(H+ λIn)
−1M(H+ λIn)

−1 −YQY
T
Q/n‖op = od,P(1).

Proof of lemma 6. Denote

Yk = (Y d
k,s(xi))i∈[n],s∈[B(d,k)] ∈ R

n×B(d,k). (73)

Denote B =
∑

k∈QB(d, k), and

YQ = (Yk)k∈Q ∈ R
n×B,

and

DQ = diag((λd
k(hd)IB(d,k))k∈Q) ∈ R

B×B.

From lemma 4, we have

n(H+ λIn)
−1M(H+ λIn)

−1

= n(YQDQY
T
Q + (κh + λ)In + κhΔh)

−1(YQD
2
QY

T
Q + κmΔm)

× (YQDQY
T
Q + (κh + λ)In + κhΔh)

−1

= T1 + T2,

where ‖Δh‖op = od,P(1), ‖Δu‖op = Od,P(1) and κm = Od(d
−m(γ)), and

T1 = nκm(YQDQY
T
Q + (κh + λ)In + κhΔh)

−1Δm(YQDQY
T
Q + (κh + λ)In + κhΔh)

−1,

T2 = n(YQDQY
T
Q + (κh + λ)In + κhΔh)

−1YQD
2
QY

T
Q(YQDQY

T
Q + (κh + λ)In + κhΔh)

−1.

Then, we can use the same proof as in lemma 13 in [21] to bound ‖T 1‖op (recall n =

Od(d
m(γ)−δ))

‖T1‖op � 2nκm/(κh + λ)2‖Δm‖op = od,P(1),

and ‖T2 −YQY
T
Q/n‖op = od,P(1), where we only need to check that

λmin(DQ/[(κh + λ)/n]) = min
k∈Q

[nλd
k(hd)]/(κh + λ) = wd(1),

which directly follows from lemma 2. �

Lemma 7. Let σ be an activation function satisfying assumption 1. Assume
ωd(d

γ log d) � n � Od(d
m(γ)−δ) for some γ > 0 and δ > 0. We have

‖YT
Q(H+ λIn)

−1YQDQ − IB‖op = od,P(1).

https://doi.org/10.1088/1742-5468/ac3a81 50

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Proof of lemma 7. This lemma can be deduced directly from lemma 14 in [21], by
noticing that

λmin (DQ/[(κh + λ)/n] = min
k∈Q

[nλd
k(hd)]/(κh + λ) = ωd(1),

from lemma 2. �

Appendix E. Proof of theorem 6(a): lower bound for the RF model

E.1. Preliminaries

In the theorems, we show our results in high probability with respect to Θ. Hence, in
the proof we will restrict the sample space to the high probability event Pε ≡ Pd,N ,ε for
ε > 0 small enough, where

Pd,N ,ε ≡
{
Θ
∣∣∣τ (q)

i ∈ [1− ε, 1 + ε], ∀ i ∈ [N], ∀ q ∈ [Q]
}
⊂
(
S
D−1(

√
D)
)⊗N

.

(74)

We will denote Eτ ε
the expectation over τ restricted to τ (q) ∈ [1− ε, 1 + ε] for all q ∈ [Q],

and EΘε
the expectation over Θ restricted to the event Pε.

Lemma 8. Assume N = o(d γ) for some γ > 0. We have for any fixed ε > 0,

P(Pc
ε) = od(1).

Proof of lemma 8. The tail inequality in lemma 16 and the assumption N = o(dγ)
imply that there exists some constants C, c > 0 such that

P(Pc
d,N ,ε) �

∑
q∈[Q]

NP(|τ (q) − 1| > ε) �
∑
q∈[Q]

C exp(γ log(d)− cdηqε) = od(1).

�
We consider the activation function σ :R→ R. Let θ ∼ SD−1(

√
D) and x =

{x(q)}q∈[Q] ∈ PSd
κ. We introduce the function σd,τ : ps

d → R such that

σ(〈θ, x〉/R) = σ

⎛⎝∑
q∈[Q]

τ (q) · (rq/R) · 〈θ(q), x(q)〉/
√
dq

⎞⎠
≡ σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
. (75)

Consider the expansion of σd ,τ in terms of tensor product of Gegenbauer polynomials.
We have

σ(〈θ, x〉/R) =
∑
k∈ZQ

�0

λd
k(σd,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
, (76)

https://doi.org/10.1088/1742-5468/ac3a81 51

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where

λd
k(σd,τ) = Ex

[
σd,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
,

where the expectation is taken over x = (x(1), . . . , x(Q)) ∼ μd.

Lemma 9. Let σ be an activation function that satisfies assumptions 2(a) and (b).
Consider N � od(d

γ) and Q = QRF(γ) as defined in theorem 6(a). Then there exists
ε0 > 0 and d0 and a constant C > 0 such that for d � d0 and τ ∈ [1− ε0, 1 + ε0]

Q,

max
k/∈Q

λd
k(σd,τ)

2 � Cd−γ.

Proof of lemma 9. Notice that by assumption 2(b) we can apply lemma 19 to any
k ∈ Qc such that |k | = k1 + · · ·+ kQ � L. In particular, there exists C > 0, ε′0 > 0 and
d′0 such that for any k ∈ Qc with |k | � L, d � d′0 and τ ∈ [1− ε′0, 1 + ε′0]

Q,⎛⎝∏
q∈[Q]

d(ξ−ηq−κq)kq

⎞⎠B(d, k)λd
k(σd,τ)

2 � C <∞.

Furthermore, using that B(d, k) = Θ(dk11 d
k2
2 . . . d

kQ
Q), there exists C ′ > 0 such that for

k ∈ Qc with |k | � L,

λd
k(σd,τ)

2 � C ′
∏
q∈[Q]

d(ηq+κq−ξ)kqd−kqq = C ′
∏
q∈[Q]

d(κq−ξ)kq � C ′d−γ, (77)

where we used in the last inequality k /∈ QRF(γ) implies (ξ − κ1)k1 + · · ·+ (ξ − κQ)kQ �
γ by definition.

Furthermore, from assumption 2 and lemma 17(b), there exists ε′′0 > 0, d′′0 and C <
∞, such that

sup
d�d′′0

sup
τ∈[1−ε′′0 ,1+ε′′0]

Q

Ex

[
σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)2]
< C.

From the Gegenbauer decomposition (76), this implies that for any k ∈ Z
Q
�0, d � d′′0 and

τ ∈ [1− ε′′0, 1 + ε′′0]
Q,

B(d, k)λd
k(σd,τ)

2 � C.

In particular, for |k | = k1 + · · ·+ kQ > L = maxq∈[Q]�γ/ηq�, we have

λd
k(σd,τ)

2 � C

B(d, k)
� C ′

∏
q∈[Q]

d−ηqkq � C ′
∏
q∈[Q]

d−γkq/L � C ′d−γ. (78)

Combining equations (77) and (78) yields the result. �

https://doi.org/10.1088/1742-5468/ac3a81 52

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

E.2. Proof of theorem 6(a): outline

Let Q ≡ QRF(γ) as defined in theorem 6(a) and Θ =
√
DW such that θi =√

Dwi∼iid Unif(SD−1(
√
D)).

Define the random vectors V = (V1, . . . ,VN)
T, VQ = (V1,Q, . . . ,VN ,Q)

T, VQc =
(V1,Qc , . . . ,VN ,Qc)T, with

Vi,Q ≡ Ex[[PQfd](x)σ(〈θi, x〉/R)], (79)

Vi,Qc ≡ Ex[[PQcfd](x)σ(〈θi, x〉/R)], (80)

Vi ≡ Ex[fd(x)σ(〈θi, x〉/R)] = Vi,Q + Vi,Qc . (81)

Define the random matrix U = (Uij)i,j∈[N], with

Uij = Ex[σ(〈x, θi〉/R)σ(〈x, θj〉/R)]. (82)

In what follows, we write RRF(fd) = RRF(fd,W) = RRF(fd,Θ/
√
D) for the random fea-

tures risk, omitting the dependence on the weights W = Θ/
√
D. By the definition and

a simple calculation, we have

RRF(fd) = min
a∈RN

{
Ex[fd(x)

2]− 2〈a,V〉+ 〈a,Ua〉
}

= Ex[fd(x)
2]−VTU−1V,

RRF(PQfd) = min
a∈RN

{
Ex[PQfd(x)

2]− 2〈a,V��〉+ 〈a,Ua〉
}

= Ex[PQfd(x)
2]−VT

QU
−1VQ.

By orthogonality, we have

Ex[fd(x)
2] = Ex[[PQfd](x)

2] + Ex[[PQcfd](x)
2],

which gives ∣∣RRF(fd)−RRF(PQfd)− Ex[[PQcfd](x)
2]
∣∣

=
∣∣VT

QU
−1VQ −VTU−1V

∣∣
=
∣∣VT

QU
−1VQ − (VQ +VQc)TU−1(VQ +VQc)

∣∣
=
∣∣2VTU−1VQc −VT

QcU−1VQc

∣∣
� 2‖U−1/2VQc‖2‖U−1/2V‖2 + ‖U−1‖op‖VQc‖22
� 2‖U−1/2‖op‖VQc‖2‖fd‖L2 + ‖U−1‖op‖VQc‖22, (83)

where the last inequality used the fact that

0 � RRF(fd) = ‖fd‖2L2 −VTU−1V,

so that

‖U−1/2V‖22 = VTU−1V � ‖fd‖2L2.

https://doi.org/10.1088/1742-5468/ac3a81 53

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

The theorem follows from the following two claims

‖VQc‖2/‖PQcfd‖L2 = od,P(1), (84)

‖U−1‖op = Od,P(1). (85)

This is achieved by the propositions 1 and 2 stated below.

Proposition 1 (Expected norm of V). Let σ be an activation function satisfying
assumptions 2(a) and (b) for a fixed γ > 0. Denote Q = QRF(γ). Let ε > 0 and define
EQc,ε by

EQc,ε ≡ Eθε
[〈PQc,0fd, σ(〈θ, ·〉/R)〉2L2],

where we recall that Eθε
= Eτ ε

Eθ the expectation with respect to τ restricted to [1− ε, 1 +
ε]Q and θ ∼ Unif(PSd).

Then there exists a constant C > 0 and ε0 > 0 (depending only on the constants of
assumptions 2(a) and (b)) such that for d sufficiently large,

EQc,ε0 � Cd−γ · ‖PQcfd‖2L2.

Proposition 2 (Lower bound on the kernel matrix). Assume N = od(d
γ) for a fixed

integer γ > 0. Let (θi)i∈[N] ∼ Unif(SD−1(
√
D)) independently, and σ be an activation

function satisfying assumption 2(a). Let U ∈ RN×N be the kernel matrix defined by
equation (82). Then there exists a constant ε > 0 that depends on the activation function
σ, such that

λmin(U) � ε,

with high probability as d→∞.

The proofs of these two propositions are provided in the next sections.
Proposition 1 shows that there exists ε0 > 0 such that

EΘε0
[‖VQc‖22] = NEQc,ε0 � CNd−γ‖PQcfd‖2L2.

Hence, by Markov’s inequality, we get for any ε > 0,

P(‖VQc‖2 � ε · ‖PQcfd‖L2) � P({‖VQc‖2 � ε · ‖PQcfd‖L2} ∩ Pε0) + P(Pc
ε0
)

� NEQc,ε0

ε2‖PQcfd‖2L2

+ od(1)

� C ′Nd−γ + od(1),

where we used lemma 8. By assumption, we have N = od(d
γ), hence equation (84) is

verified. Furthermore equation (85) follows simply from proposition 2. This proves the
theorem.

https://doi.org/10.1088/1742-5468/ac3a81 54

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

E.3. Proof of proposition 1

We will denote:

fd(x) = fd(x),

such that f is a function on the normalized product of spheres PSd. (Note that we defined
Pkfd(x) ≡ Pkfd(x) the unambiguous polynomial approximation of fd with polynomial of
degree k.) We have

Vi,Qc = Ex

⎡⎣[PQcfd](x)σ

⎛⎝∑
q∈[Q]

〈x(q), θ
(q)
i 〉/R

⎞⎠⎤⎦
= Ex

[
[PQcfd](x)σd,τ i

(
{〈x(q), θ

(q)
i 〉/

√
dq}q∈[Q]

)]
.

We recall the expansion of σd,τ in terms of tensor product of Gegenbauer polynomials

σ(〈θ, x〉/R) =
∑
k∈ZQ

�0

λd
k(σd,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
,

λd
k(σd,τ) = Ex

[
σd,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
.

For any k ∈ Z
Q
�0, the spherical harmonics expansion of Pkfd gives

Pkfd(x) =
∑

s∈[B(d,k)]

λd
k,s(fd)Y

d
k,s(x).

Using equation (37) to get the following property

Ex

[
Qd

k′
(
{〈θ(q), x(q)〉}q∈[Q]

)
Y d
k,s(x)

]
=

1

B(d, k′)

∑
s′∈[B(d,k)]

Y d
k′,s′(θ)Ex

[
Y d
k′,s′(x)Y

d
k,s(x)

]
=

1

B(d, k)
Y d
k,s(θ)δk,k′ , (86)

we get

Ex

[
[Pkfd](x)σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)]
=
∑
k′�0

λd
k′(σd,τ)B(d, k′)

∑
s∈[B(d,k)]

λd
k,s(fd)Ex

[
Y d
k,s(x)Q

d
k

(
{〈θ(q), x(q)〉}q∈[Q]

)]
=

∑
s∈[B(d,k)]

λd
k,s(fd)λ

d
k(σd,τ)Y

d
k,s(θ).

https://doi.org/10.1088/1742-5468/ac3a81 55

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Let ε0 > 0 be a constant as specified in lemma 9. We consider

EQc,ε0 = Eθ,τ ε0

[
Ex

[
[PQcfd](x)σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)]2]
=

∑
k,k′∈Qc

Eθ,τ ε0

[
Ex

[
[Pkfd](x)σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)]
× Ey

[
[Pk′fd](y)σd,τ

(
{〈θ(q), y(q)〉/

√
dq}q∈[Q]

)]]
=

∑
k,k′∈Qc

Eτ ε0

[
λd
k(σd,τ)λ

d
k′(σd,τ)

]
×

∑
s∈[B(d,k)]

∑
s′∈[B(d,k′)]

λd
k,s(fd)λ

d
k′,s′(fd)Eθ[Y

d
k,s(θ)Y d

k′,s′(θ)]

=
∑
k∈Qc

Eτ ε0
[λd

k(σd,τ)
2]

∑
s∈[B(d,k)]

λd
k,s(fd)

2

�
[
max
k∈Qc

Eτ ε0
[λd

k(σd,τ)
2]

]
·
∑
k∈Qc

∑
s∈[B(d,k)]

λd
k,s(fd)

2

=

[
max
k∈Qc

Eτ ε0
[λd

k(σd,τ)
2]

]
· ‖PQcfd‖L2. (87)

From lemma 9, there exists a constant C > 0 such that for d sufficiently large, we
have for any k ∈ Qc,

Eτ ε0
[λd

k(σd,τ)
2] � sup

τ∈[1−ε0,1+ε0]Q
λd
k(σd,τ)

2 � Cd−γ. (88)

Combining equation (87) and (88) yields

EQc,ε0 � Cd−γ · ‖PQcfd‖L2.

E.4. Proof of proposition 2

Step 1. Construction of the activation functions σ̂, σ̄.
Without loss of generality, we will assume that qξ = 1. From assumption 2(b), σ is

not a degree �γ/η1�-polynomial. This is equivalent to having m � �γ/η1�+ 1 such that
μm(σ) �= 0. Let us denote

m = inf{k � �γ/η1�+ 1|μm(σ) �= 0}.

Recall the expansion of σd,τ in terms of product of Gegenbauer polynomials

σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
=
∑
k∈ZQ

�0

λd
k(σd,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
,

https://doi.org/10.1088/1742-5468/ac3a81 56

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where

λd
k(σd,τ) = Ex

[
σd,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
.

Denoting m = (m, 0, . . . , 0) ∈ Z
Q
�0 and using the Gegenbauer coefficients of σd,τ , we

define an activation function σ̄d,τ which is a degree m polynomial in x(1) and do not
depend on x(q) for q � 2.

σ̄d,τ

(
{θ(q), x(q)〉/

√
dq}q∈[Q]

)
= λd

m(σd,τ)B(d,m)Qd
m

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
= λd

m(σd,τ)B(d1,m)Q(d1)
m (

√
d1x

(1)
1),

and an activation function

σ̂d,τ

(
{θ(q), x(q)〉/

√
dq}q∈[Q]

)
=

∑
k�=m∈ZQ

�0

λd
k(σd,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
.

Step 2. The kernel functions ud, ûd and ūd.
Let ud, ûd and ūd be defined by

uτ 1,τ 2

d

(
{〈θ(q)

1 , θ
(q)
2 〉/

√
dq}q∈[Q]

)
= Ex[σ(〈θ1, x〉/R)σ(〈θ2, x〉/R)]

=
∑
k∈ZQ

�0

λd
k(σd,τ 1

)λd
k(σd,τ 2

)B(d, k)Qd
k

(
{〈θ(q)

1 , θ
(q)
2 〉/

√
dq}q∈[Q]

)
(89)

and

ûτ 1,τ 2

d

(
{〈θ(q)

1 , θ
(q)
2 〉/

√
dq}q∈[Q]

)
= Ex[σ̂(〈θ1, x〉/R)σ̂(〈θ2, x〉/R)]

=
∑

k�=m∈ZQ
�0

λd
k(σd,τ 1

)λd
k(σd,τ 2

)B(d, k)Qd
k

(
{〈θ(q)

1 , θ
(q)
2 〉/

√
dq}q∈[Q]

)
(90)

and

ūτ 1,τ 2

d

(
{〈θ(q)

1 , θ
(q)
2 〉/

√
dq}q∈[Q]

)
= Ex[σ̄(〈θ1, x〉/R)σ̄(〈θ2, x〉/R)]

= λd
m(σd,τ 1

)λd
m(σd,τ 2

)B(d1,m)Q(d1)
m (〈θ(1)

1 , θ
(1)
2 〉). (91)

We immediately have uτ 1,τ 2

d = ûτ 1,τ 2

d + ūτ 1,τ 2

d . Note that all three correspond to positive
semi-definite kernels.

https://doi.org/10.1088/1742-5468/ac3a81 57

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Step 3. Analyzing the kernel matrix.
Let U, Û, Ū ∈ RN×N with

Uij = u
τ i,τ j

d

(
{〈θ(q)

i , θ
(q)
j 〉/

√
dq}q∈[Q]

)
,

Ûij = û
τ i,τ j

d

(
{〈θ(q)

i , θ
(q)
j 〉/

√
dq}q∈[Q]

)
,

Ūij = ū
τ i,τ j

d

(
{〈θ(q)

i , θ
(q)
j 〉/

√
dq}q∈[Q]

)
.

Since Û = U− Ū " 0, we immediately have U " Ū. In the following, we will lower
bound Ū.

By the decomposition of Ū in terms of Gegenbauer polynomials (91), we have

Ū = B(d1,m)diag
(
λd
m(σd,τ i

)
)
·Wm · diag

(
λd
m(σd,τ i

)
)
,

where Wm ∈ RN×N with Wm,ij = Q
(d1)
m (〈θ(1)

i , θ
(1)
j 〉). From proposition 6 (recalling that by

definition of m > γ/η1, i.e. γ < mη1, we have N < dη1m−δ = dm−δ
′

1 for some δ > 0), we
have

‖Wm − IN‖op = od,P(1).

Hence we get

∥∥U−B(d1,m)diag
(
λd
m(σd,τ i

)2
)∥∥

op
= max

i∈[N]

{
B(d1,m)λd

m(σd,τ i
)2
}
· od,P(1).

(92)

From assumption 2(a) and lemma 20 applied to coefficient m, as well as the assumption
that μm(σ) �= 0, there exists ε0 > 0 and C, c > 0 such that for d large enough,

sup
τ∈[1−ε0,1+ε0]Q

B(d1,m)λd
m(σd,τ)

2 � C <∞,

inf
τ∈[1−ε0,1+ε0]Q

B(d1,m)λd
m(σd,τ)

2 � c > 0.
(93)

We restrict ourselves to the event Pε0 defined in equation (74), which happens with high
probability (lemma 8). Hence from equations (92) and (93), we deduce that with high
probability

U = B(d1,m)diag
(
λd
m(σd,τ i

)2
)
+ od,P(1) "

c

2
IN.

We conclude that with high probability

U = Ū+ Û " U " c

2
IN.

https://doi.org/10.1088/1742-5468/ac3a81 58

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Appendix F. Proof of theorem 6(b): upper bound for RF model

F.1. Preliminaries

Lemma 10. Let σ be an activation function that satisfies assumptions 2(a) and (b). Let
‖w(q)‖2 = 1 be unit vectors of Rdq , for q = 1, . . . ,Q. Fix γ > 0 and denote Q = QRF(γ).
Then there exists ε0 > 0 and d0 and constants C, c > 0 such that for d � d0 and τ ∈
[1− ε0, 1 + ε0]

Q,

Ex

[
σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)2] � C <∞, (94)

min
k∈Q

λd
k,0(σd,τ)

2 � cd−γ > 0. (95)

Proof of lemma 10. The first inequality comes simply from assumption 2(a) and
lemma 17(b). For the second inequality, notice that by assumption 2(c) we can apply
lemma 19 to any k ∈ Q. Hence (using that μk(σ)

2 > 0 and we can choose δ sufficiently
small), we deduce that there exists c > 0, ε0 > 0 and d0 such that for any d � d0, τ ∈
[1− ε0, 1 + ε0]

Q and k ∈ Q,⎛⎝∏
q∈[Q]

d(ξ−ηq−κq)kq

⎞⎠B(d, k)λd
k(σd,τ)

2 � c > 0.

Furthermore, using that B(d, k) = Θ(dk11 d
k2
2 . . . d

kQ
Q), there exists c′ > 0 such that for any

k ∈ Q,

λd
k(σd,τ)

2 � c′
∏
q∈[Q]

d(ηq+κq−ξ)kqdkqq = c′
∏
q∈[Q]

d(κq−ξ)kq � cd−γ,

where we used in the last inequality k ∈ QRF(γ) implies (ξ − κ1)k1 + · · ·+ (ξ − κQ)kQ �
γ by definition. �

F.2. Properties of the limiting kernel

Similarly to the proof of theorem 1(b) in [21], we construct a limiting kernel which is
used as a proxy to upper bound the RF risk.

We recall the definition of PSd =
∏

q∈[Q]S
dq−1(

√
dq) and μd = Unif(PSd). Let us

denote L = L2(PSd,μd). Fix τ ∈ R
Q
>0 and recall the definition for a given θ = (θ, τ)

of σd,τ ({〈θ(q), ·〉/
√
dq}) ∈ L,

σd,τ

(
{〈θq, x

(q)〉}q∈[Q]

)
= σ

⎛⎝∑
q∈[Q]

τ (q)(rq/R)〈θq, x
(q)〉

⎞⎠ .

https://doi.org/10.1088/1742-5468/ac3a81 59

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Define the operator Tτ :L→ L, such that for any g ∈ L,

Tτg(θ) = Ex

[
σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
g(x)

]
.

It is easy to check that the adjoint operator T∗τ :L→ L verifies T∗ = T with variables x
and θ exchanged.

We define the operator Kτ ,τ ′ :L→ L as Kτ ,τ ′ ≡ TτT
∗
τ ′ . For g ∈ L, we can write

Kτ 1,τ 2
g(θ1) = Eθ2

[Kτ 1,τ 2
(θ1, θ2)g(θ2)],

where

Kτ 1,τ 2
(θ1, θ2) = Ex

[
σd,τ 1

(
{〈θ(q)

1 , x(q)〉/
√
dq}q∈[Q]

)
σd,τ 2

(
{〈θ(q)

2 , x(q)〉/
√
dq}q∈[Q]

)]
.

We recall the decomposition of σd ,τ in terms of tensor product of Gegenbauer
polynomials

σd,τ

(
{x(q)

1 }q∈[Q]

)
=
∑
k∈ZQ

�0

λd
k(σd,τ)B(d, k)Qd

k

(
{x(q)

1 }q∈[Q]

)
,

λd
k(σd,τ) = Ex

[
σd,τ

(
{x(q)

1 }q∈[Q]

)
Qd

k

(
{
√
dqx

(q)
1 }q∈[Q]

)]
.

Recall that {Y d
k,s}k∈ZQ

�0,s∈[B(d,s)] forms an orthonormal basis of L. From equation (86), we

have for any k � 0 and s ∈ [B(d , k)]

TτY
d
k,s(θ) =

∑
k′∈ZQ

�0

λd
k′(σd,τ)B(d, k′)Ex

[
Qd

k′
(
{〈θ(q), x(q)〉}q∈[Q]

)
Y d
k,s(x)

]
= λd

k(σd,τ)Y
d
k,s(θ),

where we used

Ex

[
Qd

k′
(
{〈θ(q), x(q)〉}q∈[Q]

)
Y d
k,s(x)

]
=

δk,k′

B(d, k)
Yk,s(θ).

The same equation holds for T∗τ . Therefore, we directly deduce that

Kτ ,τ ′Y
d
k,s(θ) = (TτT

∗
τ ′)Y

d
k,s(θ) = λd

k(σd,τ)λ
d
k(σd,τ ′)Y

d
k,s(θ).

We deduce that {Y d
k,s}k∈ZQ

�0,s∈[B(d,s)] is an orthonormal basis that diagonalizes the operator

Kτ ,τ ′ .

https://doi.org/10.1088/1742-5468/ac3a81 60

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Let ε0 > 0 be defined as in lemma 10. We will consider τ , τ ′ ∈ [1− ε0, 1 + ε0]
Q and

restrict ourselves to the subspace V d
Q . From the choice of ε0 and for d large enough,

the eigenvalues λd
k(σd,τ)λ

d
k(σd,τ ′) �= 0 for any k ∈ Q. Hence, the operator Kτ ,τ ′ |V d

Q
is

invertible.

F.3. Proof of theorem 6(b)

Without loss of generality, let us assume that {fd} are polynomials contained in V d
Q , i.e.

fd = PQfd.
Consider

f̂(x;Θ,a) =
N∑
i=1

aiσ(〈θi, x〉/R).

Define ατ (θ) ≡ K−1
τ ,τTτfd(θ) and choose a∗i = N−1ατ i

(θi), where we denoted θi =

(θ
(q)
i)q∈[Q] with θ

(q)
i = θ

(q)
i /τ

(q)
i ∈ Sdq−1(

√
dq) and τ

(q)
i = ‖θ(q)

i ‖2/
√
dq independent of θ

(q)
i .

Let ε0 > 0 be defined as in lemma 10 and consider the expectation over Pε0 of the
RF risk (in particular, a∗ = (a∗1, . . . , a

∗
N) are well defined):

EΘε0
[RRF(fd,Θ)] = EΘε0

[
inf
a∈RN

Ex[(fd(x)− f̂(x;Θ,a))2]

]
� EΘε0

[
Ex

[
(fd(x)− f̂(x;Θ,a∗(Θ)))2

]]
.

We can expand the squared loss at a ∗ as

Ex[(fd(x)− f̂(x;Θ,a∗))2] = ‖fd‖2L2 − 2

N∑
i=1

Ex[a
∗
i σ(〈θi, x〉/R)fd(x)]

+

N∑
i,j=1

Ex[a
∗
i a

∗
jσ(〈θi, x〉/R)σ(〈θj, x〉/R)]. (96)

The second term of the expansion (96) around a ∗ verifies

EΘε0

[
N∑
i=1

Ex [a
∗
i σ(〈θi, x〉/R)fd(x)]

]

= Eτ ε0

[
Eθ

[
ατ (θ)Ex

[
σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
fd(x)

]]]
= Eτ ε0

[
〈K−1

τ ,τTτfd,Tτfd〉L2

]
= ‖fd‖2L2 , (97)

where we used that for each τ ∈ [1− ε0, 1 + ε0]
Q, we have T

∗
τK

−1
τ ,τTτ |V d

Q
= I|V d

Q
.

https://doi.org/10.1088/1742-5468/ac3a81 61

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Let us consider the third term in the expansion (96) around a∗: the non diagonal
term verifies

EΘε0

[∑
i �=j

Ex

[
a∗i a

∗
jσ(〈θi, x〉/R)σ(〈θj, x〉/R)

]]

=
(
1−N−1)

Eτ 1
ε0
,τ 2

ε0
,θ1,θ2

[
ατ 1(θ1)ατ 2(θ2)

×Ex

[
σd,τ 1

(
{〈θ(q)

1 , x(q)〉/
√
dq}q∈[Q]

)
σd,τ 2

(
{〈θ(q)

2 , x(q)〉/
√
dq}q∈[Q]

)]]
=
(
1−N−1)

Eτ 1
ε0
,τ 2

ε0
,θ1,θ2

[
K
−1
τ 1,τ 1Tτ 1fd(θ1)Kτ 1,τ 2(θ1, θ2)K

−1
τ 2,τ 2Tτ 2fd(θ2)

]
=
(
1−N−1)

Eτ 1
ε0
,τ 2

ε0

[
〈K−1

τ 1,τ 1Tτ 1fd,Kτ 1,τ 2K
−1
τ 2,τ 2Tτ 2fd〉L2

]
.

For k ∈ Q and s ∈ [B(d , k)] and τ 1, τ 2 ∈ [1− ε0, 1 + ε0]
Q, we have (for d large enough)

T
∗
τ 1K

−1
τ 1,τ 1Kτ 1,τ 2K

−1
τ 2,τ 2Tτ 2Y d

k,s =
(
T
∗
τ 1K

−1
τ 1,τ 1Tτ 1

)
·
(
T
∗
τ 2K

−1
τ 2,τ 2Tτ 2

)
· Y d

k,s = Y d
k,s.

Hence for any τ 1, τ 2 ∈ [1− ε0, 1 + ε0]
Q, T∗τ 1K

−1
τ 1,τ 1Kτ 1,τ 2K

−1
τ 2,τ 2Tτ 2|V d

Q
= I|V d

Q
. Hence

EΘε0

[∑
i �=j

Ex

[
a∗i a

∗
jσ(〈θi, x〉/R)σ(〈θj, x〉/R)

]]
=
(
1−N−1) ‖fd‖2L2. (98)

The diagonal term verifies

EΘε0

⎡⎣∑
i∈[N]

Ex

[
(a∗i)

2σ(〈θi, x〉/R)2
]⎤⎦

= N−1
Eτ ε0

,θ

[
ατ (θ)2Kτ ,τ (θ, θ)

]
� N−1

[
max

θ,τ∈[1−ε0,1+ε0]Q
Kτ ,τ (θ, θ)

]
· Eτ ε0

[‖K−1
τ ,τTτfd‖2L2].

We have by definition of Kτ ,τ

sup
τ∈[1−ε0,1+ε0]Q

Kτ ,τ (θ, θ) = sup
τ∈[1−ε0,1+ε0]Q

‖σd,τ‖2L2 � C,

for d large enough (using lemma 10). Furthermore

‖K−1
τ ,τTτfd‖2L2 =

∑
k∈Q

1

λd
k(σd,τ)2

∑
s∈[B(d,k)]

λd
k,s(fd)

2

�
[
max
k∈Q

1

λd
k(σd,τ)2

]
· ‖PQfd‖2L2 .

https://doi.org/10.1088/1742-5468/ac3a81 62

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

From lemma 10, we get

Eτ ε0
[‖K−1

τ ,τTτfd‖2L2] � Cdγ · ‖PQfd‖2L2.

Hence,

EΘε0

⎡⎣∑
i∈[N]

Ex

[
(a∗i)

2σ(〈θi, x〉/R)2
]⎤⎦ � C

dγ

N
‖PQfd‖2L2. (99)

Combining equations (97)–(99), we get

EΘε0
[RRF(fd,Θ)]

� EΘε0

[
Ex

[(
fd(x)− f̂(x;Θ,a∗(Θ))

)2
]]

= ‖fd‖2L2 − 2‖fd‖2L2 + (1−N−1)‖fd‖2L2 +N−1
Eτ ε0

,θ

[
(ατ (θ))2Kτ ,τ (θ, θ)

]
� C

dγ

N
‖PQfd‖2L2.

By Markov’s inequality, we get for any ε > 0 and d large enough,

P(RRF(fd,Θ) > ε · ‖fd‖2L2) � P({RRF(fd,Θ) > ε · ‖fd‖2L2} ∩ Pε0) + P(Pc
ε0
)

� C ′d
γ

N
+ P(Pc

ε0
).

The assumption N = ωd(d
γ) and lemma 8 conclude the proof.

Appendix G. Proof of theorem 7(a): lower bound for NT model

G.1. Preliminaries

We consider the activation function σ :R→ R with weak derivative σ′. Consider
σ′d,τ : ps

d → R defined as follows

σ′(〈θ, x〉/R) = σ′

⎛⎝∑
q∈[Q]

τ (q) · (rq/R) · 〈θ(q), x(q)〉/
√
dq

⎞⎠
≡ σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
. (100)

https://doi.org/10.1088/1742-5468/ac3a81 63

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Consider the expansion of σ′d,τ in terms of product of Gegenbauer polynomials. We have

σ′(〈θ, x〉/R) =
∑
k∈ZQ

�0

λd
k(σ

′
d,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
, (101)

where

λd
k(σ

′
d,τ) = Ex

[
σ′d,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
,

where the expectation is taken over x = (x(1), . . . , x(Q)) ∼ μd.

Lemma 11. Let σ be an activation function that satisfies assumptions 3(a) and (b).

Define for k ∈ Z
Q
�0 and τ ∈ R

Q
�0,

A
(q)
τ ,k = r2q · [tdq,kq−1λd

kq−(σ
′
d,τ)

2B(d, kq−) + sdq ,kq+1λ
d
kq+

(σ′d,τ)
2B(d, kq+)], (102)

with kq+ = (k1, . . . , kq + 1, . . . , kQ) and kq− = (k1, . . . , kq − 1, . . . , kQ), and

sd,k =
k

2k + d− 2
, td,k =

k + d− 2

2k + d− 2
,

with the convention td,−1 = 0. Then there exists constants ε0 > 0 and C > 0 such that
for d large enough, we have for any τ ∈ [1− ε0, 1 + ε0]

Q and k ∈ QNT(γ)
c,

A
(q)
τ ,k

B(d, k)
�
{
Cdξd−γ−(ξ−minq∈S(k)κq) if kq > 0,

Cdηq+2κq−ξd−γ−(ξ−minq∈S(k)κq) if kq = 0,

where we recall S(k) ⊂ [Q] is the subset of indices corresponding to the non zero integers
kq > 0.

Proof of lemma 11. Let us fix an integer M such that Q ⊂ [M]Q. We will denote Q ≡
QNT(γ) for simplicity. Following the same proof as in lemma 9, there exists ε0 > 0, d0 and
C > 0 such that for any d � d0 and τ ∈ [1− ε0, 1 + ε0]

Q, we have for any k ∈ Qc ∩ [M]Q,

λd
k(σ

′
d,τ)

2 � Cd−γ−(ξ−minq∈S(k)κq),

λd
kq−(σ

′
d,τ)

2 � Cdξ−κq−γ−(ξ−minq∈S(k)κq),

λd
kq+

(σ′d,τ)
2 � Cdκq−ξ−γ−(ξ−minq∈S(k)κq),

while for k /∈ [M]Q, we get

max{λd
k(σ

′
d,τ)

2,λd
kq−(σ

′
d,τ)

2,λd
kq+

(σ′d,τ)
2} � Cd

−(M−1)min
q∈[Q]

ηq
.

https://doi.org/10.1088/1742-5468/ac3a81 64

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Injecting this bound in the formula (102) of A
(q)
τ ,k, we get for d � d0, τ ∈ [1− ε0, 1 + ε0]

Q

and any k ∈ Qc ∩ [M]Q: if kq > 0,

A
(q)
τ ,k

B(d, k)
� C ′dηq+κqdξ−κq−γ−(ξ−minq∈S(k)κq) = C ′dξd−γ−(ξ−minq∈S(k)κq),

while for kq = 0,

A
(q)
τ ,k

B(d, k)
� C ′dηq+κqd−ηqdκq+ηq−ξ−γ−(ξ−minq∈S(k)κq) = C ′dηq+2κq−ξd−γ−(ξ−minq∈S(k)κq),

where we used that for kq ∈ [M], there exists a constant c > 0 such that sdq,kq � cd−ηq

and tdq ,kq � c. Similarly, we get for k /∈ [M]Q

A
(q)
τ ,k

B(d, k)
� C ′′dκq+ηq−(M−1)minq∈[Q]ηq ,

where we used that sdq ,k, tdq,k � 1 for any k ∈ Z�0. Taking M sufficiently large yields the
result. �

G.2. Proof of theorem 7(a): outline

The structure of the proof for the NT model is the same as for the RF case, however
some parts of the proof requires more work.

We define the random vectorV = (V1, . . . ,VN)
T ∈ RNd, where, for each j � N ,Vj ∈

R
D, and analogously VQ = (V1,Q, . . . ,VN ,Q)

T ∈ R
ND, VQc = (V1,Qc , . . . ,VN ,Qc)T ∈ R

ND,
as follows

Vi,Q = Ex[[PQfd](x)σ
′(〈θi, x〉/R)x],

Vi,Qc = Ex[[PQcfd](x)σ
′(〈θi, x〉/R)x],

Vi = Ex[fd(x)σ
′(〈θi, x〉/R)x] = Vi,Q +Vi,Qc .

We define the random matrix U = (Uij)i,j∈[N] ∈ RND×ND, where for each i, j � N , Uij ∈
RD×D, is given by

Uij = Ex[σ
′(〈x, θi〉/R)σ′(〈x, θj〉/R)xxT]. (103)

Proceeding as for the RF model, we obtain∣∣RNT(fd)−RNT(PQfd)− ‖PQcfd‖2L2

∣∣
=
∣∣VT

QU
−1VQ −VTU−1V

∣∣
=
∣∣VT

QU
−1VQ − (VQ +VQc)TU−1(VQ +VQc)

∣∣
=
∣∣2VTU−1VQc −VT

QcU−1VQc

∣∣
� 2‖U−1/2VQc‖2‖fd‖L2 +VT

QcU−1VQc .

https://doi.org/10.1088/1742-5468/ac3a81 65

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We claim that we have

‖U−1/2VQc‖22 = VT
QcU−1VQc = od,P(‖PQcfd‖2L2). (104)

To show this result, we will need the following two propositions.

Proposition 3 (Expected norm of V). Let σ be a weakly differentiable activation

function with weak derivative σ′ and Q ⊂ Z
Q
�0. Let ε > 0 and define E (q)

Qc,ε by

E (q)
Qc,ε ≡ Eθε

[
〈Ex[[PQcfd](x)σ

′(〈θ, x〉/R)x(q)],Ex[[PQcfd](x)σ
′(〈θ, x〉/R)x(q)]〉

]
,

where the expectation is taken with respect to x = (x(1), . . . , x(Q)) ∼ μκ
d. Then,

E (q)
Qc,ε0

�
[
max
k∈Qc

B(d, k)−1Eτ ε0
[A

(q)
τ ,k]

]
· ‖PQcfd‖2L2 .

Proposition 4 (Lower bound on the kernel matrix). Let N = od(d
γ) for some γ > 0,

and (θi)i∈[N] ∼ Unif(SD−1(
√
D)) independently. Let σ be an activation that satisfies

assumptions 3(a) and (b). Let U ∈ RND×ND be the kernel matrix with i, j block Uij ∈
RD×D defined by equation (103). Then there exists two matrices D and Δ such that

U " D+Δ,

with D = diag(Dii) block diagonal. Furthermore, D and Δ verifies the following proper-
ties:

(a) ‖Δ‖op = od,P(d
−maxq∈[Q]κq).

(b) For each i ∈ [N], we can decompose the matrix D ii into block matrix form

(Dqq′

ii)q,q′∈[Q] ∈ R
DN×DN with Dqq′

ii ∈ R
dqN×dq′N such that

• For any q ∈ [Q], there exists constants cq,Cq > 0 such that we have with high
probability

0 < cq
r2q
dq

= cqd
κq � min

i∈[N]
λmin(D

qq
ii) � max

i∈[N]
λmax(D

qq
ii)

� Cq

r2q
dq

= Cqd
κq <∞, (105)

as d→∞.

• For any q �= q′ ∈ [Q], we have

max
i∈[N]

σmax(D
qq′

ii) = od,P(rqrq′/
√
dqdq′). (106)

The proofs of these two propositions are provided in the next sections.

https://doi.org/10.1088/1742-5468/ac3a81 66

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

From proposition 4, we can upper bound equation (104) as follows

VT
QcU−1VQc # VT

Qc(D+Δ)−1VQc = VT
QcD−1VQc −VT

QcD−1Δ(D+Δ)−1VQc . (107)

Let us fix ε0 > 0 as prescribed in lemma 11. We decompose the vector Vi,Qc =

(V
(q)
i,Qc)q∈[Q] where

V
(q)
i,Qc = Ex[[PQcfd](x)σ

′(〈θi, x〉/R)x(q)].

We denote V
(q)
Qc = (V

(q)
1,Qc , . . . ,V

(q)
N ,Qc) ∈ RdqN . From proposition 3, we have

dq
r2q
EΘε0

[‖V(q)
Qc‖22] �

[
max
k∈Qc

Nd−κqB(d, k)−1Eτ ε0
[A

(q)
τ ,k]

]
· ‖PQcfd‖2L2.

Hence, using the upper bounds on A
(q)
τ ,k in lemma 11, we get for k ∈ Qc with kq > 0:

Nd−κqB(d, k)−1Eτε0
[A

(q)
τ ,k] � CNd−κqd−γ+minq∈S(k)κq = od(1),

where we used that N = od(d
γ) and κq � minq∈S(k) κq (we have kq > 0 and therefore

q ∈ S(k) by definition). Similarly for k ∈ Qc with kq = 0:

Nd−κqB(d, k)−1Eτ ε0
[A

(q)
τ ,k] � CNdηq+κq−ξd−γ−(ξ−minq∈S(k)κq) = od(1),

where we used that by definition of ξ we have ηq + κq � ξ and minq∈S(k) κq � ξ. We
deduce that

dq
r2q
EΘε0

[‖V(q)
Qc‖22] = od(1) · ‖PQcfd‖2L2 ,

and therefore by Markov’s inequality that

dq
r2q
‖V(q)

Qc‖22 = od,P(1) · ‖PQcfd‖2L2 . (108)

Notice that the properties (105) and (106) imply that there exists c > 0 such
that with high probability λmin(D) � mini∈[N]λmin(D ii) � c. In particular, we deduce
that ‖(D +Δ)−1‖op � c−1/2 with high probability. Combining these bounds and
equation (108) and recalling that ‖Δ‖op = od,P(d

−maxq∈[Q]κq) show that

|VT
QcD−1Δ(D+Δ)−1VQc | � ‖D−1‖op‖(D+Δ)−1‖op

∑
q∈[Q]

‖Δ‖op‖V(q)
Qc‖22

= od,P(1) · ‖PQcfd‖2L2. (109)

https://doi.org/10.1088/1742-5468/ac3a81 67

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We are now left to show VT
QcD−1VQc = od,P(1). For each i ∈ [N], denote Bii = D−1

ii

and notice that we can apply lemma 24 to B ii and get

max
i∈[N]

‖Bqq
ii ‖op = Od,P

(
dq
r2q

)
, max

i∈[N]
‖Bqq′

ii ‖op = od,P

(√
dqdq′

rqrq′

)
.

Therefore,

VT
QcD−1VQc =

∑
i∈[N]

∑
q,q′∈[Q]

(V
(q)
i,Qc)TBqq′

ii V
(q′)
i,Qc

�
∑

q,q′∈[Q]

Od,P(1) ·
(
dq
r2q
‖V(q)

Qc‖22
)1/2

(
dq′

r2q′
‖V(q′)

Qc ‖22

)1/2

. (110)

Using equation (108) in equation (110), we get

VT
QcD−1VQc = od,P(1) · ‖PQcfd‖2L2. (111)

Combining equations (109) and (111) yields equation (104). This proves the theorem.

G.3. Proof of proposition 3

Proof of proposition 3. Let us consider ε0 > 0 as prescribed in lemma 11. We have
for q ∈ [Q]

E (q)
Qc,ε0

= Eθε

[
〈Ex[[PQcfd](x)σ

′(〈θ, x〉/R)x(q)],Ey[[PQcfd](y)σ
′(〈θ, y〉/R)y(q)]〉

]
= Eτ ε0

[
Ex,y

[
[PQcfd](x)[PQcf](y)H (q)

τ (x, y)
]]

,

where we denoted H
(q)
τ the kernel given by

H (q)
τ (x, y) = Eθ

[
σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
σ′d,τ

(
{〈θ(q), y(q)〉/

√
dq}q∈[Q]

)]
〈x(q), y(q)〉.

Then we have

H (q)
τ (x, y) =

∑
k∈ZQ

�0

A
(q)
τ ,kQ

d
k

(
{〈x(q), y(q)〉}q∈[Q]

)
, (112)

where A
(q)
τ ,k is given in lemma 12. Hence we get

E (q)
Qc,ε0

= Eτ ε0
[Ex,y[PQcfd(x)PQcfd(y)H

(q)
τ (x, y)]]

=
∑
k∈ZQ

�0

Eτ ε0
[A

(q)
τ ,k]Ex,y

[
Qd

k

(
{〈x(q), y(q)〉}q∈[Q]

)
[PQcfd](x)[PQcfd](y)

]
.

https://doi.org/10.1088/1742-5468/ac3a81 68

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We have

Ex,y

[
Qd

k

(
{〈x(q), y(q)〉}q∈[Q]

)
[PQcfd](x)[PQcfd](y)

]
=

∑
l,l′∈Qc

∑
s∈[B(d,l)]

∑
s′∈[B(d,l′)]

λd
l,s(fd)λ

d
l′,s′(fd)Ex,y

[
Qd

k

(
{〈x(q), y(q)〉}q∈[Q]

)
Y d
l,s(x)Y

d
l′,s′(y)

]

= δk∈Qc

∑
s∈[B(d,k)]

λd
k,s(fd)

2

B(d, k)
,

where we used in the third line

Ex,y

[
Qd

k

(
{〈x(q), y(q)〉}q∈[Q]

)
Y d
l,s(x)Y

d
l′,s′(y)

]
= Ey

[
Ex

[
Qd

k

(
{〈x(q), y(q)〉}q∈[Q]

)
Y d
l,s(x)

]
Y d
l′,s′(y)

]
=

δk,l
B(d, k)

Ey

[
Y d
k,s(y)Y

d
l′,s′(y)

]
=

δk,lδk,l′δs,s′

B(d, k)
.

We conclude that

E (q)
Qc,ε0

=
∑
k∈ZQ

�0

Eτ ε0
[A

(q)
τ ,k]

∑
s∈[B(d,k)]

λd
k,s(fd)

2

B(d, k)
δk∈Qc

=
∑
k∈Qc

Eτ ε0
[A

(q)
τ ,k]

B(d, k)
‖Pkfd‖2L2

�
[
max
k∈Qc

B(d, k)−1Eτ ε0
[A

(q)
τ ,k]

]
· ‖PQcfd‖2L2.

�

Lemma 12. Let σ be a weakly differentiable activation function with weak derivative
σ′. For a fixed τ ∈ R

Q
�0, define the kernels for q ∈ [Q],

H (q)
τ (x, y) =

r2q
dq
Eθ

[
σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
σ′d,τ

(
{〈θ(q), y(q)〉/

√
dq}q∈[Q]

)]
〈x(q), y(q)〉.

Then, we have the following decomposition in terms of product of Gegenbauer polyno-
mials

H (q)
τ (x, y) =

∑
k∈Z2

�0

A
(q)
τ ,kQ

d
k

(
{〈x(q), y(q)〉}q∈[Q]

)
,

https://doi.org/10.1088/1742-5468/ac3a81 69

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where

A
(q)
τ ,k = r2q · [tdq,kq−1λd

kq−(σ
′
d,τ)

2B(d, kq−) + sdq ,kq+1λ
d
kq+

(σ′d,τ)
2B(d, kq+)],

with kq+ = (k1, . . . , kq + 1, . . . , kQ) and kq− = (k1, . . . , kq − 1, . . . , kQ), and

sd,k =
k

2k + d− 2
, td,k =

k + d− 2

2k + d− 2
,

with the convention td,−1 = 0.

Proof of lemma 12. Recall the decomposition of σ′ in terms of tensor product of
Gegenbauer polynomials,

σ′(〈θ, x〉/R) =
∑
k∈ZQ

�0

λd
k(σ

′
d,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
,

λd
k(σ

′
d,τ) = Ex

[
σ′d,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dqx

(Q)
1

)]
.

Injecting this decomposition into the definition of H
(q)
τ yields

H (q)
τ (x, y) =

r2q
dq
Eθ

[
σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
σ′d,τ

(
{〈θ(q), y(q)〉/

√
dq}q∈[Q]

)]
〈x(q), y(q)〉

=
r2q
dq

∑
k,k′∈ZQ

�0

λd
k(σ

′
d,τ)λ

d
k′(σ

′
d,τ)B(d, k)B(d, k′)

× Eθ

[
Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
Qd

k′
(
{〈θ(q), y(q)〉}q∈[Q]

)]
〈x(q), y(q)〉.

Recalling equation (36), we have

Eθ

[
Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
Qd

k′
(
{〈θ(q), y(q)〉}q∈[Q]

)]
= δk,k′

Qd
k

(
{〈x(q), y(q)〉}q∈[Q]

)
B(d, k)

.

Hence,

H (q)
τ (x, y) =

r2q
dq

∑
k∈ZQ

�0

λd
k(σ

′
d,τ)

2B(d, k)Qd
k

(
{〈x(q), y(q)〉}q∈[Q]

)
〈x(q), y(q)〉

= r2q
∑
k∈ZQ

�0

λd
k(σ

′
d,τ)

2B(d, k)
[
Q

(dq)
kq

(〈x(q), y(q)〉)〈x(q), y(q)〉/dq
]

×
∏
q′ �=q

Qd
kq′
(〈x(q′), y(q′)〉).

https://doi.org/10.1088/1742-5468/ac3a81 70

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

By the recurrence relationship for Gegenbauer polynomials (23), we have

t

dq
Q

(dq)
kq

(t) = sdq ,kqQ
(dq)
kq−1(t) + tdq ,kqQ

(dq)
kq+1(t),

where (we use the convention tdq ,−1 = 0)

sdq,kq =
kq

2kq + dq − 2
, tdq ,kq =

kq + dq − 2

2kq + dq − 2
.

Hence we get,

H (q)
τ (x, y) = r2q

∑
k∈ZQ

�0

λd
k(σ

′
d,τ)

2B(d, k)
[
Q

(dq)
kq

(〈x(q), y(q)〉)〈x(q), y(q)〉/dq
]

×
∏
q′ �=q

Qd
kq′
(〈x(q′), y(q′)〉)

= r2q
∑
k∈ZQ

�0

λd
k(σ

′
d,τ)

2B(d, k)
[
sdq,kqQ

(dq)
kq−1(〈x

(q), y(q)〉) + tdq ,kqQ
(dq)
kq+1(〈x(q), y(q)〉)

]
×
∏
q′ �=q

Qd
kq′
(〈x(q′), y(q′)〉)

=
∑
k∈Z2

�0

A
(q)
τ ,kQ

d
k

(
{〈x(q), y(q)〉}q∈[Q]

)
,

where we get by matching the coefficients,

A
(q)
τ ,k = r2q · [tdq,kq−1λd

kq−(σ
′
d,τ)

2B(d, kq−) + sdq ,kq+1λ
d
kq+

(σ′d,τ)
2B(d, kq+)],

with k q+ = (k1, . . . , kq + 1, . . . , kQ) and k q− = (k1, . . . , kq − 1, . . . , kQ). �

G.4. Proof of proposition 4

G.4.1. Preliminaries.

Lemma 13. Let ψ :RQ → R be a function such that ψ({〈eq, ·〉}q∈[Q]) ∈ L2(PSd,μd). We

will consider for integers i = (i1, . . . , iQ) ∈ Z
Q
�0, the associated function ψ(i) given by:

ψ(i)
(
x
(1)
1 , . . . , x

(Q)
1

)
=
(
x
(1)
1

)i1
. . .

(
x
(Q)
1

)iQ
ψ
(
x
(1)
1 , . . . , x

(Q)
1

)
.

https://doi.org/10.1088/1742-5468/ac3a81 71

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Assume that ψ(i)({〈eq, ·〉}q∈[Q]) ∈ L2(PSd,μd). Let {λd
k(ψ)}k∈ZQ

�0
be the coefficients of the

expansion of ψ in terms of the product of Gegenbauer polynomials

ψ
(
x
(1)
1 , . . . , x

(Q)
1

)
=
∑
k∈ZQ

�0

λd
k(ψ)B(d, k)Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)
,

λd
k(ψ) = Ex

[
ψ
(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
.

Then we can write

ψ(i)
(
x
(1)
1 , . . . , x

(Q)
1

)
=
∑
k∈ZQ

�0

λd,i
k (ψ)B(d, k)Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)
,

where the coefficients λd,i
k (ψ) are given recursively: denoting iq+ = (i1, . . . , iq + 1, . . . , iQ),

if kq = 0,

λ
d,iq+
k (ψ) =

√
dqλ

d,i
kq+

(ψ),

and for kq > 0,

λ
d,iq+
k (ψ) =

√
dq

kq + dq − 2

2kq + dq − 2
λd,i
kq+

(ψ) +
√

dq
kq

2kq + dq − 2
λd,i
kq−

(ψ),

where we recall the notations kq+ = (k1, . . . , kq + 1, . . . , kQ) and kq− = (k1, . . . , kq −
1, . . . , kQ).

Proof of lemma 13. We recall the following two formulas for k � 1 (see appendix B.2):

x

d
Q

(d)
k (x) =

k

2k + d− 2
Q

(d)
k−1(x) +

k + d− 2

2k + d− 2
Q

(d)
k+1(x),

B(d, k) =
2k + d− 2

k

(
k + d− 3

k − 1

)
.

Furthermore, we have Q
(d)
0 (x) = 1, Q

(d)
1 (x) = x/d and therefore therefore xQ

(d)
0 (x) =

dQ
(d)
1 (x). Similarly to the proof of lemma 6 in [21], we insert these expressions in the

expansion of the function ψ. Matching the coefficients of the expansion yields the result.
�

Let u :SD−1(
√
D)× SD−1(

√
D)→ RD×D be a matrix-valued function defined by

u(θ1, θ2) = Ex[σ
′(〈θ1, x〉/R)σ′(〈θ2, x〉/R)xxT].

We can write this function as a Q by Q block matrix function u = (u(qq′))q,q′∈[Q], where

u(qq′) :SD−1(
√
D)× S

D−1(
√
D)→ R

dq×dq′ are given by

u(qq′)(θ1, θ2) = Ex[σ
′(〈θ1, x〉/R)σ′(〈θ2, x〉/R)x(q)(x(q′))T].

https://doi.org/10.1088/1742-5468/ac3a81 72

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We have the following lemma which is a generalization of lemma 7 in [21] that shows
essentially the same decomposition of the matrix u(θ1, θ2) as by integration by part if
we had x ∼ N(0, I).

Lemma 14. For q ∈ [Q], there exists functions u
(qq)
1 , u

(qq)
2 , u

(qq)
3,1 , u

(qq)
3,2 :SD−1(

√
D)×

S
D−1(

√
D)→ R such that

u(qq)(θ1, θ2) = u
(qq)
1 (θ1, θ2)Idq + u

(qq)
2 (θ1, θ2)[θ

(q)
1 (θ

(q)
2)T + θ

(q)
2 (θ

(q)
1)T]

+ u
(qq)
3,1 (θ1, θ2)θ

(q)
1 (θ

(q)
1)T + u

(qq)
3,2 (θ1, θ2)θ

(q)
2 (θ

(q)
2)T.

For q, q′ ∈ [Q], there exists functions u
(qq′)
2,1 , u

(qq′)
2,2 , u

(qq′)
3,1 , u

(qq′)
3,2 :SD−1(

√
D)× S

D−1(
√
D)→ R

such that

u(qq′)(θ1, θ2) = u
(qq′)
2,1 (θ1, θ2)θ

(q)
1 (θ

(q′)
2)T + u

(qq′)
2,2 (θ1, θ2)θ

(q)
2 (θ

(q′)
1)T

+ u
(qq′)
3,1 (θ1, θ2)θ

(q)
1 (θ

(q′)
1)T + u

(qq′)
3,2 (θ1, θ2)θ

(q)
2 (θ

(q′)
2)T.

Proof of lemma 14. Denote γ(q) = 〈θ(q)
1 , θ

(q)
2 〉/dq. Let us rotate each sphere q ∈ [Q]

such that

θ
(q)
1 =

(
τ
(q)
1

√
dq, 0, . . . , 0

)
,

θ
(q)
2 =

(
τ
(q)
2

√
dqγ

(q), τ
(q)
2

√
dq

√
1− (γ(q))2, 0, . . . , 0

)
.

(113)

Step 1: u (qq).
Let us start with u (qq). For clarity, we will denote (in the rotated basis (113))

α1 = 〈θ1, x〉/R =
∑
q∈[Q]

τ
(q)
1

√
dq/R · x(q)

1 ,

α2 = 〈θ2, x〉/R =
∑
q∈[Q]

[
τ
(q)
2

√
dqγ

(q)/R · x(q)
1 + τ

(q)
2

√
dq

√
1− (γ(q))2/R · x(q)

2

]
.

Then it is easy to show that we can rewrite

u(qq)(θ1, θ2) = Ex [σ
′(α1)σ

′(α2)x
(q)(x(q))T

=

[
u
(qq)
1 : 2,1 : 2 0

0 Ex[σ
′(α1)σ

′(α2)(x
(q)
3)2]Idq−2

]
,

with

u
(qq)
1 : 2,1 : 2 =

[
Ex[σ

′(α1)σ
′(α2)(x

(q)
1)2] Ex[σ

′(α1)σ
′(α2)x

(q)
1 x

(q)
2]

Ex[σ
′(α1)σ

′(α2)x
(q)
2 x

(q)
1] Ex[σ

′(α1)σ
′(α2)(x

(q)
2)2]

]
.

https://doi.org/10.1088/1742-5468/ac3a81 73

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Case (a): θ
(q)
1 �= θ

(q)
2 .

Given any functions u
(qq)
1 , u

(qq)
2 , u

(qq)
3,1 , u

(qq)
3,2 : SD−1(

√
D)× SD−1(

√
D)→ R, we define

ũ(qq)(θ1, θ2) = u
(qq)
1 (θ1, θ2)Id1 + u

(qq)
2 (θ1, θ2)[θ

(q)
1 (θ

(q)
2)T + θ

(q)
2 (θ

(q)
1)T]

+ u
(qq)
3,1 (θ1, θ2)θ

(q)
1 (θ

(q)
1)T + u

(qq)
3,2 (θ1, θ2)θ

(q)
2 (θ

(q)
2)T.

In the rotated basis (113), we have

ũ(qq)(θ1, θ2) =

[
ũ
(qq)
1 : 2,1 : 2 0

0 u
(qq)
1 (θ1, θ2)Idq−2

]
,

where (we dropped the dependency on (θ1, θ2) for clarity)

u(qq)
11 = u

(qq)
1 + 2τ

(q)
1 τ

(q)
2 dqγ

(q)u
(qq)
2 + (τ

(q)
1)2dqu

(qq)
3,1 + (τ

(q)
2)2dq(γ

(q))2u
(qq)
3,2 ,

u
(qq)
12 = τ

(q)
1 τ

(q)
2 dq

√
1− (γ(q))2u

(qq)
2 + (τ

(q)
2)2dqγ

(q)
√
1− (γ(q))2u

(qq)
3,2 ,

u
(qq)
22 = u

(qq)
1 + (τ

(q)
2)2dq(1− (γ(q))2)u

(qq)
3,2 .

We see that u (qq) and ũ(qq) will be equal if and only if we have the following equalities:

Tr(u(qq)(θ1, θ2)) = Tr(ũ(qq)(θ1, θ2))

= dqu
(qq)
1 + 2τ

(q)
1 τ

(q)
2 dqγ

(q)u
(qq)
2 + (τ

(q)
1)2dqu

(qq)
3,1 + (τ

(q)
2)2dqu

(qq)
3,2 ,

〈θ(q)
1 ,u(qq)(θ1, θ2)θ

(q)
2 〉 = 〈θ(q)

1 , ũ(qq)(θ1, θ2)θ
(q)
2 〉

= τ
(q)
1 τ

(q)
2 dqγ

(q)u
(qq)
1 + (τ

(q)
1)2(τ

(q)
2)2d2q(1 + (γ(q))2)u

(qq)
2

+ (τ
(q)
1)3τ

(q)
2 d2qγ

(q)u
(qq)
3,1 + τ

(q)
1 (τ

(q)
2)3d2qγ

(q)u
(qq)
3,1 ,

〈θ(q)
1 ,u(qq)(θ1, θ2)θ

(q)
1 〉 = 〈θ(q)

1 , ũ(qq)(θ1, θ2)θ
(q)
1 〉

= (τ
(q)
1)2dqu

(qq)
1 + 2(τ

(q)
1)3τ

(q)
2 d2qγ

(q)u
(qq)
2

+ (τ
(q)
1)4d2qu

(qq)
3,1 + (τ

(q)
1)2(τ

(q)
2)2d2q(γ

(q))2u
(qq)
3,2 ,

〈θ(q)
2 ,u(qq)(θ1, θ2)θ

(q)
2 〉 = 〈θ(q)

2 , ũ(qq)(θ1, θ2)θ
(q)
2 〉

= (τ
(q)
2)2dqu

(qq)
1 + 2τ

(q)
1 (τ

(q)
2)3d2qγ

(q)u
(qq)
2

+ (τ
(q)
1)2(τ

(q)
2)2d2q(γ

(q))2u
(qq)
3,1 + (τ

(q)
2)4d2qu

(qq)
3,2 .

https://doi.org/10.1088/1742-5468/ac3a81 74

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Hence ũ(qq) = u(qq) if and only if⎡⎢⎢⎢⎣
u
(qq)
1

u
(qq)
2

u
(qq)
3,1

u
(qq)
3,2

⎤⎥⎥⎥⎦ = d−1q (M(qq))−1 ×

⎡⎢⎢⎢⎣
Tr(u(qq)(θ1, θ2))

〈θ(q)
1 ,u(qq)(θ1, θ2)θ

(q)
2 〉

〈θ(q)
1 ,u(qq)(θ1, θ2)θ

(q)
1 〉

〈θ(q)
2 ,u(qq)(θ1, θ2)θ

(q)
2 〉

⎤⎥⎥⎥⎦ , (114)

where

M(qq) =

⎡⎢⎢⎢⎣
1 2τ

(q)
1 τ

(q)
2 γ(q) (τ

(q)
1)2 (τ

(q)
2)2

τ
(q)
1 τ

(q)
2 γ(q) (τ

(q)
1)2(τ

(q)
2)2dq(1 + (γ(q))2) (τ

(q)
1)3τ

(q)
2 dqγ

(q) τ
(q)
1 (τ

(q)
2)3dqγ

(q)

(τ
(q)
1)2 2(τ

(q)
1)3τ

(q)
2 dqγ

(q) (τ
(q)
1)4dq (τ

(q)
1)2(τ

(q)
2)2dq(γ

(q))2

(τ
(q)
2)2 2τ

(q)
1 (τ

(q)
2)3dqγ

(q) (τ
(q)
1)2(τ

(q)
2)2dq(γ

(q))2 (τ
(q)
2)4dq

⎤⎥⎥⎥⎦
is invertible almost surely (for τ

(q)
1 , τ

(q)
2 �= 0 and γ(q) �= 1).

Case (b): θ
(q)
1 = θ

(q)
2 .

Similarly, for some fixed α and β, we define

ũ(qq)(θ1, θ1) = αIdq + βθ
(q)
1 (θ

(q)
1)T.

Then u (qq)(θ1, θ1) and ũ(qq)(θ1, θ1) are equal if and only if[
α
β

]
= d−1q (M

(qq)
‖)−1 ×

[
Tr(u(qq)(θ1, θ1))

〈θ(q)
1 ,u(qq)(θ1, θ1)θ

(q)
1 〉

]
,

where

M
(qq)
‖ =

[
1 (τ

(q)
1)2

(τ
(q)
1)2 (τ

(q)
1)4dq

]
.

Step 2: u(qq′) for q �= q′.
Similarly to the two previous steps, we define for any functions

u
(qq′)
2,1 , u

(qq′)
2,2 , u

(qq′)
3,1 , u

(qq′)
3,2 :SD−1(

√
D)× SD−1(

√
D)→ R,

ũ(qq′)(θ1, θ2) = u
(qq′)
2,1 (θ1, θ2)θ

(q)
1 (θ

(q′)
2)T + u

(qq′)
2,2 (θ1, θ2)θ

(q)
2 (θ

(q′)
1)T

+ u
(qq′)
3,1 (θ1, θ2)θ

(q)
1 (θ

(q′)
1)T + u

(qq′)
3,2 (θ1, θ2)θ

(q)
2 (θ

(q′)
2)T.

We can rewrite ũ(qq′) as

ũ(qq′)(θ1, θ2) =

[
ũ
(qq′)
1 : 2,1 : 2 0
0 0

]
,

https://doi.org/10.1088/1742-5468/ac3a81 75

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where

ũ
(qq′)
11 = u

(qq′)
2,1 τ

(q)
1 τ

(q′)
2 γ(q′) + u

(qq′)
2,2 τ

(q)
2 τ

(q′)
1 γ(q) + u

(qq′)
3,1 τ

(q)
1 τ

(q′)
1 + u

(qq′)
3,2 τ

(q)
2 τ

(q′)
2 γ(q)γ(q′),

ũ
(qq′)
12 = u

(qq′)
2,1 τ

(q)
1 τ

(q′)
2

√
1− (γ(q′))2 + u

(qq′)
3,2 τ

(q)
2 τ

(q′)
2 γ(q)

√
1− (γ(q′))2,

ũ
(qq′)
21 = u

(qq′)
2,2 τ

(q)
2 τ

(q′)
1

√
1− (γ(q))2 + u

(qq′)
3,2 τ

(q)
2 τ

(q′)
2

√
1− (γ(q))2γ(q′),

ũ
(qq′)
22 = u

(qq′)
3,2 τ

(q)
2 τ

(q′)
2

√
1− (γ(q))2

√
1− (γ(q′))2.

Case (a): θ
(q)
1 �= θ

(q)
2 .

We have equality ũ(qq′) = u(qq′) if and only if⎡⎢⎢⎢⎣
u
(qq′)
2,1

u
(qq′)
2,2

u
(qq′)
3,1

u
(qq′)
3,2

⎤⎥⎥⎥⎦ = (dqdq′)
−1(M(qq′))−1 ×

⎡⎢⎢⎢⎣
〈θ(q)

1 ,u(qq′)(θ1, θ2)θ
(q′)
1 〉

〈θ(q)
1 ,u(qq′)(θ1, θ2)θ

(q′)
2 〉

〈θ(q)
2 ,u(qq′)(θ1, θ2)θ

(q′)
1 〉

〈θ(q)
2 ,u(qq′)(θ1, θ2)θ

(q′)
2 〉

⎤⎥⎥⎥⎦ ,

where M(qq′) is given by⎡⎢⎢⎢⎣
(τ

(q)
1)2τ

(q′)
1 τ

(q′)
2 γ(q′) τ

(q)
1 τ

(q)
2 (τ

(q′)
1)2γ(q) (τ

(q)
1)2(τ

(q′)
1)2 τ

(q)
1 τ

(q)
2 τ

(q′)
1 τ

(q′)
2 γ(q)γ(q′)

(τ
(q)
1)2(τ

(q′)
2)2 τ

(q)
1 τ

(q)
2 τ

(q′)
1 τ

(q′)
2 γ(q)γ(q′) (τ

(q)
1)2τ

(q′)
1 τ

(q′)
2 γ(q′) τ

(q)
1 τ

(q)
2 (τ

(q′)
2)2γ(q)

τ
(q)
1 τ

(q)
2 τ

(q′)
1 τ

(q′)
2 γ(q)γ(q′) (τ

(q)
2)2(τ

(q′)
1)2 τ

(q)
1 τ

(q)
2 (τ

(q′)
1)2γ(q) (τ

(q)
2)2τ

(q′)
1 τ

(q′)
2 γ(q′)

τ
(q)
1 τ

(q)
2 (τ

(q′)
2)2γ(q) (τ

(q)
2)2τ

(q′)
1 τ

(q′)
2 γ(q′) τ

(q)
1 τ

(q)
2 τ

(q′)
1 τ

(q′)
2 γ(q)γ(q′) (τ

(q)
2)2(τ

(q′)
2)2

⎤⎥⎥⎥⎦ ,

which is invertible almost surely (for τ
(q)
1 , τ

(q)
2 �= 0 and γ(q) �= 1).

Case (b): θ
(q)
1 = θ

(q)
2 .

It is straightforward to check that

u(qq′)(θ1, θ1) = βθ
(q)
1 (θ

(q′)
1)T,

where

β = (dqdq′)
−1(τ

(q)
1 τ

(q′)
1)−2

〈
θ
(q)
1 ,u(qq′)(θ1, θ1)θ

(q′)
1

〉
.

�
G.4.2. Proof of proposition 4. Step 1. Construction of the activation function
σ̂.

Recall the definition of σd ,τ in equation (100) and its expansion in terms of tensor
product of Gegenbauer polynomials:

σ′(〈θ, x〉/R) =
∑
k∈ZQ

�0

λd
k(σ

′
d,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
,

λd
k(σ

′
d,τ) = Ex

[
σ′d,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
.

https://doi.org/10.1088/1742-5468/ac3a81 76

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We recall the definition of qξ = argmaxq∈[Q]{ηq + κq}. Let l2 > l1 � 2L+ 5 be two indices
that satisfy the conditions of assumption 3(b) and we define l 1 = (0, . . . , 0, l1, 0, . . . , 0) (l1
at position qξ) and l 2 = (0, . . . , 0, l2, 0, . . . , 0) (l2 at position qξ). Using the Gegenbauer
coefficients of σ′, we define a new activation function σ̂′ by

σ̂′(〈θ, x〉/R) =
∑

k∈ZQ
�0\{l1,l2}

λd
k(σ

′
d,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
(115)

+
∑
t=1,2

(1− δt)λ
d
lt
(σ′d,τ)B(dqξ , lt)Q

(dqξ)

lt
(〈θ(qξ), x(qξ)〉), (116)

for some δ1, δ2 that we will fix later (with |δt| � 1).
Step 2. The functions u, û and ū.
Let u and û be the matrix-valued functions associated respectively to σ′ and σ̂′

u(θ1, θ2) = Ex[σ
′(〈θ1, x〉/R)σ′(〈θ2, x〉/R)xxT], (117)

û(θ1, θ2) = Ex[σ̂
′(〈θ1, x〉/R)σ̂′(〈θ2, x〉/R)xxT]. (118)

From lemma 14, there exists functions uab
1 , u

ab
2,1, u

ab
2,2, u

ab
3,1, u

ab
3,2 and ûab

1 , û
ab
2,1, û

ab
2,2, û

ab
3,1, û

ab
3,2

(for a, b ∈ [Q]), which decompose u and û along θ1 and θ2 vectors. We define ū = u− û.
Then we have the same decomposition for ūab

k,j = uab
k,j − ûab

k,j for a, b ∈ [Q], k = 1, 2, 3, j =
1, 2.

Step 3. Construction of the kernel matrices.
Let U, Û, Ū ∈ RND×ND with i, jth block (for i, j ∈ [N]) given by

Uij = u(θi, θj), (119)

Ûij = û(θi, θj), (120)

Ūij = ū(θi, θj) = u(θi, θj)− û(θi, θj). (121)

Note that we have U = Û+ Ū. By equations (118) and (120), it is easy to see that

Û " 0. Then we have U " Ū. In the following, we would like to lower bound matrix Ū.
We decompose Ū as

Ū = D+Δ,

where D ∈ RDN×DN is a block-diagonal matrix, with

D = diag(Ū11, . . . , ŪNN), (122)

and Δ ∈ RDN×DN is formed by blocks Δij ∈ RD×D for i, j ∈ [n], defined by

Δij =

{
0, i = j,

Ūij , i �= j.
(123)

In the rest of the proof, we will prove that ‖Δ‖op = od,P(d
−maxq∈[Q]κq) and the block matrix

D verifies the properties (105) and (106).

https://doi.org/10.1088/1742-5468/ac3a81 77

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Step 4. Prove that ‖Δ‖op = od,P(d
−maxq∈[Q]κq).

We will prove in fact that ‖Δ‖2F = od,P(d
−2maxq∈[Q]κq). For the rest of the proof, we fix

ε0 ∈ (0, 1) and we restrict ourselves without loss of generality to the set Pε0 .

Let us start with u(qq) for q ∈ [Q]. Denoting γ
(q)
ij = 〈θ(q)

i , θ
(q)
j 〉/dq < 1, we get, from

equation (114),⎡⎢⎢⎢⎣
ū
(qq)
1 (θi, θj)

ū
(qq)
2 (θi, θj)

ū
(qq)
3,1 (θi, θj)

ū
(qq)
3,2 (θi, θj)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
u1(θi, θj)− û1(θi, θj)
u2(θi, θj)− û2(θi, θj)

u3,1(θi, θj)− û3,1(θi, θj)
u3,2(θi, θj)− û3,2(θi, θj)

⎤⎥⎥⎦

= d−1q (M
(qq)
ij)−1 ×

⎡⎢⎢⎢⎣
Tr(ū(qq)(θ1, θ2))

〈θ(q)
1 , ū(qq)(θ1, θ2)θ

(q)
2 〉

〈θ(q)
1 , ū(qq)(θ1, θ2)θ

(q)
1 〉

〈θ(q)
2 , ū(qq)(θ1, θ2)θ

(q)
2 〉

⎤⎥⎥⎥⎦ , (124)

where M
(qq)
ij is given by⎡⎢⎢⎢⎣

1 2τ
(q)
1 τ

(q)
2 γ

(q)
ij (τ

(q)
1)2 (τ

(q)
2)2

τ
(q)
1 τ

(q)
2 γ

(q)
ij (τ

(q)
1)2(τ

(q)
2)2dq(1 + (γ

(q)
ij)

2) (τ
(q)
1)3τ

(q)
2 dqγ

(q)
ij τ

(q)
1 (τ

(q)
2)3dqγ

(q)
ij

(τ
(q)
1)2 2(τ

(q)
1)3τ

(q)
2 dqγ

(q) (τ
(q)
1)4dq (τ

(q)
1)2(τ

(q)
2)2dq(γ

(q)
ij)

2

(τ
(q)
2)2 τ

(q)
1 (τ

(q)
2)3dqγ

(q)
ij (τ

(q)
1)2(τ

(q)
2)2dq(γ

(q))2 (τ
(q)
2)4dq

⎤⎥⎥⎥⎦ .

(125)

Using the notations of lemma 13, we get

Tr(U
(qq)
ij) = Ex[σ

′(〈θi, x〉/R)σ′(〈θj , x〉/R)‖x(q)‖22]

= r2q
∑
k∈ZQ

�0

λd
k(σ

′
d,τ i

)λd
k(σ

′
d,τ j

)B(d, k)Qd
k

(
{〈θ(q)

i , θ
(q)
j 〉}q∈[Q]

)
,

〈θ(q)
i ,U

(qq)
ij θ

(q)
j 〉 = Ex[σ

′(〈θi, x〉/R)〈θ(q)
i , z(q)〉σ′(〈θj, x〉/R)〈θ(q)

j , x(q)〉]

= r2qτ
(q)
i τ

(q)
j

∑
k∈ZQ

�0

λ
d,1q
k (σ′d,τ i

)λ
d,1q
k (σ′d,τ j

)B(d, k)Qd
k

(
{〈θ(q)

i , θ
(q)
j 〉}q∈[Q]

)
,

〈θ(q)
i ,U

(qq)
ij θ

(q)
i 〉 = Ex[σ

′(〈θi, x〉/R)〈θ(q)
i , x(q)〉2σ′(〈θj , x〉/R)]

= r2q(τ
(q)
i)2

∑
k∈ZQ

�0

λ
d,2q
k (σ′d,τ i

)λd
k(σ

′
d,τ j

)B(d, k)Qd
k

(
{〈θ(q)

i , θ
(q)
j 〉}q∈[Q]

)
,

〈θ(q)
j ,U

(qq)
ij θ

(q)
j 〉 = Ex[σ

′(〈θi, x〉/R)σ′(〈θj , x〉/R)〈θ(q)
j , x(q)〉2]

= r2q(τ
(q)
j)2

∑
k∈ZQ

�0

λd
k(σ

′
d,τ i

)λ
d,2q
k (σ′d,τ j

)B(d, k)Qd
k

(
{〈θ(q)

i , θ
(q)
j 〉}q∈[Q]

)
,

https://doi.org/10.1088/1742-5468/ac3a81 78

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where we denoted 1q = (0, . . . , 0, 1, 0, . . . , 0) (namely the q’th coordinate vector in RQ)
and 2q = (0, . . . , 0, 2, 0, . . . , 0) = 21q.

We get similar expressions for Ûij with λd
k(σ

′
d,τ) replaced by λd

k(σ̂
′
d,τ). Because we

defined σ′ and σ̂′ by only modifying the l 1th and l 2th coefficients, we get

Tr(Ū
(qq)
ij) = Tr(U

(qq)
ij − Û

(qq)
ij)

= r2q
∑
t=1,2

δt(2− δt)λ
d
lt
(σ′d,τ i

)λd
lt
(σ′d,τ j

)B(d, lt)Q
d
lt

(
{dqγ(q)

ij }q∈[Q]

)
.

(126)

Recalling that λ
d,1q
k only depend on λd

k−1q and λd
k+1q

, and λ
d,2q
k on λd

k−2q , λ
d
k and λd

k+2q
,

(lemma 13), we get

〈θ(q)
i , Ū

(qq)
ij θ

(q)
j 〉 = r2qτ

(q)
i τ

(q)
j

∑
t={1,2},k∈{lt±1q}

δt(2− δt)λ
d,1q
k (σ′d,τ i

)λ
d,1q
k (σ′d,τ j

)

×B(d, k)Qd
k

(
{dqγ(q)

ij }q∈[Q]

)
,

〈θ(q)
i , Ū

(qq)
ij θ

(q)
i 〉 = r2q(τ

(q)
i)2

∑
t∈{1,2},k∈{lt,lt±2q}

δt(2− δt)λ
d,2q
k (σ′d,τ i

)λd
k(σ

′
d,τ j

)

×B(d, k)Qd
k

(
{dqγ(q)

ij }q∈[Q]

)
,

〈θ(q)
j , Ū

(qq)
ij θ

(q)
j 〉 = r2q(τ

(q)
j)2

∑
t∈{1,2},k∈{lt,lt±2q}

δt(2− δt)λ
d
k(σ

′
d,τ i

)λ
d,2q
k (σ′d,τ j

)

×B(d, k)Qd
k

(
{dqγ(q)

ij }q∈[Q]

)
, (127)

where we used the convention λd
k(σ

′
d,τ) = 0 if one of the coordinates verifies kq < 0.

From lemmas 13, 19 and 20, we get for t = 1, 2 and q �= qξ:

lim
(d,τ i,τ j)→(+∞,1,1)

λd
lt
(σ′d,τ i

)λd
lt
(σ′d,τ j

)B(d, lt) =
μlt(σ

′)2

lt!
,

lim
(d,τ i,τ j)→(+∞,1,1)

λ
d,1q
lt+1q

(σ′d,τ i
)λ

d,1q
lt+1q

(σ′d,τ j
)B(d, lt + 1q) =

μlt(σ
′)2

lt!
,

lim
(d,τ i,τ j)→(+∞,1,1)

λ
d,2q
lt

(σ′d,τ i
)λd

lt
(σ′d,τ j

)B(d, lt) =
μlt(σ

′)2

lt!
,

lim
(d,τ i,τ j)→(+∞,1,1)

λ
d,2q
lt+2q

(σ′d,τ i
)λd

lt+2q
(σ′d,τ j

)B(d, lt + 2q) = 0,

(128)

while for q = qξ and u ∈ {−1, 1},

lim
(d,τ i,τ j)→(+∞,1,1)

λ
d,1qξ
lt+u1qξ

(σ′d,τ i
)[B(d, lt + u1qξ)(lt + u)!]1/2

= μlt+u+1(σ
′) + (lt + u)μlt+u−1(σ

′),

(129)

https://doi.org/10.1088/1742-5468/ac3a81 79

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

and for v ∈ {−2, 0, 2},

lim
(d,τ i,τ j)→(+∞,1,1)

λ
d,2qξ
lt+v1qξ

(σ′d,τ i
)[B(d, lt + v1qξ)(lt + v)!]1/2

= μlt+v+2(σ
′) + (2lt + 2v + 1)μlt+v(σ

′) + (lt + v)(lt + v − 1)μlt+v−2(σ
′).

(130)

From lemma 26, we recall that the coefficients of the kth Gegenbauer polynomial

Q
(d)
k (x) =

∑k
s=0p

(d)
k,sx

s satisfy

p
(d)
k,s = Od(d

−k/2−s/2). (131)

Furthermore, lemma 27 shows that maxi �=j|〈θ(q)
i , θ

(q)
j 〉| = Od,P(

√
dq log dq). We deduce

that

max
i �=j

|Q(dq)
kq

(〈θ(q)
i , θ

(q)
j 〉)| = Õd,P(d

−kq/2
q). (132)

Plugging the estimates (128) and (132) into equations (126) and (127), we obtain that

max
i �=j

{∣∣∣Tr(Ū(qq)
ij)

∣∣∣ , ∣∣∣〈θ(q)
i , Ū

(qq)
ij θ

(q)
j 〉
∣∣∣ , ∣∣∣〈θ(q)

i , Ū
(qq)
ij θ

(q)
i 〉,

∣∣∣〈θ(q)
j , Ū

(qq)
ij θ

(q)
j 〉
∣∣∣}

= Õd,P(d
2ξd−ηql1/2). (133)

From equation (125), using the fact that maxi �=j|γ(q)
ij | = Od,P(

√
(log dq)/dq) and Cramer’s

rule for matrix inversion, it is easy to see that

max
i �=j

max
l,k∈[4]

∣∣∣((M(qq)
ij)−1)lk

∣∣∣ = Od,P(1). (134)

We deduce from (124), (133) and (134) that for a ∈ [3], b ∈ [2],

max
i �=j

{|ū(qq)
a,b (θ

(q)
i , θ

(q)
j)|} = Õd,P(d

2ξd−ηql1/2). (135)

As a result, combining equation (135) with equation (121) in the expression of u(qq) given
in lemma 14, we get

max
i �=j

‖Ū(qq)
ij ‖2F

= max
i �=j

‖ū(qq)
1 Idq + ū

(qq)
2 [θ

(q)
i (θ

(q)
j)T + θ

(q)
j (θ

(q)
i)T] + ū

(qq)
3,1 θ

(q)
i (θ

(q)
i)T + ū

(qq)
3,2 θ

(q)
j (θ

(q)
j)T‖2F

� Õd,P(d
6ξd−ηql1).

A similar computation shows that

max
i �=j

‖Ū(qq′)
ij ‖2F � Õd,P(d

6ξd−ηql1).

https://doi.org/10.1088/1742-5468/ac3a81 80

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

By the expression of Δ given by (123), we conclude that

‖Δ‖2op � ‖Δ‖2F =
∑

q,q′∈[Q]

N∑
i,j=1,i �=j

‖Ū(qq′)
ij ‖2F = Õd,P(N

2d6ξ−ηql1).

By assumption, N = od(d
γ). Hence, since by assumption ηql1 � 2γ + 7ξ, we deduce that

‖Δ‖op = od,P(d
−ξ) = od,P(d

−maxq∈[Q]κq).
Step 5. Checking the properties of matrix D .
By lemma 14, we can express Ūii as a block matrix with

Ū
(qq)
ii = α(q)Idq + β(q)θ

(q)
i (θ

(q)
i)T, Ū

(qq′)
ii = β(qq′)θ

(q)
i (θ

(q′)
i)T,

with coefficients given by

[
α(q)

β(q)

]
= [dq(dq − 1)(τ

(q)
i)4]−1

[
dq(τ

(q)
i)4 −(τ (q)

i)2

−(τ (q)
i)2 1

]
×
[

Tr(Ū
(qq)
ii)

〈θ(q)
i , Ū

(qq)
ii θ

(q)
i 〉

]
,

β(qq′) = (dqdq′)
−1(τ

(q)
i τ

(q′)
i)−2〈θ(q)

i , Ū
(qq′)
ii (θi, θi)θ

(q′)
i 〉.

(136)

Let us first focus on the q = qξ sphere. Using equations (126) and (127) with the
expressions (129) and (130), we get the following convergence in probability (using that

{τ (q)
i }i∈[N] concentrates on 1),

sup
i∈[N]

∣∣∣r−2qξ
Tr(Ū

(qξqξ)
ii)− F1(δ)

∣∣∣ P−→ 0,

sup
i∈[N]

∣∣∣r−2qξ
〈θ(qξ)

i , Ū
(qξqξ)
ii θ

(qξ)
i 〉 − F2(δ)

∣∣∣ P−→ 0,
(137)

where we denoted δ = (δ1, δ2) (where δ1, δ2 first appears in the definition of σ̂ in
equation (115), and till now δ1, δ2 are still not determined) and, similarly to the proof
of proposition 5 in [21] and letting μk ≡ μk(σ

′), we have

F1(δ) =
∑

t∈{1,2}

δt(2− δt)
μ2
lt

lt!
, (138)

while, for l2 �= l1 + 2

F2(δ) =
∑

t∈{1,2}

{
1

(lt − 1)!

[
(μlt + (lt − 1)μlt−2)

2 − ((1− δt)μlt + (lt − 1)μlt−2)
2
]

+
1

(lt + 1)!

[
(μlt+2 + (lt + 1)μlt)

2 − (μlt+2 + (1− δt)(lt + 1)μlt)
2
]}

,

https://doi.org/10.1088/1742-5468/ac3a81 81

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

while, for l2 = l1 + 2

F2(δ) =
1

(l1 − 1)!

[
(μl1 + (l1 − 1)μl1−2)

2 − ((1− δ1)μl1 + (l1 − 1)μl1−2)
2
]

+
1

(l1 + 1)!

[
(μl1+2 + (l1 + 1)μl1)

2 − ((1− δ2)μl1+2 + (1− δ1)(l1 + 1)μl1)
2
]

+
1

(l2 + 1)!

[
(μl2+2 + (l2 + 1)μl2)

2 − (μl2+2 + (1− δ2)(l2 + 1)μl2)
2
]
.

We have from equation (136),

λmin(Ū
(qq)
ii)

= min
{
α(q),α(q) + β(q)dq(τ

(q)
i)2

}
= min

{
1

dq − 1
Tr(Ū

(qq)
ii)− 1

dq(dq − 1)(τ
(q)
i)2

〈θ(q)
i , Ū

(qq)
ii θ

(q)
i 〉,

1

dq(τ
(q)
i)2

〈θ(q)
i , Ū

(qq)
ii θ

(q)
i 〉
}
.

Hence, using equation (137), we get

sup
i∈[N]

∣∣∣∣∣dqξr2qξ
λmin(Ū

(qξqξ)
ii)−min{F1(δ),F2(δ)}

∣∣∣∣∣ P−→ 0. (139)

Following the same reasoning as in proposition 5 in [21], we can verify that under
assumption 3(b), we have ∇F 1(0),∇F 2(0) �= 0 and det(∇F 1(0),∇F 2(0)) �= 0. We can
therefore find δ = (δ1, δ2) such that F 1(δ) > 0, F 2(δ) > 0. Furthermore,

sup
i∈[N]

∣∣∣∣∣dqξr2qξ
λmax(Ū

(qξqξ)
ii)−max{F1(δ),F2(δ)}

∣∣∣∣∣ P−→ 0. (140)

Similarly, we get for q �= qξ from equations (126) and (127) with the expressions

(128) (recalling that {τ (q)
i }i∈[N] concentrates on 1),

sup
i∈[N]

∣∣∣r−2q Tr(Ū
(qq)
ii)− F1(δ)

∣∣∣ P−→ 0,

sup
i∈[N]

∣∣∣r−2q 〈θ(q)
i , Ū

(qq)
ii θ

(q)
i 〉 − F1(δ)

∣∣∣ P−→ 0,

sup
i∈[N]

∣∣∣(rqrq′)−1〈θ(q)
i , Ū

(qq′)
ii θ

(q′)
i 〉

∣∣∣ P−→ 0.

(141)

https://doi.org/10.1088/1742-5468/ac3a81 82

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We deduce that for q �= qξ and q �= q′,

sup
i∈[N]

∣∣∣∣dqr2q λmin(Ū
(qq)
ii)− F1(δ)

∣∣∣∣ P−→ 0,

sup
i∈[N]

∣∣∣∣dqr2q λmax(Ū
(qq)
ii)− F1(δ)

∣∣∣∣ P−→ 0,

sup
i∈[N]

∣∣∣∣(dqdq′)1/2rqrq′
σmax(Ū

(qq′)
ii)

∣∣∣∣ P−→ 0,

which finishes to prove properties (105) and (106).

Appendix H. Proof of theorem 7(b): upper bound for NT model

H.1. Preliminaries

Lemma 15. Let σ be an activation function that satisfies assumptions 3(a) and (c)
for some level γ > 0. Let Q = QNT(γ) as defined in equation (49). Define for integer

k ∈ Z
Q
�0 and τ , τ ′ ∈ R

Q
�0,

A
(q)
(τ ,τ ′),k = r2q ·

[
tdq ,kq−1λ

d
kq−(σ

′
d,τ)λ

d
kq−(σ

′
d,τ ′)B(d, kq−)

+ sdq ,kq+1λ
d
kq+

(σ′d,τ)λ
d
kq+

(σ′d,τ ′)B(d, kq+)
]
, (142)

with kq+ = (k1, . . . , kq + 1, . . . , kQ) and kq− = (k1, . . . , kq − 1, . . . , kQ), and

sd,k =
k

2k + d− 2
, td,k =

k + d− 2

2k + d− 2
,

with the convention td,−1 = 0.
Then there exists constants ε0 > 0 and C > 0 such that for d large enough, we have

for any τ , τ ′ ∈ [1− ε0, 1 + ε0]
Q,

max
k∈Q

B(d, k)

A
(q)
(τ ,τ ′),k

� Cdγ−κq .

Proof of lemma 15. From assumptions 3(a) and (c) and lemma 19, there exists c > 0
and ε0 > 0 such that for any τ , τ ′ ∈ [1− ε0, 1 + ε0]

Q and k ∈ Q,

λd
k(σ

′
d,τ)λ

d
k(σ

′
d,τ ′) � c

∏
q∈[Q]

dkq(κq−ξ).

Hence for kq > 0, we get λd
k(σ

′
d,τ)λ

d
k(σ

′
d,τ ′) � cd−γ−ξ+κq , and for kq = 0, we get

λd
k(σ

′
d,τ)λ

d
k(σ

′
d,τ ′) � cd−γ+ξ−ηq−κq . Carefully injecting these bounds in equation (142) yields

the lemma. �

https://doi.org/10.1088/1742-5468/ac3a81 83

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

H.2. Proof of theorem 7(b): outline

In this proof, we will consider Q sub-classes of functions corresponding to the NT model
restricted to the qth sphere:

FNT(q)(W) ≡
{
f(x) =

N∑
i=1

〈ai, x
(q)〉σ′(〈wi, x〉/R) :ai ∈ R

dq , i ∈ [N]

}
.

We define similarly the risk associated to this sub-model

RNT(q)(fd,W) = inf
f∈F

NT(q)
(W)

E[(fd(x)− f(x))2].

and approximation subspace

QNT(q)(γ) =

⎧⎨⎩k ∈ Z
Q
�0

∣∣∣∣∣∣kq > 0 and
∑
q∈[Q]

kq(ξ − κq) � γ + (ξ − κq)

⎫⎬⎭
∪

⎧⎨⎩k ∈ Z
Q
�0

∣∣∣∣∣∣kq = 0 and
∑
q∈[Q]

kq(ξ − κq) � γ − (ξ − κq − ηq)

⎫⎬⎭ .

(143)

Theorem 8. Let {fd ∈ L2(PSd
κ,μ

κ
d)}d�1 be a sequence of functions. Let W = (wi)i∈[N]

with (wi)i∈[N] ∼ Unif(SD−1) independently. Assume N � ωd(d
γ) for some positive con-

stant γ > 0, and σ satisfy assumptions 3(a) and (c) at level γ. Then for any ε > 0, the
following holds with high probability:

0 � RNT(q)(PQfd,W) � ε‖PQfd‖2L2 , (144)

where Q ≡ QNT(q)(γ) is defined in equation (143).

Remark 5. From the proof of theorem 7(a), we have a matching lower bound for FNT(q) .

We recall

QNT(γ) =

{
k ∈ Z

Q
�0

∣∣∣∣∣
Q∑
q=1

(ξ − κq)kq � γ +

(
ξ − min

q∈S(k)
κq

)}
.

Notice that

QNT(γ) =
⋃
q∈Q
QNT(q)(γ).

Denote qk = argminq∈S(k) κq, such that k ∈ QNT(qk) for any k ∈ QNT(γ). Furthermore,

notice that by definition for any f ∈ L2(PSd
κ,μ

κ
d) and q ∈ [Q],

RNT(f,W) � RNT(q)(f,W).

https://doi.org/10.1088/1742-5468/ac3a81 84

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Let us deduce theorem 7(b) from theorem 8. Denote Q = QNT(γ). We divide the N
neurons in |Q| sections of size N ′ = N/|Q|, i.e. W = (Wk)k∈Q where Wk ∈ RN ′×d. For
any ε > 0, we get from theorem 8 that with high probability

RNT(PQfd,W) �
∑
k∈Q

RNT(qk)(Pkf,Wk) �
∑
k∈Q

ε‖Pkfd‖2L2 = ε‖PQfd‖2L2.

H.3. Proof of theorem 8

H.3.1. Properties of the limiting kernel. Similarly to the proof of theorem 6(b), we
construct a limiting kernel which is used as a proxy to upper bound the NT(q) risk.

We recall the definition of PSd =
∏

q∈[Q]S
dq−1(

√
dq). We introduce L = L2(PSd →

R,μd) and Ldq = L2(PSd → Rdq ,μd). For a given θ ∈ SD−1(
√
D) and associated vector

τ ∈ R
Q
�0, recall the definition of σ′d,τ ∈ L:

σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
= σ′

⎛⎝∑
q∈[Q]

τ (q) · (rq/R) · 〈θ(q), x(q)〉/
√
dq

⎞⎠ .

For any τ ∈ R
Q
�0, define the operator Tτ :L→ Ldq , such that for any g ∈ L,

Tτg(θ) =
rq√
dq
Ex

[
x(q)σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
g(x)

]
.

The adjoint operator T∗τ :Ldq →L verifies for any h ∈ Ldq ,

T
∗
τh(x) =

rq√
dq
(x(q))T

Eθ

[
σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
h(θ)

]
.

We define the operator Kτ ,τ ′ :Ldq →Ldq as Kτ ,τ ′ ≡ TτT
∗
τ ′ . For h ∈ Ldq , we can write

Kτ ,τ ′h(θ1) = Eθ2
[Kτ ,τ ′(θ1, θ2)h(θ2)],

where

Kτ 1,τ 2
(θ1, θ2)

=
r2q
dq
Ex

[
x(q)(x(q))Tσ′d,τ 1

(
{〈θ(q)

1 , x(q)〉/
√
dq}q∈[Q]

)
σ′d,τ 2

(
{〈θ(q)

2 , x(q)〉/
√
dq}q∈[Q]

)]
.

Define Hτ ,τ ′ :L→ L as Hτ ,τ ′ ≡ T∗τTτ ′ . For g ∈ L, we can write

Hτ ,τ ′g(x1) = Ex2 [Hτ ,τ ′(x1, x2)g(x2)]

where

Hτ ,τ ′(x1, x2)

=
r2q
dq
Eθ

[
σ′d,τ

(
{〈θ(q), x

(q)
1 〉/

√
dq}q∈[Q]

)
σ′d,τ ′

(
{〈θ(q), x

(q)
2 〉/

√
dq}q∈[Q]

)]
〈x(q)

1 , x
(q)
2 〉.

https://doi.org/10.1088/1742-5468/ac3a81 85

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We recall the decomposition of σ′d,τ in terms of tensor product of Gegenbauer
polynomials:

σ′d,τ (x
(1)
1 , . . . , x

(Q)
1) =

∑
k∈ZQ

�0

λd
k(σ

′
d,τ)B(d, k)Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)
,

λd
k(σ

′
d,τ) = Ex

[
σ′d,τ (x

(1)
1 , . . . , x

(Q)
1)Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
.

Following the same computations as in lemma 12, we get

Hτ ,τ ′(x1, x2) =
∑
k∈ZQ

�0

A
(q)
(τ ,τ ′),kQ

d
k

(
{〈x(q)

1 , x
(q)
2 〉}q∈[Q]

)
,

where

A
(q)
(τ ,τ ′),k = r2q ·

[
tdq ,kq−1λ

d
kq−(σ

′
d,τ)λ

d
kq−(σ

′
d,τ ′)B(d, kq−)

+ sdq,kq+1λ
d
kq+

(σ′d,τ)λ
d
kq+

(σ′d,τ ′)B(d, kq+)
]
, (145)

with k q+ = (k1, . . . , kq + 1, . . . , kQ) and k q− = (k1, . . . , kq − 1, . . . , kQ), and convention
tdq,−1 = 0,

sdq,kq =
kq

2kq + dq − 2
, tdq ,kq =

kq + dq − 2

2kq + dq − 2
.

Recall that for k ∈ Z
Q
�0 and s ∈ [B(d , k)], Y d

k,s =
⊗

q∈[Q]Y
(dq)
kqsq

forms an orthogonal

basis of L and that

Ex2

[
Qd

k

(
{〈x1, x2〉}q∈[Q]

)
Y d
k,s(x2)

]
=

1

B(d, k)
Y d
k,s(x1)δk,s.

We deduce that

Hτ ,τ ′Y
d
k,s(x1) =

∑
k′∈ZQ

�0

A
(q)

(τ ,τ ′),k′
Ex2

[
Qd

k′
(
{〈x1, x2〉}q∈[Q]

)
Y d
k,s(x2)

]

=
A

(q)
(τ ,τ ′),k

B(d, k)
Y d
k,s(x1).

Consider {TτY
d
k,s}k∈ZQ

�0,s∈[B(d,k)]. We have:

〈TτY
d
k,s,Tτ ′Y

d
k′,s′ 〉L2 = 〈Y d

k,s,Hτ ,τ ′Y
d
k′,s′ 〉L2 =

A
(q)
(τ ,τ ′),k

B(d, k)
δk,k′δs,s′ ,

Kτ ,τ ′Tτ ′′Y
d
k,s = TτHτ ′,τ ′′Y

d
k,s =

A
(q)
(τ ′,τ ′′),k

B(d, k)
TτY

d
k,s.

Hence {Tτ ′′Y
(d)
k,s } forms an orthogonal basis that diagonalizes Kτ ′,τ ′′ (notice that TτY

d
k,s

is parallel to Tτ ′Y
d
k,s for any τ , τ ′ ∈ R

Q
�0). Let us consider the subspace Tτ (V

d
Q), the

https://doi.org/10.1088/1742-5468/ac3a81 86

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

image of V d
Q by the operator Tτ . From assumptions 3(a) and (b) and lemma 19, there

exists ε0 ∈ (0, 1) and d0 such that for any τ , τ ′ ∈ [1− ε0, 1 + ε0]
Q and d � d0, we have

A
(q)
(τ ,τ ′),k > 0 for any k ∈ Q, and therefore the inverse K

−1
τ ,τ ′ |Tτ (V d

Q)
(restricted to Tτ (V

d
Q))

is well defined.
H.3.2. Proof of theorem 8. Let us assume that {fd} is contained in

⊕
k∈QV

d
k, i.e. fd =

PQfd.
Consider

f̂(x;Θ,a) =
N∑
i=1

〈ai, x
(q)〉σ′(〈θi, x〉/R).

Define ατ (θ) ≡ K−1
τ ,τTτfd(θ) and choose a∗i = N−1ατ i

(θi), where we denoted θi =

(θ
(q)
i)q∈[Q] with θ

(q)
i = θ

(q)
i /τ

(q)
i ∈ S

dq−1(
√

dq) independent of τ i.
Fix ε0 > 0 as prescribed in lemma 15 and consider the expectation over Pε0 of the

NT(q) risk (in particular, a∗ = (a∗1, . . . ,a
∗
N) ∈ RNdq are well defined):

EΘε0
[RNT(q)(fd,Θ)] = EΘε0

[
inf

a∈RNdq
Ex[(fd(x)− f̂(x;Θ,a))2]

]
� EΘε0

[
Ex

[
(fd(x)− f̂(x;Θ,a∗(Θ)))2

]]
.

We can expand the squared loss at a as

Ex[(fd(x)− f̂(x))2] = ‖fd‖2L2 − 2

N∑
i=1

Ex[〈ai, x
(q)〉σ′(〈θi, x〉/R)fd(x)]

+
N∑

i,j=1

Ex[〈ai, x
(q)〉〈aj , x

(q)〉σ′(〈θi, x〉/R)σ′(〈θj , x〉/R)].

(146)

The second term of the expansion (146) around a∗ verifies

EΘε0

[
N∑
i=1

Ex[〈a∗i , x(q)〉σ′(〈θi, x〉/R)fd(x)]

]

= Eτ ε0

[
Eθ

[
ατ (θ)T

Ex

[
x(q)σ′d,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
fd(x)

]]]
= Eτ ε0

[
〈K−1

τ ,τTτfd,Tτfd〉L2

]
= ‖fd‖2L2 , (147)

where we used that for each τ ∈ [1− ε0, 1 + ε0]
Q, we have T∗τK

−1
τ ,τTτ = I|V d

Q
.

https://doi.org/10.1088/1742-5468/ac3a81 87

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Let us consider the third term in the expansion (146) around a∗: the non diagonal
term verifies

EΘε0

[∑
i �=j

Ex[〈a∗i , x(q)〉〈a∗j , x(q)〉σ′(〈θi, x〉/R)σ′(〈θj, x〉/R)]

]

= (1−N−1)Eτ 1
ε0
,τ 2

ε0
,θ1,θ2

[
ατ 1(θ1)

TEx

[
σ′d,τ

(
{〈θ(q)

1 , x(q)〉/
√
dq}q∈[Q]

)
× σ′d,τ ′

(
{〈θ(q)

2 , x(q)〉/
√
dq}q∈[Q]

)
x(q)(x(q))T

]
ατ 2(θ2)

]
= (1−N−1)Eτ 1

ε0
,τ 2

ε0
,θ1,θ2

[
K
−1
τ 1,τ 1Tτ 1fd(θ1)

T
Kτ 1,τ 2(θ1, θ2)K

−1
τ 2,τ 2Tτ 2fd(θ2)

]
= (1−N−1)Eτ 1

ε0
,τ 2

ε0

[
〈K−1

τ 1,τ 1Tτ 1fd,Kτ 1,τ 2K
−1
τ 2,τ 2Tτ 2fd〉L2

]
.

For k ∈ Q and s ∈ [B(d , k)] and τ 1, τ 2 ∈ [1− ε0, 1 + ε0]
Q, we have

T
∗
τ 1K

−1
τ 1,τ 1Kτ 1,τ 2K

−1
τ 2,τ 2Tτ 2Y d

k,s =
(
T
∗
τ 1K

−1
τ 1,τ 1Tτ 1

)
·
(
T
∗
τ 2K

−1
τ 2,τ 2Tτ 2

)
· Y d

k,s = Y d
k,s.

Hence for any τ 1, τ 2 ∈ [1− ε0, 1 + ε0]
Q, T∗τ 1K

−1
τ 1,τ 1Kτ 1,τ 2K

−1
τ 2,τ 2Tτ 2 = I|V d

Q
. Hence

EΘε0

[∑
i �=j

Ex[〈a∗i , x(q)〉〈a∗j , x(q)〉σ′(〈θi, x〉/R)σ′(〈θj, x〉/R)]

]
= (1−N−1)‖fd‖2L2. (148)

The diagonal term verifies

EΘε0

⎡⎣∑
i∈[N]

Ex[〈a∗i , x(q)〉2σ′(〈θi, x〉/R)σ′(〈θj , x〉/R)]

⎤⎦
= N−1

Eτ ε0
,θ

[
ατ (θ)T

Kτ ,τ (θ, θ)ατ (θ)
]

� N−1
[

max
θ,τ∈[1−ε0,1+ε0]Q

‖Kτ ,τ (θ, θ)‖op
]
· Eτ ε0

[‖K−1
τ ,τTτfd‖2L2].

We have, from lemma 14,

Kτ ,τ (θ, θ) = α(q)Idq + β(q)θ(q)(θ(q))2

where[
α(q)

β(q)

]
= [dq(dq − 1)(τ (q))4]−1

[
dq(τ

(q))4 −(τ (q))2

−(τ (q))2 1

][
Ex[〈x(q), x(q)〉σ′d,τ (x

(1)
1 , . . . , x

(Q)
1)2]

Ex[(x
(q)
1)2σ′d,τ (x

(1)
1 , . . . , x

(Q)
1)2]

]
.

https://doi.org/10.1088/1742-5468/ac3a81 88

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Hence from lemma 17 and for ε0 small enough, there exists C > 0 such that for d large
enough

sup
τ∈[1−ε0,1+ε0]Q

‖Kτ ,τ (θ, θ)‖op � C
r2q
dq

= Cdκq .

Furthermore

‖K−1
τ ,τTτfd‖2L2 =

∑
k∈Q

B(d, k)

A
(q)
(τ ,τ),k

∑
s∈[B(d,k)]

λd
k,s(fd)

2

�
[
max
k∈Q

B(d, k)

A
(q)
(τ ,τ),k

]
· ‖PQfd‖2L2.

From lemma 15, we get

Eτ ε0
[‖K−1

τ ,τTτfd‖2L2] � Cdγ−κq · ‖PQfd‖2L2.

Hence,

EΘε0

⎡⎣∑
i∈[N]

Ex[〈a∗i , x(q)〉2σ′(〈θi, x〉/R)σ′(〈θj , x〉/R)]

⎤⎦ � C
dγ

N
‖PQfd‖2L2. (149)

Combining equations (147)–(149), we get

EΘε0

[
Ex

[
(fd(x)− f̂(x;Θ,a∗(Θ)))2

]]
= ‖fd‖2L2 − 2‖fd‖2L2 + (1−N−1)‖fd‖2L2 +N−1

Eτ ε0
,θ

[
ατ (θ)T

Kτ ,τ (θ, θ)ατ (θ)
]

� C
dγ

N
‖PQfd‖2L2.

By Markov’s inequality, we get for any ε > 0 and d large enough,

P(RNT(q)(fd,Θ) > ε · ‖fd‖2L2) � P({RNT(q)(fd,Θ) > ε · ‖fd‖2L2} ∩ Pε0) + P(Pc
ε0
)

� C ′d
γ

N
+ P(Pc

ε0
).

The assumption that N = ωd(d
γ) and lemma 8 conclude the proof.

Appendix I. Proof of theorem 4 in the main text

Step 1. Show that RNN,2N (f∗) � infW∈RN×d RNT,N (f∗,W).

Define the neural tangent model with N neurons by f̂NT,N (x; s ;W) =∑N
i=1〈si, x〉σ′(〈wi, x〉) and the NN withN neurons by f̂NN,N (x;W, b) =

∑N
i=1biσ(〈wi, x〉).

https://doi.org/10.1088/1742-5468/ac3a81 89

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

For any W ∈ RN×d, s ∈ RN , and ε > 0, we define

ĝN(x;W, s, ε) ≡ ε−1
(
f̂NN,N (x;W+ εs, 1)− f̂NN,N (x;W, 1)

)
,

E(x;W, s, ε) = ĝN (x;W, s, ε)− f̂NT,N (x; s ;W).

Then by Taylor expansion, there exists (w̃i)i∈[N] such that

|E(x;W, s, ε)| = ε

2

∣∣∣∣∣
N∑
i=1

〈si, x〉2σ′′(〈w̃i, x〉)
∣∣∣∣∣ .

By the boundedness assumption of supx∈R|σ′′(x)|, we have

lim
ε→0+

‖E(· ;W, s, ε)‖2L2 = 0,

and hence

lim
ε→0+

‖f∗ − ĝN (· ;W, s, ε)‖2L2 = ‖f∗ − f̂NT,N (· ; s ;W)‖2L2.

Note that ĝN can be regarded as a function in F 2N
NN and f̂NT,N ∈ FN

NN(W), this implies
that

RNN,2N (f∗) � inf
W∈RN×d

RNT,N (f∗,W). (150)

Step 2. Give upper bound of infW∈RN×dRNT,N (f∗,W). We take W = (w̄i)i�N

with w̄i = Uv̄i, where v̄i ∼ Unif(Sd0−1(r−1)), and denote V = (v̄i)i�N . Then we have

GN
NT(V) ≡

{
f(x) = f̄(UTx) : f̄(z) =

N∑
i=1

〈s̄i, z〉σ′(〈v̄i, z〉), s̄i ∈ R
d0, i � N

}
⊆ FN

NT(W).

It is easy to see that, when f∗(x) = ϕ(UTx), we have

inf
f̂∈GN

NT(V)
E[(f∗(x)− f̂(x))2] = inf

f̂∈FN
NT(V)

E[(ϕ(z)− f̂(z))2],

where FN
NT(V) is the class of neural tangent model on Rd0

FN
NT(V) =

{
f̄(z) =

N∑
i=1

〈s̄i, z〉σ′(〈v̄i, z〉) : s̄i ∈ R
d0 , i � N

}
.

Moreover, by theorem 3 in the main text, when d�+δ
0 � N � d�+1−δ

0 for some δ > 0
independent of N , d, we have

inf
f̂∈FN

NT(V)
E[(ϕ(z)− f̂(z))2] = (1 + od,P(1)) · ‖P>�+1ϕ‖2L2 = (1 + od,P(1)) · ‖P>�+1f∗‖2L2 .

https://doi.org/10.1088/1742-5468/ac3a81 90

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

As a consequence, we have

inf
W∈RN×d

RNT,N (f∗,W) � inf
f̂∈FN

NT(W)
E[(f∗(x)− f̂(x))2] � inf

f̂∈GN
NT(V)

E[(f∗(x)− f̂(x))2]

= inf
f̂∈FN

NT(V)
E[(ϕ(z)− f̂(z))2] = (1 + od,P(1)) · ‖P>�+1f∗‖2L2.

Combining with equation (150) gives that, when d�+δ
0 � N � d�+1−δ

0 , we have

RNN,N (f∗) � (1 + od(1)) · ‖P>�+1f∗‖2L2.

Step 3. Show that RNN,N (f ∗) is independent of κ.

We let r̃ = dκ̃/2 and r̊ = dr̊/2 for some κ̃ �= κ̊. Suppose we have x̃ = Uz̃1 +U⊥z2
and x̊ = Uz̊1 +U⊥z2, where z̃1 ∼ Unif(Sd0−1(r̃

√
d0)), z̊1 ∼ Unif(Sd0−1(̊r

√
d0)), and z2 ∼

Unif(Sd−d0−1(
√
d− d0)). Moreover, we let f̃∗(x̃) = ϕ(UTx̃/r̃) and f̊∗(̊x) = ϕ(UTx̊/̊r) for

some function ϕ :Rd0 → R.
Then, for any W̃ = (w̃i)i�N ⊆ Rd and b̃ = (b̃i)i�N ⊆ R, there exists (ṽ1,i)i�N ⊆ Rd0

and (ṽ2,i)i�N ⊆ Rd−d0 such that w̃i = Uṽ1,i +U⊥ṽ2,i. We define v̊1,i = r̃ · ṽ1,i/̊r, ẘi =

Uv̊1,i +U⊥ṽ2,i, W̊ = (ẘi)i�N , and b̊ = b̃. Then we have

Ex̊[(̊f∗(̊x)− fNN,N (̊x ;W̊, b̊))2] = Ex̃[(f̃∗(x̃)− fNN,N (x̃ ;W̃, b̃))2].

On the other hand, for any W̊ = (ẘi)i�N ⊆ Rd and b̊ = (̊bi)i�N ⊆ R, we can find W̃ =

(w̃i)i�N ⊆ Rd and b̃ = (b̃i)i�N ⊆ R such that the above equation holds. This proves that
RNN,N (f∗) is independent of κ.

Appendix J. Convergence of the Gegenbauer coefficients

In this section, we prove a string of lemmas that are used to show convergence of the
Gegenbauer coefficients.

J.1. Technical lemmas

First recall that for q ∈ [Q] we denote τ (q) ≡ ‖θ(q)‖2/
√

dq where θ(q) are the dq coordi-

nates of θ ∼ Unif(SD−1(
√
D)) associated to the qth sphere of PSd . We show that τ (q) is

(1/dq)-sub-Gaussian.

Lemma 16. There exists constants c,C > 0 such that for any ε > 0,

P(|τ (q) − 1| > ε) � C exp(−cdqε2).

Proof of lemma 16. Let G ∼ N(0, ID). We consider the random vector U ≡
G/‖G‖2 ∈ RD. We have U ∼ Unif(SD−1(1)). We denote Ndq = G2

1 + · · ·+G2
dq
and ND =

https://doi.org/10.1088/1742-5468/ac3a81 91

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

G2
1 + · · ·+G2

D. The random variable τ (q) has the same distribution as

τ (q) ≡ ‖θ(q)‖2/
√

dq
d
=

√
Ndq/dq√
ND/D

.

Hence,

P(|τ (q) − 1| > ε) = P

(∣∣∣∣√Ndq/dq√
ND/D

− 1

∣∣∣∣ > ε

)
� P

(∣∣∣√Ndq/dq − 1
∣∣∣ > ε/2

)
+ P

(∣∣∣√ND/D − 1
∣∣∣ > ε/(2 + 2ε)

)
,

(151)

where we used the fact that

|a− 1| � ε

2
and |b− 1| � ε

2 + 2ε
⇒
∣∣∣a
b
− 1

∣∣∣ � ε.

Let us first consider Ndq with ε ∈ (0, 2]. The G2
i are sub-exponential random variables

with

E

[
eλ(G

2
i−1)

]
� e2λ

2

, ∀ |λ| < 1/4.

From standard sub-exponential concentration inequality, we get

P
(∣∣Ndq/dq − 1

∣∣ > ε
)

� 2 exp (−dqε min(1, ε)/8) . (152)

Hence, for ε ∈ (0, 2], we have

P

(∣∣∣√Ndq/dq − 1
∣∣∣ > ε/2

)
� P

(∣∣Ndq/dq − 1
∣∣ > ε/2

)
� 2 exp

(
−dqε2/32

)
,

while for ε > 2,

P

(∣∣∣√Ndq/dq − 1
∣∣∣ > ε/2

)
� P

(
Ndq/dq > (ε/2 + 1)2

)
� P

(
Ndq/dq − 1 > ε2/4

)
� exp

(
−dqε2/32

)
.

In the case of ND, applying (152) with ε/(2 + 2ε) � 1 shows that

P

(∣∣∣√ND/D − 1
∣∣∣ > ε/(2 + 2ε)

)
� P (|ND/D − 1| > ε/(2 + 2ε))

� 2 exp
(
−Dε2/(32(1 + ε)2)

)
.

Combining the above bounds into (151) yields for ε � 0,

P(|τ (q) − 1| > ε) � 2 exp
(
−dqε2/32

)
+ 2 exp

(
−Dε2/(32(1 + ε)2)

)
� 4 exp

(
−ε2 min

(
dq,D/(1 + ε)2

)
/32

)
.

https://doi.org/10.1088/1742-5468/ac3a81 92

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Notice that |τ (q) − 1| �
√

D/dq − 1 and we only need to consider ε ∈ [0,
√
D/dq − 1].

We conclude that for any ε � 0, we have

P(|τ (q) − 1| > ε) � 4 exp
(
−dqε2/32

)
.

�
We consider an activation function σ :R→ R. Fix θ ∈ SD−1(

√
D) and recall that

x = (x(1), . . .x(Q)) ∈ PSd
κ. We recall that x ∼ Unif(PSd

κ) = μκ
d while x ∼ Unif(PSd) =

μd. Therefore, for a given θ, {〈θ(q), x(q)〉/
√
dq}q∈[Q] ∼ μ̃1

d as defined in equation (33).

Therefore we reformulate σ(〈θ, ·〉/R) as a function σd ,τ from psd to R:

σ(〈θ, x〉/R) = σ

⎛⎝∑
q∈[Q]

τ (q) · (rq/R) · 〈θ(q), x(q)〉/
√
dq

⎞⎠
≡ σd,τ

(
{〈θ(q), x(q)〉/

√
dq}q∈[Q]

)
. (153)

We will denote in the rest of this section αq = τ (q)rq/R for q = 1, . . . ,Q. Notice in par-
ticular that αq ∝ dηq+κq−ξ where we recall that ξ = maxq∈[Q]{ηq + κq}. Without loss of
generality, we will assume that the (unique) maximum is attained on the first sphere,
i.e. ξ = η1 + κ1 and ξ > ηq + κq for q � 2.

Lemma 17. Assume σ is an activation function with σ(u)2 � c0 exp(c1u
2/2) almost

surely, for some constants c0 > 1 and c1 < 1. We consider the function σd,τ : ps
d → R

associated to σ, as defined in equation (75).
Then

(a) EG∼N(0,1)[σ(G)2] <∞.

(b) Let w (q) be unit vectors in Rdq for q = 1, . . . ,Q. There exists ε0 = ε0(c1) and d0 =
d0(c1) such that, for x = (x(1), . . . , x(Q)) ∼ μκ

d ,

sup
d�d0

sup
τ∈[1−ε0,1+ε0]Q

Ex

[
σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)2]
<∞. (154)

(c) Let w (q) be unit vectors in Rdq for q = 1, . . . ,Q. Fix integers k = (k1, . . . , kQ) ∈ Z
Q
�0.

Then for any δ > 0, there exists constants ε0 = ε0(c1, δ) and d0 = d0(c1, δ), and a
coupling of G ∼ N(0, 1) and x = (x(1), . . . , x(Q)) ∼ μκ

d such that for any d � d0 and
τ ∈ [1− ε0, 1 + ε0]

Q

Ex,G

⎡⎣⎛⎝⎡⎣∏
q∈[Q]

(
1− 〈w(q), x(q)〉2/dq

)kq⎤⎦σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)
− σ(G)

⎞⎠2⎤⎦ < δ.

(155)

https://doi.org/10.1088/1742-5468/ac3a81 93

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Proof of lemma 17. Part (a) is straightforward.
For part (b), recall that the probability distribution of 〈w(q), x(q)〉 when x(q) ∼

Unif(Sdq−1(
√
dq)) is given by

τ̃ 1
dq−1(dx) = Cdq

(
1− x2

dq

) dq−3
2

1
x∈[−

√
dq ,
√

dq]
dx, (156)

Cdq =
Γ(dq − 1)

2dq−2
√
dqΓ((dq − 1)/2)2

. (157)

A simple calculation shows that Cn → (2π)−1/2 as n→∞, and hence supn Cn � C <∞.
Therefore for τ ∈ [1− ε, 1 + ε]Q, we have

Ex

[
σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)2]
=

∫
∏

q∈[Q]

[−
√

dq,
√

dq]

σd,τ

(
x
(1)
1 , . . . , x

(Q)
1

)2∏
q∈[Q]

⎛⎝Cdq

(
1− (x

(q)
1)2

dq

) dq−3
2

dx
(q)
1

⎞⎠

� CQ

∫
RQ

c0 exp

⎛⎝c1

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠2

/2

⎞⎠ ∏
q∈[Q]

(
exp

(
−dq − 3

2dq
(x

(q)
1)2

)
dx

(q)
1

)

= c0C
Q

∫
RQ

exp
(
−xT

1Mx1/2
)⎛⎝∏

q∈[Q]

dx
(q)
1

⎞⎠
where we denoted x1 = (x

(1)
1 , . . . , x

(Q)
1) and M ∈ R

Q×Q with

Mqq =
dq − 3

dq
− c21α

2
q , Mqq′ = −c1αqαq′ , for q �= q′ ∈ [Q].

Recalling the definition of αq = τ (q)rq/R, with rq = d(ηq+κq)/2 and R = dξ/2(1 + od(1)).
Hence for any ε > 0, uniformly on τ ∈ [1− ε, 1 + ε]Q, we have αq → 0 for q � 2 and
lim supd→∞|α1 − 1| � ε. Hence if we choose ε0 < c−11 − 1, there exists c > 0 such that for
d sufficiently large M " cIQ and for any τ ∈ [1− ε0, 1 + ε0]

Q

Ex

[
σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)2] � c0C
Q

∫
RQ

exp
(
−c‖x1‖22/2

)⎛⎝∏
q∈[Q]

dx
(q)
1

⎞⎠ <∞.

Finally, for part (c), without loss of generality we will take w(q) = e
(q)
1 so that

〈w(q), x(q)〉 = x
(q)
1 . From part (b), there exists ε > 0 and d0 such that

sup
d�d0

sup
τ∈[1−ε,1+ε]

Ex Ex,G

⎡⎣⎡⎣∏
q∈[Q]

(
1− 〈w(q), x(q)〉2/dq

)2kq⎤⎦σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)2⎤⎦
� sup

d�d0

sup
τ∈[1−ε,1+ε]

Ex

[
σd,τ

(
{〈w(q), x(q)〉}q∈[Q]

)2]
<∞.

https://doi.org/10.1088/1742-5468/ac3a81 94

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Consider G ∼ N(0, IQ) and an arbitrary coupling between x and G. For any M > 0 we
can choose σM bounded continuous so that for any d and τ ∈ [1− ε, 1 + ε]Q,

Ex,G

⎡⎣⎛⎝∏
q∈[Q]

(
1− (x

(q)
1)2/dq

)kq
· σ

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠
−
∏
q∈[Q]

(
1−G2

q/dq
)kq · σ

⎛⎝∑
q∈[Q]

αqGq

⎞⎠⎞⎠2⎤⎦
� Ex,G

⎡⎣⎛⎝∏
q∈[Q]

(
1− (x

(q)
1)2/dq

)kq
· σM

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠
−
∏
q∈[Q]

(
1−G2

q/dq
)kq · σM

⎛⎝∑
q∈[Q]

αqGq

⎞⎠⎞⎠2⎤⎦+
1

M
. (158)

It is therefore sufficient to prove the claim for σM . Letting ξq ∼ N(0, Idq−1) independently
for each q ∈ [Q] and independent of G, we construct the coupling via

x
(q)
1 =

Gq

√
dq√

G2
q + ‖ξq‖22

, x
(q)
−1 =

ξq
√
dq√

G2
q + ‖ξq‖22

, q ∈ [Q], (159)

where we set x(q) = (x
(q)
1 , x

(q)
−1) for each q ∈ [Q]. We thus have (x

(q)
1 , x

(q)
−1)→G almost

surely, hence the limit superior of equation (158) is by weak convergence bounded by
1/M for any arbitrary M . Furthermore, noticing that αq → 0 uniformly on τ ∈ [1−
ε, 1 + ε]Q for q � 2, we have by bounded convergence

lim
d→∞

sup
τ∈[1−ε,1+ε]Q

Ex,G

⎡⎣⎛⎝∏
q∈[Q]

(
1−G2

q/dq
)kq · σ

⎛⎝∑
q∈[Q]

αqGq

⎞⎠− σ (α1G1)

⎞⎠2⎤⎦ = 0.

(160)

We further have lim(d,τ (1))→(∞,1) α1 = 1. Hence, by bounded convergence,

lim
(d,τ (1))→(∞,1)

EG1

[
(σ (α1G1)− σ(G1))

2
]
= 0. (161)

Combining equation (158) with the coupling (159) and equations (160) and (161) yields
the result. �

Consider the expansion of σd ,τ in terms of tensor product of Gegenbauer polynomials.
We have

σ(〈θ, x〉/R) =
∑
k∈ZQ

�0

λd
k(σd,τ)B(d, k)Qd

k

(
{〈θ(q), x(q)〉}q∈[Q]

)
,

https://doi.org/10.1088/1742-5468/ac3a81 95

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where

λd
k(σd,τ) = Ex

[
σd,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
,

with the expectation taken over x = (x(1), . . . , x(Q)) ∼ μd ≡ Unif(PSd). We will need the
following lemma, which is direct consequence of Rodrigues formula, to get the scaling
of the Gegenbauer coefficients of σd ,τ .

Lemma 18. Let k = (k1, . . . , kQ) ∈ Z
Q
�0 and denote |k| = k1 + · · ·+ kQ. Assume that

the activation function σ is |k|-times weakly differentiable and denote σ(|k|) its |k|-weak
derivative. Let αq = τ (q)rq/R for q = 1, . . . ,Q. Then

λd
k(σd,τ) =

⎛⎝∏
q∈[Q]

αkq
q

⎞⎠ ·R(d, k) · Ex

⎡⎣⎛⎝∏
q∈[Q]

(
1− (x

(q)
1)2

dq

)kq
⎞⎠ · σ(|k|)

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠⎤⎦ ,

(162)

where x ∼ Unif(PSd) and

R(d, k) =
∏
q∈[Q]

d
kq/2
q Γ((dq − 1)/2)

2kqΓ(kq + (dq − 1)/2)
.

Furthermore,

lim
d→∞

B(d, k)R(d, k)2 =
1

k!
, (163)

where k! = k1! . . . kQ!.

Proof of lemma 18. We have

λd
k(σd,τ) = Ex

[
σd,τ

(
x
(1)
1 , . . . , x

(Q)
1

)
Qd

k

(√
d1x

(1)
1 , . . . ,

√
dQx

(Q)
1

)]
= Ex(1),...,x(Q−1)

⎡⎣Ex(Q)

⎡⎣σ
⎛⎝ ∑

q∈[Q−1]

αqx
(q)
1 + αQx

(Q)
1

⎞⎠Q
(dQ)
kQ

(
√
dQx

(Q)
1)

⎤⎦
×

∏
q∈[Q−1]

Q
(dq)
kq

(
√

dqx
(q)
1)

⎤⎦ , (164)

where we used the definition (34) of tensor product of Gegenbauer polynomials.
Consider the integration with respect to x(Q). Denote for ease of notations u =

α1x
(1)
1 + · · ·+ αQ−1x

(Q−1)
1 . We use the Rodrigues formula for the Gegenbauer polynomials

https://doi.org/10.1088/1742-5468/ac3a81 96

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

(see equation (24)):

E
x(Q)∼Unif(S

dQ−1(
√

dQ))

[
σ
(
u+ αQx

(Q)
1

)
Q

(dQ)
kQ

(√
dQx

(Q)
1

)]
=

ωdQ−2

ωdQ−1

∫
[−1,1]

σ
(
αQ

√
dQt+ u

)
Q

(dQ)
kQ

(dQt)(1− t2)(dQ−3)/2dt

= (−1/2)kQ Γ((dQ − 1)/2)

Γ(kQ + (dQ − 1)/2)
· ωdQ−2

ωdQ−1

×
∫
[−1,1]

σ
(
αQ

√
dQt+ u

)(d

dt

)kQ

(1− t2)kQ+(dQ−3)/2dt

= α
kQ
Q 2−kQd

kQ/2
Q

Γ((dQ − 1)/2)

Γ(kQ + (dQ − 1)/2)
· ωdQ−2

ωdQ−1

×
∫
[−1,1]

(1− t2)kQσ(kQ)
(
αQ

√
dQt+ u

)
(1− t2)(dQ−3)/2dt

= α
kQ
Q

d
kQ/2
Q Γ((dQ − 1)/2)

2kQΓ(kQ + (dQ − 1)/2)
E
x(Q)∼Unif(SdQ−1(

√
dQ))

×
[(

1− (x
(Q)
1)2/dQ

)kQ
σ(kQ)

(
αQx

(Q)
1 + u

)]
. (165)

Iterating equation (165) over q ∈ [Q] and equation (164) yield the desired formula (162).
Furthermore, for each q ∈ [Q],

kq!B(dq, kq) = (2kq + dq − 2)

kq−2∏
j=0

(j + dq − 1),

Γ((dq − 1)/2)

2kqΓ(kq + (dq − 1)/2)
=

kq−1∏
j=0

1

2j + dq − 1
.

Combining these two equations yields

kq!B(dq, kq)
d
kq
q Γ((dq − 1)/2)2

22kqΓ(kq + (dq − 1)/2)2

=
2kq + dq − 2

2kq + dq − 3
·

⎛⎝kq−2∏
j=0

j + dq − 1

2j + dq − 1

⎞⎠ ·

⎛⎝kq−1∏
j=0

dq
2j + dq − 1

⎞⎠ , (166)

which converges to 1 when dq →∞. We deduce that

lim
d→∞

B(d, k)R(d, k)2 =
1

k!
.

�

https://doi.org/10.1088/1742-5468/ac3a81 97

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

J.2. Proof of convergence in probability of the Gegenbauer coefficients

Lemma 19. Let k = (k1, . . . , kQ) ∈ Z
Q
�0 and denote |k| = k1 + · · ·+ kQ. Assume that

the activation function σ is |k|-times weakly differentiable and denote σ(|k|) its |k|-weak
derivative. Assume furthermore that there exist constants c0 > 0 and c1 < 1 such that
σ(|k|)(u)2 � c0 exp(c1u

2/2) almost surely.
Then for any δ > 0, there exists ε0 ∈ (0, 1) and d0 such that for any d � d0 and

τ ∈ [1− ε0, 1 + ε0]
Q,∣∣∣∣∣∣

⎛⎝∏
q∈[Q]

d(ξ−ηq−κq)kq

⎞⎠B(d, k)λd
k(σd,τ)

2 − μ|k|(σ)
2

k!

∣∣∣∣∣∣ � δ.

Proof of lemma 19. From lemma 18, we have⎛⎝∏
q∈[Q]

d(ξ−ηq−κq)kq

⎞⎠B(d, k)λd
k(σd,τ)

2

=

⎛⎝∏
q∈[Q]

α2kq
q d(ξ−ηq−κq)kq

⎞⎠ · [B(d, k)R(d, k)2]

× Ex

⎡⎣∏
q∈[Q]

(
1− (x

(q)
1)2

dq

)kq

· σ(|k|)

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠⎤⎦2

. (167)

Recall αq = τ (q)rq/R with rq = d(κq+ηq)/2 and R = dξ/2(1 + od(1)). Hence, we have

lim
(d,τ)→(∞,1)

∏
q∈[Q]

α2kq
q d(ξ−ηq−κq)kq = 1. (168)

Furthermore, from lemma 18, we have

lim
d→∞

B(d, k)R(d, k)2 =
1

k!
. (169)

We can apply lemma 17 to the activation function σ(|k |). In particular part (c) of the
lemma implies that there exists ε0 ∈ (0, 1) such that for d sufficiently large, we have for
any τ ∈ [1− ε0, 1 + ε0]

Q,∣∣∣∣∣∣Ex

⎡⎣⎛⎝∏
q∈[Q]

(
1− (x

(q)
1)2

dq

)kq
⎞⎠ · σ(|k|)

⎛⎝∑
q∈[Q]

αqx
(q)
1

⎞⎠⎤⎦− EG[σ
(|k|)(G)]

∣∣∣∣∣∣ � δ/2.

(170)

From equation (28), we have EG[σ
(|k|)(G)] = μ|k|(σ). Combining equations (168) and

(170) into equation (167) yields the result. �

https://doi.org/10.1088/1742-5468/ac3a81 98

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Lemma 20. Let k be a non negative integer and denote k = (k, 0, . . . , 0) ∈ Z
Q
�0, where we

recall that without loss of generality we choose q = 1 as the unique argmaxq∈[Q]{ηq + κq}.
Assume that the activation function σ verifies σ(u)2 � c0 exp(c1u

2/2) almost surely for
some constants c0 > 0 and c1 < 1.

Then for any δ > 0, there exists ε0 = ε0(c1, δ) and d0 = d0(c1, δ) such that for any
d � d0 and τ ∈ [1− ε0, 1 + ε0]

Q,∣∣∣∣B(d1, k)λ
d
k(σd,τ)

2 − μk(σ)
2

k!

∣∣∣∣ � δ.

Proof of lemma 20. 20. Recall the correspondence (29) between Gegenbauer and
Hermite polynomials. Note for any monomial ml(x) = xk, we can apply lemma 17(c) to

ml(x
(qξ)
1)σ and find a coupling such that for any η > 0, there exists ε0 > 0 and

lim
d→∞

sup
τ∈[1−ε0,1+ε0]Q

Ex,G

[(
mk(x

(qξ)
1)σd,τ (x

(1)
1 , . . . , x

(Q)
1)−mk(G)σ(G)

)2
]

� η.

(171)

We have

[B(d1, k)k!]
1/2λd

k(σd,τ) = Ex[σd,τ (x
(1)
1 , . . . , x

(Q)
1)Q

(d1)
k (

√
d1x

(1)
1)[B(d1, k)k!]

1/2].

Using the asymptotic correspondence between Gegenbauer polynomials and Hermite
polynomials (29)

lim
d→∞

Coeff{Q(d)
k (
√
dx)B(d, k)1/2} = Coeff

{
1

(k!)1/2
Hek(x)

}
,

and equation (171), we get for any δ > 0, there exists ε0 > 0 such that for d sufficiently
large, we have for any τ ∈ [1− ε0, 1 + ε0]

Q,∣∣∣Ex

[
σd,τ (x

(1)
1 , . . . , x

(Q)
1)Q

(d1)
k (

√
d1x

(1)
1)[B(d1, k)k!]

1/2
]
− EG[σ(G)Hek(G)]

∣∣∣ � δ,

which concludes the proof. �

Appendix K. Bound on the operator norm of Gegenbauer polynomials

Proposition 5 (Bound on the Gram matrix). Let k ∈ Z
Q
�0 and denote γ =

∑
q∈[Q] ηqkq.

Let n � dγ/eAd
√
log d for any Ad →∞. Let (xi)i∈[n] with xi = ({x(q)

i }q∈[Q]) ∼ Unif(PSd)

https://doi.org/10.1088/1742-5468/ac3a81 99

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

independently, and Q
(dq)
kq

be the kq’th Gegenbauer polynomial with domain [−dq, dq].
Consider the random matrix W = (Wij)i,j∈[n] ∈ R

n×n, with

Wij = Qd
k({〈x

(q)
i , x

(q)
j 〉}q∈[Q]) =

∏
q∈[Q]

Q
(dq)
kq

(〈x(q)
i , x

(q)
j 〉).

Then we have

lim
d,n→∞

E[‖W− In‖op] = 0.

Corollary 1 (Uniform bound on the Gram matrix). Let n � dγ/eAd
√
log d for some γ >

0 and any Ad →∞. Let (xi)i∈[N] with xi = ({x(q)
i }q∈[Q]) ∼ Unif(PSd) independently. Con-

sider for any k ∈ Z
Q
�0, the random matrix Wk = ((Wk)ij)i,j∈[n] ∈ Rn×n as defined in

proposition 5. Denote:

Q =

⎧⎨⎩k ∈ Z
Q
�0

∣∣∣∣∑
q∈[Q]

ηqkq < γ

⎫⎬⎭ .

Then we have

sup
k∈Qc

E[‖Wk − In‖op] = od,P(1).

Proof of corollary 1. For each q ∈ [Q], we consider Δ(q) = W
(q)
k − In where W

(q)
k =

((W
(q)
k)ij)i,j∈[n] with

(W
(q)
k)ij = Q

(dq)
k (〈x(q)

i , x
(q)
j 〉).

Then, defining γq ≡ γ/ηq, we have

E

[
sup

k�2γq+3
‖W (q)

k − In‖2op

]
� E

⎡⎣ ∑
k�2γq+3

‖W (q)
k − In‖2F

⎤⎦
= n(n− 1)

∑
k�2γq+3

E[Q
(dq)
k (〈x(q), y(q)〉)2] = n(n− 1)

∑
k�2γq+3

B(dq, k)
−1.

For d sufficiently large, there exists C > 0 such that for any p � m ≡ �2γq + 3�:

B(dq,m)

B(dq, p)
=

p−1∏
k=m

(2k + dq − 2)

(2k + dq)
· (k + 1)

(k + dq − 2)
�

p−1∏
k=m

1

1 + (dq − 3)/(k + 1)

�
p−1∏
k=m

e
− m+1

dq−2+m ·
dq−2
k+1 � C

p2
.

https://doi.org/10.1088/1742-5468/ac3a81 100

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Hence, there exists constant C ′, such that for large d, we have∑
k�2γq+3

B(dq, k)
−1 � C ′ ·B(dq,m)−1.

Recalling that B(dq,m) = Θd(d
ηqm) = ωd(d

2γ), and n = od(d
γ), we deduce

E

[
sup

k�2γq+3
‖W (q)

k − In‖2op

]
= od(1). (172)

Let us now consider Δ = Wk − In. We will denote Δ(q) = W
(q)
kq
− In. Then it is easy

to check (recall the diagonal elements of W
(dq)
kq

are equal to one) that for any q ∈ [Q]

Δ =

(
�
q′ �=q

W
(q′)
kq′

)
�Δ(q)

where A�B denotes the Hadamard product, or entrywise product, (A�B)i,j∈[n] =
(AijBij)i,j∈[n]. We recall the following inequality on the operator norm of Hadamard
product of two matrices, with A positive definite:

‖A�B‖op �
(
max
ij

Aij

)
‖B‖op.

Hence, in particular

‖Δ‖op �

⎛⎝∏
q′ �=q

max
ij

[(W
(q′)
kq′

)ij]

⎞⎠ ‖Δ(q)‖op.

Consider I = [0, 2γ1 + 3 [× · · · × [0, 2γQ + 3 [∩ Z
Q
�0. Then, from equation (172), we get

directly

sup
k∈Ic

‖Wk − In‖op = od,P(1). (173)

Furthermore, I ∩ Q is finite and from proposition 5, we directly get

sup
k∈I∩Q

‖Wk − In‖op = od,P(1). (174)

Combining bounds (173) and (174) yields the result. �

K.1. Proof of proposition 5

The proof follows closely the proof of the uniform case presented in [21]. For
completeness, we copy here the relevant lemmas.

https://doi.org/10.1088/1742-5468/ac3a81 101

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Step 1. Bounding operator norm by moments.

Denote Δ = W − In. We define for each q ∈ [Q], W
(dq)
kq

= (Q
(dq)
kq

(〈x(q)
i , x

(q)
j 〉))ij∈[n] and

Δ(q) = W
(dq)
kq

− In. Then it is easy to check (recall the diagonal elements of W
(dq)
kq

are

equal to one)

Δ = Δ(1) � . . .�Δ(Q),

where A�B denotes the Hadamard product, or entrywise product, (A�B)i,j∈[n] =
(AijBij)i,j∈[n]. For any sequence of integers p = p(d), we have

E[‖Δ‖op] � E[Tr(Δ2p)1/(2p)] � E[Tr(Δ2p)]1/(2p). (175)

To prove the proposition, it suffices to show that for any sequence Ad →∞, we have

lim
d,n→∞,n=Od(dγ e−Ad

√
log d)

E[Tr(Δ2p)]1/(2p) = 0. (176)

In the following, we calculate E[Tr(Δ2p)]. We have

E[Tr(Δ2p)] =
∑

i=(i1,...,i2p)∈[n]2p
E[Δi1i2Δi2i3 . . .Δi2pi1]

=
∑

i=(i1,...,i2p)∈[n]2p

∏
q∈[Q]

E[Δ
(q)
i1i2

Δ
(q)
i2i3

. . .Δ
(q)
i2pi1

],

where we used that x(q) and x(q′) are independent for q �= q′.
We will denote for any i = (i1, . . . , ik) ∈ [n]k, define for each q ∈ [Q]

M
(q)
i =

{
E[Δ

(q)
i1i2

. . .Δ
(q)
iki1

] k � 2,

1 k = 1.

Similarly, we define M i associated to Δ,

Mi =
∏
q∈[Q]

M
(q)
i .

To calculate these quantities, we will apply repeatedly the following identity, which
is an immediate consequence of equation (21). For any i1, i2, i3 distinct, we have

Eθi2
[Δ

(q)
i1i2

Δ
(q)
i2i3

] =
1

B(dq, kq)
Δ

(q)
i1i3

.

Throughout the proof, we will denote by C,C ′,C ′′ constants that may depend on k but
not on p, d,n. The value of these constants is allowed to change from line to line.

Step 2. The induced graph and equivalence of index sequences.
For any index sequence i = (i1, i2, . . . , i2p) ∈ [n]2p, we defined an undirected multi-

graph Gi = (V i ,Ei) associated to index sequence i . The vertex set V i is the set of
distinct elements in i1, . . . , i2p. The edge set Ei is formed as follows: for any j ∈ [2p] we
add an edge between ij and ij+1 (with convention 2p+ 1 ≡ 1). Notice that this could be

https://doi.org/10.1088/1742-5468/ac3a81 102

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

a self-edge, or a repeated edge: Gi = (V i ,Ei) will be—in general—a multigraph. We
denote v(i) = |V i | to be the number of vertices of Gi , and e(i) = |Ei | to be the number
of edges (counting multiplicities). In particular, e(i) = k for i ∈ [n]k. We define

T�(p) = {i ∈ [n]2p :Gi does not have self edge}.

For any two index sequences i 1, i 2, we say they are equivalent i 1 � i 2, if the two
graphs Gi1 and Gi2 are isomorphic, i.e. there exists an edge-preserving bijection of their
vertices (ignoring vertex labels). We denote the equivalent class of i to be

C(i) = {j : j � i}.

We define the quotient set Q(p) by

Q(p) = {C(i) : i ∈ [n]2p}.

The following lemma was proved in proposition 3 in [21].

Lemma 21. The following properties holds for all sufficiently large n and d:

(a) For any equivalent index sequences i = (i1, . . . , i2p) � j = (j1, . . . , j2p), we have

M
(q)
i = M

(q)
j .

(b) For any index sequence i ∈ [n]2p \ T�(p), we have M i = 0.

(c) For any index sequence i ∈ T�(p), the degree of any vertex in Gi must be even.

(d) The number of equivalent classes |Q(p)| � (2p)2p.

(e) Recall that v(i) = |V i | denotes the number of distinct elements in i . Then, for any
i ∈ [n]2p, the number of elements in the corresponding equivalence class satisfies
|C(i)| � v(i)v(i) · nv(i) � ppnv(i).

In view of property (a) in the last lemma, given an equivalence class C = C(i), we
will write MC = Mi for the corresponding value.

Step 3. The skeletonization process.
For multi-graph G, we say that one of its vertices is redundant , if it has degree 2.

For any index sequence i ∈ T�(p) ⊂ [n]2p (i.e. such that Gi does not have self-edges), we
denote by r(i) ∈ N+ to be the redundancy of i , and by sk(i) to be the skeleton of i ,
both defined by the following skeletonization process. Let i 0 = i ∈ [n]2p. For any integer
s � 0, if Gis has no redundant vertices then stop and set sk(i) = i s. Otherwise, select
a redundant vertex i s(�) arbitrarily (the �th element of i s). If i s(�− 1) �= i s(�+ 1),
then remove i s(�) from the graph (and from the sequence), together with its adja-
cent edges, and connect i s(�− 1) and i s(�+ 1) with an edge, and denote i s+1 to be
the resulting index sequence, i.e. i s+1 = (i s(1), . . . , i s(�− 1), i s(�+ 2), . . . , i s(end)). If
i s(�− 1) = i s(�+ 1), then remove i s(�) from the graph (and from the sequence),
together with its adjacent edges, and denote i s+1 to be the resulting index sequence, i.e.
i s+1 = (i s(1), . . . , i s(�− 1), i s(�+ 1), i s(�+ 2), . . . , i s(end)). (Here �+ 1, and �− 1 have
to be interpreted modulo |i s|, the length of i s.) The redundancy of i , denoted by r(i),
is the number of vertices removed during the skeletonization process.

https://doi.org/10.1088/1742-5468/ac3a81 103

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

It is easy to see that the outcome of this process is independent of the order in which
we select vertices.

Lemma 22. For the above skeletonization process, the following properties hold

(a) If i � j ∈ [n]p, then sk(i) � sk(j). That is, the skeletons of equivalent
index sequences are equivalent.

(b) For any i = (i1, . . . , ik) ∈ [n]k, and q ∈ [Q], we have

M
(q)
i =

M
(q)
sk(i)

B(dq, kq)r(i)
.

(c) For any i ∈ T�(p) ⊂ [n]2p, its skeleton is either formed by a single element, or an
index sequence whose graph has the property that every vertex has degree greater
or equal to 4.

Given an index sequence i ∈ T�(p) ⊂ [n]2p, we say i is of type 1, if sk(i) contains
only one index. We say i is of type 2 if sk(i) is not empty (so that by lemma 22, Gsk(i)

can only contain vertices with degree greater or equal to 4). Denote the class of type 1
index sequence (respectively type 2 index sequence) by T1(p) (respectively T2(p)). We

also denote by T̃ a(p), a ∈ {1, 2} the set of equivalence classes of sequences in Ta(p). This
definition makes sense since the equivalence class of the skeleton of a sequence only
depends on the equivalence class of the sequence itself.

Step 4. Type 1 index sequences.
Recall that v(i) is the number of vertices in Gi , and e(i) is the number of edges in Gi

(which coincides with the length of i). We consider i ∈ T1(p). Since for i ∈ T1(p), every
edge of Gi must be at most a double edge. Indeed, if (u1, u2) had multiplicity larger
than 2 in Gi , neither u1 nor u2 could be deleted during the skeletonization process,
contradicting the assumption that sk(i) contains a single vertex. Therefore, we must
have mini∈T1 v(i) = p+ 1. According the lemma 22(b), for every i ∈ T1(p), we have

Mi =
∏
q∈[Q]

M
(q)
i =

∏
q∈[Q]

1/B(dq, kq)
v(i)−1 =

1

B(d, k)v(i)−1
.

Note by lemma 21(e), the number of elements in the equivalence class of i is |C(i)| �
pp · nv(i). Hence we get

max
i∈T1(p)

[|C(i)||Mi|] � sup
i∈T1(p)

[
ppnv(i)/B(d, k)v(i)−1

]
= ppnp+1/B(d, k)p. (177)

Therefore, denoting K =
∑

q∈[Q] ηqkq,∑
i∈T1(p)

Mi =
∑

C∈T̃ 1(p)

|C||MC| (178)

�|Q(p)|pp np+1

B(d, k)p
� (Cp)3pnp+1d−Kp, (179)

https://doi.org/10.1088/1742-5468/ac3a81 104

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

where in the last step we used lemma 21 and the fact that for q ∈ [Q], B(dq, kq) � C0d
kq
q

for some C0 > 0.
Step 5. Type 2 index sequences.
We have the following simple lemma bounding M i , copied from proposition 3 in [21].

This bound is useful when i is a skeleton.

Lemma 23. For any q ∈ [Q], there exists constants C and d0 depending uniquely on kq
such that, for any d � d0(kq), and any index sequence i ∈ [n]m with 2 � m � dq/(4kq), we
have

|M (q)
i | �

(
Cmkq · d−kqq

)m/2
.

Suppose i ∈ T2(p), and denote v(i) to be the number of vertices in Gi. We have, for
a sequence p = od(d), and each q ∈ [Q]

|M (q)
i | (1)=

|M (q)
sk(i)|

B(dq, kq)r(i)

(2)

�
(
Ce(sk(i))

dq

)kq ·e(sk(i))/2
(C ′dq)

−r(i)kq

(3)

�
(
Cp

dq

)kq ·e(sk(i))/2
(C ′dq)

−r(i)kq

(4)

�
(
Cp

dq

)kq ·v(sk(i))
(C ′dq)

−r(i)kq

(5)

�Cv(i)pkq ·v(sk(i))d−(v(sk(i))+r(i))·kq
q

(6)

�(Cp)kq ·v(i)d−v(i)kqq .

Here (1) holds by lemma 22(b); (2) by lemma 23, and the fact that sk(i) ∈ [n]e(sk(i)),

together by B(dq, kq) � C0d
kq
q ; (3) because e(sk(i)) � 2p; (4) by lemma 22(c), implying

that for i ∈ T2(p), each vertex of Gsk(i) has degree greater or equal to 4, so that v(sk(i)) �
e(sk(i))/2 (notice that for d � d0(kq) we can assume Cp/dq < 1). Finally, (5) follows since
r(i), v(sk(i)) � v(i), and (6) the definition of r(i) implying r(i) = v(i)− v(sk(i)).

Hence we get

|Mi| �
∏
q∈[Q]

(Cp)kq ·v(i)d−v(i)kqq .

Note by lemma 21(e), the number of elements in equivalent class |C(i)| � pv(i) · nv(i).
Since v(i) depends only on the equivalence class of i, we will write, with a slight abuse
of notation v(i) = v(C(i)). Notice that the number of equivalence classes with v(C) = v
is upper bounded by the number multi-graphs with v vertices and 2p edges, which is at

https://doi.org/10.1088/1742-5468/ac3a81 105

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

most v4p. Denoting α = maxq∈[Q]{1/ηq}, we have∑
i∈T2(p)

Mi �
∑

C∈T̃ 2(p)

|C||MC| (180)

�
∑

C∈T̃ 2(p)

(Cpα)(K+1)v(C)
(n

dK

)v(C)
(181)

�
2p∑
v=2

v4p
(
Cnpα(K+1)

dK

)v

. (182)

Define ε = Cnpα(K+1)/dK. We will assume hereafter that p is selected such that

2p � − log

(
Cnpα(K+1)

dK

)
. (183)

By calculus and condition (183), the function F(v) = v4pεv is maximized over v ∈ [2, 2p]
at v = 2, whence∑

i∈T2(p)

Mi � 2pF (2) � Cp
(n

dK

)2

. (184)

Step 6. Concluding the proof.
Using equations (179) and (184), we have, for any p = od(d) satisfying equation (183),

we have

E[Tr(Δ2p)] =
∑

i=(i1,...,i2p)∈[N]2p

Mi =
∑

i∈T1(p)

Mi +
∑

i∈T2(p)

Mi (185)

� (Cp)3p
np+1

dKp
+ Cp

(n

dK

)2

. (186)

Form equation (175), we obtain

E[‖Δ‖op] � C

{
p3/2n1/(2p)

√
n

dK
+
(n

dK

)1/p
}
. (187)

Finally setting n = dK e−2A
√
log d and p = (K/A)

√
log d, this yields

E[‖Δ‖op] � C
{
e−

A
4

√
log d + e−2A

2/K
}
. (188)

Therefore, as long as A→∞, we have E[‖Δ‖op]→ 0. It is immediate to check that the
above choice of p satisfies the required conditions p = od(d) and equation (183) for all d
large enough.

https://doi.org/10.1088/1742-5468/ac3a81 106

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Appendix L. Technical lemmas

We put here one technical lemma that is used in the proof of theorem 7(a).

Lemma 24. Let D = (Dqq′)q,q′∈[Q] ∈ RDN×DN be a symmetric Q by Q block matrix with

Dqq′ ∈ R
dqN×dq′N . Denote B = D−1. Assume that D satisfies the following properties:

(a) For any q ∈ [Q], there exists cq,Cq > 0 such that we have with high probability

0 <
r2q
dq
cq = dκqcq � λmin(D

qq) � λmax(D
qq) � r2q

dq
Cq = dκqCq <∞,

as d→∞.

(b) For any q �= q′ ∈ [Q], we have σmax(D
qq′) = od,P(rqrq′/

√
dqdq′) = od,P(d

(κq+κq′)/2).

Then for any q �= q′ ∈ [Q], we have

‖Bqq‖op = Od,P

(
dq
r2q

)
= Od,P(d

−κq),

‖Bqq′‖op = od,P

(√
dqdq′

rqrq′

)
= od,P(d

−(κq+κq′)/2). (189)

Proof of lemma 24. Let us show the result recursively on the integer Q. Note that
the case Q = 1 is direct.

Consider D = (Dqq′)q,q′∈[Q]. Denote D̃ = D − dQ, A = (Dqq′)q,q′∈[Q−1] ∈ RD̃N×D̃N and

C = [(D1Q)T, . . . , (D(Q−1)Q)T]T ∈ R
dQN×D̃N such that

D =

[
A C
CT DQQ

]
.

Assume that A−1 verifies equation (189). Denote

B =

[
R T
TT BQQ

]
.

From the two by two blockmatrix inversion, we have:

BQQ = (DQQ −CTA−1C)−1,

T = −A−1CBQQ.

https://doi.org/10.1088/1742-5468/ac3a81 107

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

We have ∥∥CTA−1C
∥∥
op

�
∑

q,q′∈[Q−1]

∥∥∥(DqQ)T(A−1)qq′D
q′Q
∥∥∥
op

=
∑

q,q′∈[Q−1]

od,P

(
rqrQ√
dqdQ

)
·Od,P

(√
dqdq′

rqrq′

)
· od,P

(
rq′rQ√
dq′dQ

)
= od,P(r

2
Q/dQ),

where we used in the second line the properties on D and our assumption on A−1. Hence
DQQ −CTA−1C # (r2q/dq)(cq − od,P(1))I and ‖BQQ‖op = Od,P(dq/r

2
q).

Furthermore, for q < Q,

BqQ = −
∑

q′∈[Q−1]

(A−1)qq′Cq′B
QQ.

Hence ∥∥BqQ
∥∥
op

�
∑

q′∈[Q−1]

∥∥∥(A−1)qq′D
q′QBQQ

∥∥∥
op

=
∑

q,q′∈[Q−1]

Od,P

(√
dqdq′

rqrq′

)
· od,P

(
rqrQ√
dq′dQ

)
·Od,P

(
dQ
r2Q

)

= od,P

(√
dqdQ
rqrQ

)
,

which finishes the proof. �

L.1. Useful lemmas from [21]

For completeness, we reproduce in this section lemmas proven in [21].

Lemma 25. The number B(d, k) of independent degree-k spherical harmonics on Sd−1

is non-decreasing in k for any fixed d � 2.

Lemma 26. For any fixed k, let Q
(d)
k (x) be the kth Gegenbauer polynomial. We expand

Q
(d)
k (x) =

k∑
s=0

p
(d)
k,sx

s.

Then we have

p
(d)
k,s = Od(d

−k/2−s/2).

https://doi.org/10.1088/1742-5468/ac3a81 108

https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

Lemma 27. Let N = od(d
�+1) for a fixed integer �. Let (wi)i∈[N] ∼ Unif(Sd−1) indepen-

dently. Then as d→∞, we have

max
i �=j

|〈wi,wj〉| = Od,P((log d)k/2d−k/2).

Proposition 6 (Bound on the Gram matrix). Let N � dk/eAd
√
log d for a fixed inte-

ger k and any Ad →∞. Let (θi)i∈[N] ∼ Unif(Sd−1(
√
d)) independently, and Q

(d)
k be the

k’th Gegenbauer polynomial with domain [−d, d]. Consider the random matrix W =

(Wij)i,j∈[N] ∈ RN×N , with Wij = Q
(d)
k (〈θi, θj〉). Then we have

lim
d,N→∞

E[‖W− Id‖op] = 0.

References

[1] Rahimi A and Recht B 2008 Random features for large-scale kernel machines Advances in Neural Information
Processing Systems pp 1177–84

[2] Jacot A, Gabriel F and Hongler C 2018 Neural tangent kernel: convergence and generalization in neural networks
Advances in Neural Information Processing Systems pp 8571–80

[3] Du S S, Zhai X, Poczos B and Singh A 2019 Gradient descent provably optimizes over-parameterized neural
networks Int. Conf. on Learning Representations

[4] Du S, Lee J, Li H, Wang L and Zhai X Gradient descent finds global minima of deep neural networks Proc. 36th
Int. Conf. on Machine Learning, vol 97 of Proc. of Machine Learning Research, PMLR ed K Chaudhuri and
R Salakhutdinov (Long Beach, California, USA, 9–15 June 2019) pp 1675–85

[5] Allen-Zhu Z, Li Y and Song Z A convergence theory for deep learning via over-parameterization Proc. 36th Int.
Conf. on Machine Learning, vol 97 of Proc. of Machine Learning Research, PMLR ed K Chaudhuri and R
Salakhutdinov (Long Beach, California, USA, 9–15 June 2019) pp 242–52

[6] Zou D, Cao Y, Zhou D and Gu Q 2018 Stochastic gradient descent optimizes over-parameterized deep relu
networks (arXiv:1811.08888)

[7] Oymak S and Soltanolkotabi M 2020 Towards moderate overparameterization: global convergence guarantees
for training shallow neural networks IEEE Journal on Selected Areas in Information Theory 1 84–105

[8] Chizat L, Oyallon E and Bach F 2019 On lazy training in differentiable programming Advances in Neural
Information Processing Systems pp 2933–43

[9] Arora S, Du S S, Li Z, Salakhutdinov R, Wang R and Yu D 2020 Harnessing the power of infinitely wide deep
nets on small-data tasks Int. Conf. on Learning Representations

[10] Li Z, Wang R, Yu D, Du S S, Hu W, Salakhutdinov R and Arora S 2019 Enhanced convolutional neural tangent
kernels (arXiv:1911.00809)

[11] Lee J, Xiao L, Schoenholz S, Bahri Y, Novak R, Sohl-Dickstein J and Pennington J 2019 Wide neural networks of
any depth evolve as linear models under gradient descent Advances in Neural Information Processing Systems
pp 8570–81

[12] Novak R, Xiao L, Bahri Y, Lee J, Yang G, Abolafia D A, Pennington J and Sohl-dickstein J 2019 Bayesian deep
convolutional networks with many channels are Gaussian processes Int. Conf. on Learning Representations

[13] Lee J, Sohl-dickstein J, Pennington J, Novak R, Schoenholz S and Bahri Y 2018 Deep neural networks as
Gaussian processes Int. Conf. on Learning Representations

[14] De Matthews A G G, Hron J, Rowland M, Turner R E and Ghahramani Z 2018 Gaussian process behaviour in
wide deep neural networks 6th Int. Conf. on Learning Representations, ICLR 2018-Conf. Track Proc.

[15] Garriga-Alonso A, Rasmussen C E and Aitchison L 2019 Deep convolutional networks as shallow Gaussian
processes Int. Conf. on Learning Representations

[16] Shankar V, Fang A, Guo W, Fridovich-Keil S, Schmidt L, Ragan-Kelley J and Recht B 2020 Neural kernels
without tangents (arXiv:2003.02237)

[17] Arora S, Du S S, Hu W, Li Z, Salakhutdinov R R and Wang R 2019 On exact computation with an infinitely
wide neural net Advances in Neural Information Processing Systems pp 8139–48

https://doi.org/10.1088/1742-5468/ac3a81 109

https://arxiv.org/abs/1811.08888
https://doi.org/10.1109/jsait.2020.2991332
https://doi.org/10.1109/jsait.2020.2991332
https://doi.org/10.1109/jsait.2020.2991332
https://doi.org/10.1109/jsait.2020.2991332
https://arxiv.org/abs/1911.00809
https://arxiv.org/abs/2003.02237
https://doi.org/10.1088/1742-5468/ac3a81

J.S
tat.

M
ech.

(2021)
124009

When do neural networks outperform kernel methods?

[18] Geiger M, Spigler S, Jacot A and Wyart M 2019 Disentangling feature and lazy learning in deep neural networks:
an empirical study (arXiv:1906.08034)

[19] Yehudai G and Shamir O 2019 On the power and limitations of random features for understanding neural
networks Advances in Neural Information Processing Systems pp 6594–604

[20] Bach F 2017 Breaking the curse of dimensionality with convex neural networks J. Mach. Learn. Res. 18 629–81
[21] Ghorbani B, Mei S, Misiakiewicz T and Montanari A 2019 Linearized two-layers neural networks in high

dimension (arXiv:1904.12191)
[22] Ghorbani B, Mei S, Misiakiewicz T and Montanari A 2019 Limitations of lazy training of two-layers neural

network Advances in Neural Information Processing Systems pp 9108–18
[23] Allen-Zhu Z and Li Y 2019 What can resnet learn efficiently, going beyond kernels? Advances in Neural

Information Processing Systems pp 9017–28
[24] Allen-Zhu Z and Li Y 2020 Backward feature correction: how deep learning performs deep learning

(arXiv:2001.04413)
[25] Mei S, Bai Y and Montanari A 2018 The landscape of empirical risk for nonconvex losses Ann. Stat. 46 2747–74
[26] Mei S, Montanari A and Nguyen P-M 2018 A mean field view of the landscape of two-layer neural networks

Proc. Natl Acad. Sci. USA 115 E7665–71
[27] Chizat L and Bach F 2018 On the global convergence of gradient descent for over-parameterized models using

optimal transport Advances in Neural Information Processing Systems pp 3036–46
[28] Rotskoff G M and Vanden-Eijnden E 2018 Neural networks as interacting particle systems: asymptotic convexity

of the loss landscape and universal scaling of the approximation error (arXiv:1805.00915)
[29] Sirignano J and Spiliopoulos K 2018 Mean field analysis of neural networks (arXiv:1805.01053)
[30] Chizat L and Bach F 2020 Implicit bias of gradient descent for wide two-layer neural networks trained with the

logistic loss (arXiv:2002.04486)
[31] Donoho D L and Johnstone I M 1995 Adapting to unknown smoothness via wavelet shrinkage J. Am. Stat.

Assoc. 90 1200–24
[32] Page D 2018 (Myrtle.ai) How to train your ResNet 4: architecture (https://myrtle.ai/how-to-train-your-resnet-

4-architecture/)
[33] Tsybakov A B 2008 Introduction to Nonparametric Estimation (Berlin: Springer)
[34] Yin D, Lopes R G, Shlens J, Cubuk E D and Gilmer J 2019 A Fourier perspective on model robustness in

computer vision Advances in Neural Information Processing Systems pp 13255–65
[35] Nguyen P-M 2019 Mean field limit of the learning dynamics of multilayer neural networks (arXiv:1902.02880)
[36] Nguyen P-M and Pham H T 2020 A rigorous framework for the mean field limit of multilayer neural networks

(arXiv:2001.11443)
[37] Abadi M et al 2016 Tensorflow: a system for large-scale machine learning 12th (USENIX) Symp. on Operating

Systems Design and Implementation ((OSDI) 16) pp 265–83
[38] Ghorbani B, Krishnan S and Xiao Y 2019 An investigation into neural net optimization via hessian eigenvalue

density Int. Conf. on Machine Learning pp 2232–41
[39] Kingma D P and Ba J 2014 Adam: a method for stochastic optimization (arXiv:1412.6980)
[40] Bradbury J, Frostig R, Hawkins P, Johnson M J, Leary C, Maclaurin D and Wanderman-Milne S 2018 JAX:

composable transformations of Python+NumPy programs (http://github.com/google/jax)
[41] Novak R, Xiao L, Hron J, Lee J, Alemi A A, Sohl-Dickstein J and Schoenholz S S 2020 Neural tangents: fast

and easy infinite neural networks in python Int. Conf. on Learning Representations
[42] Ioffe S and Szegedy C 2015 Batch normalization: accelerating deep network training by reducing internal covariate

shift Int. Conf. on Machine Learning pp 448–56

https://doi.org/10.1088/1742-5468/ac3a81 110

https://arxiv.org/abs/1906.08034
https://arxiv.org/abs/1904.12191
https://arxiv.org/abs/2001.04413
https://doi.org/10.1214/17-aos1637
https://doi.org/10.1214/17-aos1637
https://doi.org/10.1214/17-aos1637
https://doi.org/10.1214/17-aos1637
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1073/pnas.1806579115
https://arxiv.org/abs/1805.00915
https://arxiv.org/abs/1805.01053
https://arxiv.org/abs/2002.04486
https://doi.org/10.1080/01621459.1995.10476626
https://doi.org/10.1080/01621459.1995.10476626
https://doi.org/10.1080/01621459.1995.10476626
https://doi.org/10.1080/01621459.1995.10476626
https://myrtle.ai/how-to-train-your-resnet-4-architecture/
https://myrtle.ai/how-to-train-your-resnet-4-architecture/
https://arxiv.org/abs/1902.02880
https://arxiv.org/abs/2001.11443
https://arxiv.org/abs/1412.6980
http://github.com/google/jax
https://doi.org/10.1088/1742-5468/ac3a81

	When do neural networks outperform kernel methods?
	Contents
	1. Introduction
	1.1. Overview
	1.2. Notations and outline

	2. Rigorous results for kernel methods and NT, RF NN expansions
	2.1. The spiked covariates model
	2.2. A sharp characterization of RKHS methods
	2.3. RF and NT models
	2.4. Neural network models

	3. Further numerical experiments
	4. Discussion
	Acknowledgments
	Data availability statement
	Appendix A. Details of numerical experiments
	A.1. General training details
	A.2. Synthetic data experiments
	A.3. High-frequency noise experiment on FMNIST
	A.3.1.Experiment hyper-parameters.

	A.4. High-frequency noise experiment on CIFAR-2
	A.4.1.Experiment hyper-parameters.

	A.5. Low-frequency noise experiments on FMNIST
	A.5.1.Experiment hyper-parameters.

	A.6. Low-frequency noise experiments on CIFAR-10

	Appendix B. Technical background on function spaces on the sphere
	B.1. Functional spaces over the sphere
	B.2. Gegenbauer polynomials
	B.3. Hermite polynomials
	B.4. Tensor product of spherical harmonics
	B.5. Tensor product of Gegenbauer polynomials
	B.6. Notations

	Appendix C. General framework and main theorems
	C.1. Setup on the product of spheres
	C.2. Reparametrization
	C.3. Notations
	C.4. Generalization error of kernel ridge regression
	C.5. Approximation error of the random features model
	C.6. Approximation error of the neural tangent model
	C.7. Connecting to the theorems in the main text

	Appendix D. Proof of theorem
	D.1. Preliminaries
	D.2. Proof of theorem

	Appendix E. Proof of theorem (a): lower bound for the RF model
	E.1. Preliminaries
	E.2. Proof of theorem (a): outline
	E.3. Proof of proposition
	E.4. Proof of proposition

	Appendix F. Proof of theorem (b): upper bound for RF model
	F.1. Preliminaries
	F.2. Properties of the limiting kernel
	F.3. Proof of theorem (b)

	Appendix G. Proof of theorem (a): lower bound for NT model
	G.1. Preliminaries
	G.2. Proof of theorem (a): outline
	G.3. Proof of proposition
	G.4. Proof of proposition
	G.4.2. Proof of proposition

	Appendix H. Proof of theorem (b): upper bound for NT model
	H.1. Preliminaries
	H.2. Proof of theorem (b): outline
	H.3. Proof of theorem
	H.3.2. Proof of theorem

	Appendix I. Proof of theorem in the main text
	Appendix K. Bound on the operator norm of Gegenbauer polynomials
	K.1. Proof of proposition
	L.1. Useful lemmas from []

	References

