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Abstract. We analyze in a closed form the learning dynamics of the stochastic
gradient descent (SGD) for a single-layer neural network classifying a high-
dimensional Gaussian mixture where each cluster is assigned one of two labels.
This problem provides a prototype of a non-convex loss landscape with interpo-
lating regimes and a large generalization gap. We define a particular stochastic
process for which SGD can be extended to a continuous-time limit that we call
stochastic gradient flow. In the full-batch limit, we recover the standard gradi-
ent flow. We apply dynamical mean-field theory from statistical physics to track
the dynamics of the algorithm in the high-dimensional limit via a self-consistent
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stochastic process. We explore the performance of the algorithm as a function of
the control parameters shedding light on how it navigates the loss landscape.

Keywords: learning theory, machine learning
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1. Introduction

Understanding how stochastic gradient descent (SGD) manages to train artificial neural
networks with good generalization capabilities by exploring the high-dimensional non-
convex loss landscape is one of the central problems in the theory of machine learning.
A popular attempt to explain this behavior is by showing that the loss landscape itself
is simple, with no spurious (i.e. leading to bad test error) local minima. Some empirical
evidence instead leads to the conclusion that the loss landscape of state-of-the-art deep
neural networks actually has spurious local (or even global) minima and SGD is able
to find them [1, 2]. Still, the SGD algorithm, initialized at random, leads to good gen-
eralization properties in practice. It became clear that a theory that would explain this
success needs to account for the whole trajectory of the algorithm. Yet this remains a
challenging task, certainly for the state-of-the art deep networks trained on real datasets.
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Related work—A detailed description of the whole trajectory taken by the
(stochastic) gradient descent has so far only been obtained in several special cases.
The first such case is in deep linear networks where the dynamics of gradient descent
have been analyzed [3, 4]. While this line of work has led to very interesting insights
about the dynamics, linear networks lack the expressivity of the non-linear ones and the
large-time behavior of the algorithm can be obtained with a simple spectral algorithm.
Moreover, the analysis of dynamics in deep linear networks was not extended to the case
of SGD. The second case where the trajectory of the algorithm was understood in detail
is the one-pass (online) SGD for two-layer neural networks with a small hidden layer
in the teacher–student setting [5–9]. However, the one-pass assumption made in those
analyses is far from what is done in practice and is unable to access the subtle differ-
ence between the training and test error that leads to many of the empirical mysteries
observed in deep learning. A third very interesting line of research that recently pro-
vided insight about the behavior of SGD concerns two-layer networks with divergingly
wide hidden layers. This mean-field limit [10–12] maps the dynamics into the space of
functions where its description is simpler and the dynamics can be written in terms of
a closed set of differential equations. It is not clear yet whether this analysis can be
extended in a sufficiently explicit way to deeper or finite width neural networks. The
term mean-field has been used in several contexts in machine learning [13–18]. Note that
the term in the aforementioned works refers to a variety of approximations and concepts.
In this work, we use it with the same meaning as in [19–21]. Most importantly, the term
mean-field in our case has nothing to do with the width of an eventual hidden layer.
We refer to [22] for a broader methodological review of mean-field methods and their
applications to neural networks.

Our present work, inscribed in the above line of research, offers the dynamical mean-
field theory (DMFT) formalism [19–21] leading to a closed set of integro-differential
equations to track the full trajectory of the gradient descent (stochastic or not) from
random initial conditions in the high-dimensional limit for in-general non-convex losses.
While in general the DMFT is a heuristic statistical physics method, it has been
amenable to rigorous proof in some cases [23]. This is hence an important future direc-
tion for the case considered in the present paper. The DMFT has been recently applied
to a high-dimensional inference problem in [24, 25], studying the spiked matrix-tensor
model. However, this problem does not allow a natural way to study the SGD or to
explore the difference between training and test errors. In particular, the spiked matrix-
tensor model does not allow for the study of the so-called interpolating regime, where
the loss function is optimized to zero while the test error remains positive. As such,
its landscape is intrinsically different from supervised learning problems since in the
former the spurious minima proliferate at high values of the loss while the good ones lie
at the bottom of the landscape. Instead, deep networks have both spurious and good
minima at 100% training accuracy and their landscape much closer resembles the one
of continuous constraint satisfaction problems [26, 27].

Main contributions—We study a natural problem of supervised classification
where the input data come from a high-dimensional Gaussian mixture of several clus-
ters, and all samples in one cluster are assigned to one of two possible output labels.
We then consider a single-layer neural network classifier with a general non-convex loss
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function. We analyze a SGD algorithm in which, at each iteration, the batch used to
compute the gradient of the loss is extracted at random, and we define a particular
stochastic process for which SGD can be extended to a continuous-time limit that we
call stochastic gradient flow (SGF). In the full-batch limit we recover the standard gra-
dient flow (GF). We describe the high-dimensional limit of the randomly initialized SGF
with the DMFT that leads to a description of the dynamics in terms of a self-consistent
stochastic process that we compare with numerical simulations. In particular, we show
that the finite batch size can have a beneficial effect on the test error and acts as an
effective regularization that prevents overfitting.

2. Setting and definitions

In all what follows, we will consider the high-dimensional setting where the dimension
of each point in the dataset is d→∞ and the size of the training set n = αd, being α
a control parameter that we keep of order one.

We consider a training set made of n points

X = (x1, . . .xn)
� ∈ R

n×d with labels y = (y1, . . . yn)
� ∈ {+1,−1}n. (1)

The patterns xμ are given by

xμ = cμ
v∗
√
d
+
√
Δ zμ, zμ ∼ N (0, Id), μ = 1, . . . n. (2)

Without loss of generality, we choose a basis where v∗ = (1, 1, . . .1) ∈ R
d.

Two-cluster dataset: We will illustrate our results on a two-cluster example where
the coefficients cμ are taken at random cμ = ±1 with equal probability. Therefore, one
has two symmetric clouds of Gaussian points centered around two vectors v∗ and −v∗.
The labels of the data points are fixed by yμ = cμ. If the noise level Δ of the number of
samples is small enough, the two Gaussian clouds are linearly separable by a hyperplane,
as specified in detail in [28], and therefore a single layer neural network is enough to
perform the classification task in this case. We hence consider learning with the simplest
neural network that classifies the data according to ŷμ(w) = sgn[w�xμ/

√
d].

Three-cluster dataset: We also consider an example of three clusters where a good
generalization error cannot be obtained by separating the points linearly. In this case
we define cμ = 0 with probability 1/2, and cμ = ±1 with probability 1/2. The labels are
then assigned as

yμ = −1 if cμ = 0, and yμ = 1 if cμ = ±1. (3)

Hence, one has three clouds of Gaussian points, two external and one centered in zero. In
order to fit the data, we consider a single layer-neural network with the door activation
function, defined as

ŷμ(w) = sgn

[(
w�xμ√

d

)2

− L2

]
. (4)
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The onset parameter L could be learned, but we will instead fix it to a constant.
Loss function: We study the dynamics of learning by the empirical risk minimiza-

tion of the loss

H(w) =
n∑

μ=1

�

[
yμφ

(
w�xμ√

d

)]
+

λ

2
‖w‖22, (5)

where we have added a ridge regularization term. The activation function φ is given by

φ(x) =

{
x linear for the two− cluster dataset

x2 − L2 door for the three− cluster dataset.
(6)

The DMFT analysis is valid for a generic loss function �. However, for concreteness, in
the result section we will focus on the logistic loss �(v) = ln (1 + e−v) . Note that in this
setting the two-cluster dataset leads to convex optimization, with a unique minimum
for finite λ, and implicit regularization for λ = 0 [29], and was analyzed in detail in
[28, 30]. Still the performance of SGD with finite batch size cannot be obtained in static
ways. The three-cluster dataset, instead, leads to a generically non-convex optimization
problem, which can present many spurious minima with different generalization abilities
when the control parameters such as Δ and α are changed. We note that our analysis
can be extended to neural networks with a small hidden layer [31]. This would allow
one to study the role of over-parametrization, but it is left for future work.

3. Stochastic gradient-descent training dynamics

Discrete SGD dynamics—We consider the discrete gradient-descent dynamics for
which the weight update is given by

wj(t+ η) = wj(t)− η

[
λwj(t) +

n∑
μ=1

sμ(t)Λ
′
(
yμ,

w(t)�xμ√
d

)
xμ,j√
d

]
, (7)

where we have introduced the function Λ(y, h) = � (yφ (h)) and we have indicated with
a prime the derivative with respect to h, i.e. Λ′(y, h) = y�′ (yφ (h))φ′ (h). We consider
the following initialization of the weight vector w(0) ∼ N (0, IdR), where R > 0 is a
parameter that tunes the average length of the weight vector at the beginning of the
dynamics5. The variables sμ(t) are i.i.d. binary random variables. Their discrete-time
dynamics can be chosen in two ways:

• In classical SGD, when sampling with replacement , at iteration t one extracts the
samples with the following probability distribution

sμ(t) =

{
1 with probability b

0 with probability 1− b
(8)

5The DMFT equations we derive can be easily generalized to the case in which the initial distribution over w is different. We only
need it to be separable and independent of the dataset.
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and b ∈ (0, 1]. In this way for each time iteration one extracts on average B =
bn patterns at random on which the gradient is computed and therefore the
batch size is given by B. Note that if b = 1 one recovers the full-batch gradient
descent.

• Persistent SGD is defined by a stochastic process for sμ(t) given by the following
probability rules

Prob(sμ(t+ η) = 1|sμ(t) = 0) =
1

τ
η

Prob(sμ(t+ η) = 0|sμ(t) = 1) =
(1− b)

bτ
η,

(9)

where sμ(0) is drawn from the probability distribution (8). In this case, for each
time slice one has on average B = bn patterns that are active and enter in the
computation of the gradient. The main difference with respect to the usual SGD is
that one keeps the same patterns and the same minibatch for a characteristic time
τb/(1− b). Again, setting b = 1 one gets the full-batch gradient descent and all of
the patterns are always active.

Stochastic gradient flow—To write the DMFT we consider the continuous-
time dynamics defined by the η → 0 limit. This limit is not well defined for the usual
SGD dynamics described by the rule (8) and we instead consider its persistent version
described by equation (9). In this case the stochastic process for sμ(t) is well defined for
η → 0 and one can write a continuous-time equation as

ẇj(t) = −λwj(t)−
n∑

μ=1

sμ(t)Λ
′
(
yμ,

w(t)�xμ√
d

)
xμ,j√
d
. (10)

Again, for b = 1 one recovers the GF. We call equation (10) stochastic gradient flow
(SGF).

4. Dynamical mean-field theory for SGF

We will now analyze the SGF in the infinite size limit n→∞, d→∞ with α = n/d and
b and τ fixed and of order one. In order to do that, we use DMFT. The derivation of the
DMFT equations is given in appendix A, but here we will just present the main steps.
The derivation extends the one reported in [32] for the non-convex perceptron model
[26] (motivated there as a model of glassy phases of hard spheres). The main differences
of the present work with respect to [32] are that here we consider a finite-batch gradient
descent and that our dataset is structured, while in [32] the derivation was done for
full-batch gradient descent and random i.i.d. inputs and i.i.d. labels, i.e. a case where
one cannot investigate generalization error and its properties. The starting point of the

https://doi.org/10.1088/1742-5468/ac3a80 6

https://doi.org/10.1088/1742-5468/ac3a80


J.S
tat.

M
ech.

(2021)
124008

Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification∗

DMFT is the dynamical partition function

Zdyn =

∫
w(0)=w(0)

Dw(t)

d∏
j=1

δ

[
−ẇj(t)− λwj(t)−

n∑
μ=1

sμ(t)Λ
′
(
yμ,

w(t)�xμ√
d

)
xμ,j√
d

]
, (11)

where Dw(t) stands for the measure over the dynamical trajectories starting from w(0).
Since Zdyn = 1 (it is just an integral of a Dirac delta function) [33], one can average
directly Zdyn over the training set, the initial condition and the stochastic processes of
sμ(t). We indicate this average with the brackets 〈·〉. Hence, we can write

Zdyn =

〈∫
Dw(t)Dŵ(t)eSdyn

〉
, (12)

where we have defined

Sdyn =
d∑

j=1

∫ +∞

0

dt iŵj(t)

(
−ẇj(t)− λwj(t)−

n∑
μ=1

sμ(t)Λ
′
(
yμ,

w(t)�xμ√
d

)
xμ,j√
d

)
. (13)

and we have introduced a set of fields ŵ(t) to produce the integral representation of the
Dirac delta function. The average over the training set can be then performed explicitly,
and the dynamical partition function Zdyn is expressed as an integral of an exponential
with extensive exponent in d:

Zdyn =

∫
DQDm edS(Q,m), (14)

where Q and m are two dynamical order parameters defined in the appendices. There-
fore, the dynamics in the d→∞ limit satisfy a large deviation principle and we can
approximate Zdyn with its value at the saddle point of the action S. In particular, one
can show that the saddle point equations for the parameters Q and m can be recast into
a self-consistent stochastic process for a variable h(t) related to the typical behavior of

w(t)�zμ/
√
d, which evolves according to the stochastic equation:

∂th(t) = −(λ+ λ̂(t))h(t)−
√
Δ s(t) Λ′ (y(c), r(t)− Y (t)) +

∫ t

0

dt′MR(t, t
′)h(t′) + ξ(t),

(15)

where we have denoted by r(t) =
√
Δh(t) +m(t)(c+

√
Δh0) and m(t) is the magneti-

zation, namely m(t) = w(t)�v∗/d. The details of the computation are provided in the
appendices. There are several sources of stochasticity in equation (15). First, one has a
dynamical noise ξ(t) that is Gaussian distributed and characterized by the correlations

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = MC(t, t
′). (16)

https://doi.org/10.1088/1742-5468/ac3a80 7
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Furthermore, the starting point h(0) of the stochastic process is random and distributed
according to

P (h(0)) = e−h(0)2/(2R)/
√
2πR. (17)

Moreover, one has to introduce a quenched Gaussian random variable h0 with a mean
zero and an average one. We recall that the random variable c = ±1 with equal prob-
ability in the two-cluster model, while c = 0,±1 in the three-cluster one. The variable
y(c) is therefore y(c) = c in the two-cluster case, and is given by equation (3) in the
three-cluster one. Finally, one has a dynamical stochastic process s(t) whose statistical
properties are specified in equation (9). The magnetization m(t) is obtained from the
following deterministic differential equation

∂tm(t) = −λm(t)− μ(t), m(0) = 0+. (18)

The stochastic process for h(t), the evolution of m(t), and the statistical properties of
the dynamical noise ξ(t) depend on a series of kernels that must be computed self-
consistently and are given by

λ̂(t) = αΔ 〈s(t)Λ′′ (y(c), r(t))〉 ,

μ(t) = α
〈
s(t)

(
c+

√
Δh0

)
Λ′ (y(c), r(t))

〉
,

MC(t, t
′) = αΔ 〈s(t)s(t′)Λ′ (y(c), r(t))Λ′ (y(c), r(t′))〉 ,

MR(t, t
′) = αΔ

δ

δY (t′)
〈s(t)Λ′(y(c), r(t))〉

∣∣∣∣
Y=0

.

(19)

In equation (19), the brackets denote the average over all the sources of stochasticity
in the self-consistent stochastic process. Therefore, one needs to solve the stochastic
process in a self-consistent way. Note that Y (t) in equation (15) is set to zero and we
need it only to define the kernel MR(t, t

′). The set of equations (15), (18) and (19) can
be solved by a simple straightforward iterative algorithm. One starts with a guess for
the kernels and then runs the stochastic process for h(t) several times to update the
kernels. The iteration is stopped when a desired precision on the kernels is reached [34].

Note that, in order to solve equations (15), (18) and (19), one needs to discretize time.
In the results section 5, in order to compare our theoretical predictions with numerical
simulations, we will take the time discretization of DMFT equal to the learning rate in
the simulations. In the time-discretized DMFT, this allows us to extract the variables
s(t) either from (8) (SGD) or (9) (persistent SGD). In the former case, this provides an
SGD-inspired discretization of the DMFT equations, which is also exact in the discrete
time provided that the weight increments do not have higher-order terms than O(η).

Finally, once the self-consistent stochastic process is solved, one also has access to
the dynamical correlation function C(t, t′) = w(t) ·w(t′)/d, encoded in the dynamical
order parameter Q that appears in the large deviation principle of equation (14). The
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correlation C(t, t′) concentrates on d→∞ and therefore is controlled by the equations

∂tC(t′, t) =− λ̃(t)C(t, t′) +

∫ t

0

dsMR(t, s)C(t′, s) +

∫ t′

0

dsMC(t, s)R(t′, s)

−m(t′)

(∫ t

0

dsMR(t, s)m(s) + μ(t)− λ̂(t)m(t)

)
if t 
= t′,

1

2
∂tC(t, t) =− λ̃(t)C(t, t) +

∫ t

0

dsMR(t, s)C(t, s) +

∫ t

0

dsMC(t, s)R(t, s)

−m(t)

(∫ t

0

dsMR(t, s)m(s) + μ(t)− λ̂(t)m(t)

)
,

∂tR(t, t′) = −λ̃(t)R(t, t′) + δ(t− t′) +

∫ t

t′
dsMR(t, s)R(s, t′),

(20)

where we have used the shorthand notation λ̃(t) = λ+ λ̂(t). We consider the linear
response regime, and R(t, t′) =

∑
i δwi(t)/δHi(t

′)/d is a response function that controls
the variations of the weights when their dynamical evolution is affected by an infinitesi-
mal local field Hi(t). Coupling a local field Hi(t) to each variable wi(t) changes the loss

function as follows: H (w(t))→H (w(t))−
∑d

i=1Hi(t)wi(t), resulting in an extra term
Hi(t) in the right-hand side of equation (10). We then consider the limit Hi(t)→ 0.
It is interesting to note that the second of equations. (20) controls the evolution of
the norm of the weight vector C(t, t) and even if we set λ = 0 we get that it contains

an effective regularization λ̂(t) that is dynamically self-generated [35].
Dynamics of the loss and the generalization error—Once the solution for

the self-consistent stochastic process is found, one can get several interesting quantities.
First, one can look at the training loss, which can be obtained as

e(t) = α〈Λ(y, r(t))〉, (21)

where again the brackets denote the average over the realization of the stochastic process
in equation (15). The training accuracy is given by

a(t) = 1− 〈θ(−yφ(r(t)))〉 (22)

and, by definition, it is equal to one as soon as all vectors in the training set are correctly
classified. Finally, one can compute the generalization error. At any time step, it is
defined as the fraction of mislabeled instances:

εgen(t) =
1

4
EX,y,xnew,ynew

[
(ynew − ŷnew (w(t)))2

]
, (23)

https://doi.org/10.1088/1742-5468/ac3a80 9
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Figure 1. (Left) Generalization error as a function of the training time for per-
sistent SGD in the two-cluster model, with α = 2, Δ = 0.5, λ = 0, 1/τ = 0.6 and
different batch sizes b = 1, 0.3, 0.1. The continuous lines mark the numerical solution
of DMFT equations, while the symbols are the results of simulations at d = 500,
η = 0.2, and R = 0.01. The dashed gray line marks the Bayes-optimal error from
[28]. (Right) Generalization error as a function of the training time for full-batch
gradient descent in the two-cluster model with different regularization λ = 0, 0.1, 1
and the same parameters as in the left panel. In each panel, the inset shows the
training accuracy as a function of the training time.

where {X,y} is the training set, xnew is an unseen data point and ŷnew is the estimator
for the new label ynew. The dependence on the training set here is hidden in the weight
vector w(t) = w(t,X,y). In the two-cluster case, one can easily show that

εgen(t) =
1

2
erfc

(
m(t)√

2ΔC(t, t)

)
. (24)

Conversely, for the door activation trained on the three-cluster dataset we obtain

εgen(t) =
1

2
erfc

(
L√

2ΔC(t, t)

)
+

1

4

(
erf

(
L−m(t)√
2ΔC(t, t)

)
+ erf

(
L+m(t)√
2ΔC(t, t)

))
. (25)

5. Results

In this section, we compare the theoretical curves resulting from the solution of the
DMFT equations derived in section 4 to numerical simulations. This analysis allows us
to gain insight into the learning dynamics of SGD and its dependence on the various
control parameters in the two models under consideration.

The left panel of figure 1 shows the learning dynamics of the persistent-SGD
algorithm in the two-cluster model without regularization λ = 0. We clearly see a good
match between the numerical simulations and the theoretical curves obtained from
DMFT, also notably for small values of batch size b and dimension d = 500. The figure
shows that regions exist in control parameter space where persistent SGD is able to
reach 100% training accuracy, while the generalization error is bounded away from zero.
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Figure 2. (Left) Generalization error as a function of the training time in the three-
cluster model, at fixed α = 3, Δ = 0.05, L = 0.7, λ = 0.1, for full-batch gradient
descent and persistent SGD with different batch sizes b = 0.2, 0.3 and activation
rate 1/τ = b. The continuous lines mark the numerical solution of DMFT equations,
while the symbols represent simulations at η = 0.2, R = 0.01, and d = 5000. (Right)
Generalization error as a function of training time for full-batch gradient descent in
the three-cluster model, at fixed α = 3, Δ = 0.05, L = 0.7, η = 0.2, R = 0.01, and
different regularizations λ = 0.1, 0.2, 0.3. The simulations are done at d = 5000. In
each panel, the inset shows the norm of the weights as a function of the training
time.

Remarkably, we observe that the additional noise introduced by decreasing the batch
size b results in a shift of the early-stopping minimum of the generalization error at
larger times and that, in the time window we show, a batch size smaller than one has
a beneficial effect on the generalization error at long times. The right panel illustrates
the role of regularization in the same model trained with full-batch gradient descent,
presenting that regularization has a similar influence on the learning curve as small
batch-size but without the slow-down incurred by persistent SGD.

The influence of the batch size b and the regularization λ for the three-cluster model
is shown in figure 2. We see an analogous effect as for the two-clusters in figure 1. In
the inset of figure 2, we show the norm of the weights as a function of the training
time. Both with the smaller mini-batch size and larger regularization the norm is small,
testifying further that the two play a similar role in this case.

One difference between the two-cluster and the three-cluster models we observe
concerns the behavior of the generalization error at small times. Actually, for the
three-cluster model, good generalization is reached because of finite-size effects. Indeed,
the corresponding loss function displays a Z2 symmetry according to which for each
local minimum w there is another one −w with exactly the same properties. Note
that this symmetry is inherited from the activation function φ (6), which is even. This
implies that if d→∞, the generalization error would not move away from 0.5 in finite
time. However, when d is large but finite, at time t = 0 the weight vector has a finite
projection on v∗, which is responsible for the dynamical symmetry breaking and even-
tually for a low generalization error at long times. In order to obtain an agreement
between the theory and simulations, we initialize m(t) in the DMFT equations with
its corresponding finite-d average value at t = 0. In the left panel of figure 3, we show
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Figure 3. (Left) Generalization error as a function of the training time for full-
batch gradient descent and persistent SGD with 1/τ = b = 0.3 in the three-cluster
model, at fixed α = 2, Δ = 0.05, L = 0.7 and λ = 0. The continuous lines mark
the numerical solution of DMFT equations, the symbols represent simulations at
η = 0.2, R = 1, and increasing dimensions d = 500, 1000, 5000, 10 000. Error bars
are plotted for d = 10 000. The dashed lines mark the oracle error (see appendices).
(Right) Generalization error as a function of the training time for persistent SGD
with different activation rates 1/τ = 0.15, 0.3, 0.6 and classical SGD in the two-
cluster model, both with b = 0.3, α = 2, Δ = 0.5, λ = 0, η = 0.2, R = 0.01. The
continuous lines mark the numerical solution of DMFT equations (in case of SGD
we use the SGD-inspired discretization), while the symbols represent simulations at
d = 500. The dashed lines mark the Bayes-optimal error from [28]. In each panel,
the inset displays the training accuracy as a function of time.

that while this produces a small discrepancy at intermediate times that diminishes
with growing size, at longer times the DMFT perfectly tracks the evolution of the
algorithm.

The right panel of figure 3 summarizes the effect of the characteristic time τ in the
persistent SGD, related to the typical persistence time of each pattern in the training
mini-batch. When τ decreases, the persistent SGD algorithm is observed to be getting a
better early-stopping generalization error and the dynamics get closer to the usual SGD
dynamics. As expected, the τ → η/b limit of the persistent SGD converges to the SGD.
The SGD-inspired discretization of the DMTF equations shows a perfect agreement
with the numerics.

Figure 4 presents the influence of the weight norm at initialization R on the
dynamics, for the two-cluster (left) and three-cluster (right) model. For the two-
cluster case, the gradient descent algorithm with all-zeros initialization ‘jumps’ on
the Bayes-optimal error at the first iteration as derived in [28], and in this partic-
ular setting the generalization error monotonically increases in time. As R increases
the early stopping error gets worse. At large times all of the initializations converge
to the same value of the error, as they must, since this is a full-batch gradient
descent without regularization that at large times converges to the max-margin esti-
mator according to [29]. For the three-cluster model we observe a qualitatively similar
behavior.
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Figure 4. (Left) Generalization error as a function of training time for full-batch
gradient descent in the two-cluster model, at fixed α = 2, Δ = 0.5, λ = 0, η = 0.2,
and different initialization variances R = 0, 0.01, 0.1, 1, 5. The continuous lines mark
the numerical solution of DMFT equations, while the symbols represent simulations
at d = 500. The dashed lines mark the Bayes-optimal error from [28]. The y−axis is
cut for better visibility. (Right) Generalization error as a function of training time
for full-batch gradient descent in the three-cluster model, at fixed α = 3, Δ = 0.1,
λ = 0, η = 0.1 and different initialization variances R = 0.01, 0.5, 5. The continuous
lines mark the numerical solution of DMFT equations, while the symbols repre-
sent simulations at d = 1000. The dashed gray line marks the oracle error (see
appendices). In each panel, the inset shows the training accuracy as a function of
time.
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Appendix A. Derivation of the dynamical mean-field equations

The derivation of the self-consistent stochastic process discussed in the main text can
be obtained using tools of statistical physics of disordered systems. In particular, it
has been done very recently for a related model, the spherical perceptron with random
labels, in [32]. Our derivation extends the known DMFT equations by including

• Structure in the data;

• A stochastic version of gradient descent as discussed in the main text;

• The relaxation of the spherical constraint over the weights and the introduction of
a ridge regularization term.

There are at least two ways to write the DMFT equations. One is by using field-
theoretical techniques; otherwise one can employ a dynamical version of the so-called
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cavity method [19]. Here, we opt for the first option that is generically very compact
and immediate and it has a form that very much resembles a static treatment of the
Gibbs measure of the problem [36]. We use a supersymmetric (SUSY) representation to
derive the DMFT equations [32, 37]. We do not report all of the details, as they can be
found in [32] along with an alternative derivation based on the cavity method, but we
limit ourselves to providing the main points. We first consider the dynamical partition
function, corresponding to equation (11) in the main text

Zdyn =

〈∫ [
dw(0)

(2π)
d
2

e−
1
2 ‖w(0)‖22

] ∫
w(0)=w(0)

Dw(t)

×
d∏

j=1

δ

[
−ẇj(t)− λwj(t)−

n∑
μ=1

sμ(t)Λ
′
(
yμ,

w(t)�xμ√
d

)
xμ,j√
d

]〉
,

(A.1)

where the brackets 〈·〉 stand for the average over sμ(t), yμ and the realization of the
noise in the training set. The average over the initial condition is written explicitly.
Note that we choose an initial condition that is Gaussian, but we could have chosen a
different probability measure over the initial configuration of the weights. The equations
can be generalized to other initial conditions as soon as they do not depend on quenched
random variables that enter in the SGD dynamics and their distribution is separable.
As observed in the main text, we have that Zdyn = 〈Zdyn〉 = 1. We can write the integral
representation of the Dirac delta function in equation (A.1) by introducing a set of fields
ŵ(t)

Zdyn =

〈∫
Dw(t)Dŵ(t)eSdyn

〉
, (A.2)

where the dynamical action Sdyn is defined as in equation (13) of the main text

Sdyn =

d∑
j=1

∫ +∞

0

dt iŵj(t)

(
−ẇj(t)− λwj(t)−

n∑
μ=1

sμ(t)Λ
′
(
yμ,

w(t)�xμ√
d

)
xμ,j√
d

)
. (A.3)

A.1. SUSY formulation

The dynamical action Sdyn (A.3) can be rewritten in a SUSY form, by extending the time
coordinate to include two Grassman coordinates θ and θ̄, i.e. ta → a = (ta, θa, θ̄a). The
dynamic variable w(ta) and the auxiliary variable iŵ(ta) are encoded in a super-field

w(a) = w(ta) + iθaθ̄aŵ(ta). (A.4)
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From the properties of Grassman variables [38]

θ2 = θ̄2 = θθ̄ + θ̄θ = 0,∫
dθ =

∫
dθ̄ = 0,

∫
dθ θ =

∫
dθ̄ θ̄ = 1,

∂θg(θ) =

∫
dθ g(θ) for a generic function g,

(A.5)

it follows that

∫
daf (w(a)) =

∫ +∞

0

dta iŵ(ta)f
′ (w(ta)) . (A.6)

We can use equation (A.6) to rewrite Sdyn. We obtain

Sdyn = −1

2

∫
da dbK(a, b)w(a)�w(b)−

n∑
μ=1

∫
da sμ(a) Λ (yμ, hμ(a)) , (A.7)

where we have defined hμ(a) ≡ w(a)�xμ/
√
d and we have implicitly defined the kernel

K(a, b) such that

−1

2

∫
da dbK(a, b)w(a)�w(b) =

d∑
j=1

∫ +∞

0

dt iŵj(t) (−ẇj(t)− λwj(t)) . (A.8)

By inserting the definition of hμ(a) in the partition function, we have

Zdyn =

〈∫
Dw(a)Dhμ(a)Dĥμ(a) exp

[
− 1

2

∫
da dbK(a, b)w(a)�w(b)

−
n∑

μ=1

∫
da sμ(a) Λ (yμ, hμ(a))

]
exp

[
n∑

μ=1

∫
da i ĥμ(a)

(
hμ(a)−

w(a)�xμ√
d

)]〉
.

(A.9)
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Let us consider the last factor in the integral in (A.9). We can perform the average over
the random vectors zμ ∼ N (0, Id), denoted by an overline, as

exp

[
n∑

μ=1

∫ da i ĥμ(a)

(
hμ(a)−

w(a)�xμ√
d

)]

= exp

[
n∑

μ=1

∫ da i ĥμ(a)

(
hμ(a)− cμm(a)−

√
Δ

d
w(a)�zμ

)]

= exp

[
n∑

μ=1

∫
da i ĥμ(a) (hμ(a)− cμm(a))− Δ

2

n∑
μ=1

∫
dadbQ(a, b)ĥμ(a)ĥμ(b)

]
,

(A.10)

where we have defined

m(a) =
1

d
w(a)�v∗,

Q(a, b) =
1

d
w(a)�w(b).

(A.11)

By inserting the definitions of m(a) and Q(a, b) in the partition function, we obtain

Zdyn =

∫
DQDm edS(Q,m), (A.12)

where Q = {Q(a, b)}a,b, m = {m(a)}a and

S(Q,m) =
1

2
log det (Q(a, b)−m(a)m(b))− 1

2

∫
da dbK(a, b)Q(a, b) + α log Z,

Z =

〈∫
Dh(a)Dĥ(a) exp

[
−Δ

2

∫
dadb Q(a, b)ĥ(a)ĥ(b) (A.13)

+

∫
da iĥ(a) (h(a)− cm(a))−

∫
da s(a) Λ (y, h(a))

]〉
.

We have used the fact that the samples are i.i.d. and removed the index μ = 1, . . . n. The
brackets denote the average over the random variable c that has the same distribution
as the cμ, over y, distributed as yμ, and over the random process of s(t), defined by
equation (9) in the main text. If we perform the change of variable Q(a, b)←Q(a, b) +
m(a)m(b), we obtain
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S(Q,m) =
1

2
log detQ(a, b)− 1

2

∫
dadbK(a, b) (Q(a, b) +m(a)m(b)) + α log Z,

Z =

〈∫
Dh(a)Dĥ(a) eSloc

〉
, (A.14)

where the effective local action S loc is given by

Sloc = −Δ

2

∫
da dbQ(a, b)ĥ(a)ĥ(b)− Δ

2

(∫
da ĥ(a)m(a)

)2

+

∫
da iĥ(a) (h(a)− cm(a))−

∫
da s(a) Λ (y, h(a)) .

(A.15)

Performing a Hubbard–Stratonovich transformation on exp

[
−Δ

2

(∫
da ĥ(a)m(a)

)2]
and

a set of transformations on the fields h(a), we obtain that we can rewrite Z as

Z =

〈∫
dh0√
2π

e−
h20
2

∫
Dh(a)Dĥ(a) exp

[
−1

2

∫
dadb Q(a, b)ĥ(a)ĥ(b)

+

∫
da iĥ(a)h(a)−

∫
da s(a) Λ

(
y,
√
Δh(a) +m(a)(c+

√
Δh0)

)]〉
.

(A.16)

A.2. Saddle-point equations

We are interested in the large d limit of Zdyn, in which, according to equation (A.12),
the partition function is dominated by the saddle-point value of S(Q,m):

⎧⎪⎪⎨
⎪⎪⎩
δS(Q,m)

δQ(a, b)

∣∣∣∣
(Q,m)=(Q̃,m̃)

= 0

δS(Q,m)

δm(a)

∣∣∣∣
(Q,m)=(Q̃,m̃)

= 0
. (A.17)

Q̃(a, b) is obtained from the equation

−K(a, b) +Q−1(a, b) +
2α

Z
δZ

δQ(a, b)
= 0. (A.18)

The saddle-point equation for m̃(a) is instead

−
∫

dbK(a, b)m(b) +
α

Z
δZ

δm(a)
= 0. (A.19)
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It can be easily shown by exploiting the Grassmann structure of equations (A.18) and
(A.19) that they lead to a self-consistent stochastic process described by

ḣ(t) = −λ̃(t)h(t)−
√
Δs(t)Λ′ (y, r(t)− Y (t)) +

∫ t

0

dt′MR(t, t
′)h(t′) + ξ(t), (A.20)

where the initial condition is drawn from P (h(0)) ∼ e−h(0)2/(2R)/
√
2π, and r(t) =√

Δh(t) +m(t)(c+
√
Δh0), with P0(h0) ∼ e−h20/2/

√
2π. We have defined the auxiliary

functions

μ(t) = α
〈
s(t)

(
c+

√
Δh0

)
Λ′ (y, r(t))

〉
,

λ̂(t) = αΔ 〈s(t)Λ′′ (y, r(t))〉 ,

λ̃(t) = λ+ λ̂(t),

(A.21)

and kernels

MC(t, t
′) = αΔ 〈s(t)s(t′)Λ′ (y, r(t))Λ′ (y, r(t′))〉 ,

MR(t, t
′) = αΔ3/2

〈
s(t)s(t′)Λ′ (y, r(t))Λ′′ (y, r(t′)) iĥ(t′)

〉

≡ αΔ
δ

δY (t′)
〈s(t)Λ′(y, r(t))〉

∣∣∣∣
Y=0

.

(A.22)

In addition, from (A.19), one can derive an ordinary differential equation for the
magnetization

ṁ(t) = −λm(t)− μ(t). (A.23)

The brackets in the previous equations denote, at the same time, the average over the
label y, the process s(t), as well as the average over the noise ξ(t) and both h0 and h(0),
whose probability distributions are given by P (h(0)) and P 0(h0), respectively. In other
words, one has a set of kernels, such as MR(t, t

′) and MC(t, t
′), that can be obtained

as an average over the stochastic process for h(t) and therefore must be computed
self-consistently.

Finally, equation (A.18) gives rise to equation (20) of the main text while
equation (A.19) gives rise to the equation for the evolution of the magnetization. Note
that the norm of the weight vector w(t) can also be computed by sampling the stochastic
process

ẇ(t) = −λ̃(t)w(t) +

∫ t

0

dt′MR(t, t
′)(w(t′)−m(t′)h0) + ξ(t) + h0(λ̂(t)m(t)− μ(t)),

P (w0) =
1√
2πR

e−w2
0/(2R), (A.24)
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from which one gets

C(t, t′) = 〈w(t)2〉. (A.25)

A.3. Numerical solution of DMFT equations

The algorithm to solve the DMFT equations that are summed up in equation (A.20) is
the most natural one. It can be understood in the following way. The outcome of the
DMFT is the computation of the kernels and functions appearing in it, namely m(t),
MC(t, t

′) and so on. They are determined as averages over the stochastic process that
is defined through them. Therefore, one needs to solve the system of equations in a
self-consistent way. The straightforward way to do that is to proceed by iterations:

(a) We start from a random guess of the kernels that we use to sample the stochastic
process (A.20) several times;

(b) We compute the averages over these multiple realizations to obtain the updates
of the auxiliary functions (A.21) and kernels (A.22), along with the magnetization
(A.23);

(c) We use these new guesses to sample multiple realizations of the stochastic process
again;

(d) We repeat steps (b) and (c) until the kernels reach a fixed point.

As in all iterative solutions of fixed-point equations, it is natural to introduce some
damping in the update of the kernels to avoid wild oscillations. Note that the DMFT
fixed-point equations are deterministic, hence at the given initial condition the solution
is unique. Indeed, the kernels computed by DMFT are causal and a simple integra-
tion scheme of the equations is just extending them progressively in time starting
from their initial value, which is completely deterministic given the initial condition
for the stochastic process. This procedure has been first implemented in [34, 39] and
recently developed further in other applications [40, 41]. However, DMFT has a long
tradition in condensed matter physics [20], where more involved algorithms have been
developed.

Appendix B. Generalization error

The generalization error at any time step is defined as the fraction of mislabeled
instances:

εgen(t) ≡
1

4
EX,y,xnew,ynew

[
(ynew − ŷnew (w(t)))2

]
, (B.1)

where {X,y} is the training set, xnew is an unseen data point and ŷnew is the estimator
for the new label ynew. The dependence on the training set here is hidden in the weight
vector w(t) = w(t,X,y).

https://doi.org/10.1088/1742-5468/ac3a80 19

https://doi.org/10.1088/1742-5468/ac3a80


J.S
tat.

M
ech.

(2021)
124008

Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification∗

B.1. Perceptron with linear activation function

In this case, the estimator for a new label is ŷnew (w(t)) = sign
(
w(t)�xnew

)
. The gener-

alization error in the infinite dimensional limit d→∞ has been computed in [28] and
reads

εgen(t) =
1

2
erfc

(
m(t)√

2ΔC(t, t)

)
. (B.2)

B.2. Perceptron with door activation function

In this case, the estimator for a new label is ŷnew (w(t)) = sign
(
1
d
(w(t)�xnew)

2 − L2
)
.

From equation (B.1), we have that

εgen(t) =
1

2
(1− EX,y,xnew,ynew [ynew · ŷnew(w(t))]) . (B.3)

We consider the second term of (B.3)

EX,y,xnew,ynew [ynew · ŷnew(w(t))] = EX,y,xnew

[
sign

(ynew
d

(w(t)�xnew)
2 − ynewL

2
)]

. (B.4)

In the high dimensional limit, the overlap between weight vector and data point at each
time step concentrates

w(t)�xnew√
d

=
w(t)�√

d

(
cnew

v∗
√
d
+

√
Δ znew

)
−−−→
d→∞

cnewm(t) +
√

ΔC(t, t) z, (B.5)

where z ∼ N (0, 1). Therefore, we obtain

EX,y,xnew,ynew [ynew · ŷnew(w(t))]

� Ecnew,z,ynew

[
sign

(
ynew

(
cnewm(t) +

√
ΔC(t, t) z

)2
− ynewL

2

)]

= P

(
ynew

(
cnewm(t) +

√
ΔC(t, t) z

)2
� ynewL

2

)

− P

(
ynew

(
cnew m(t) +

√
ΔC(t, t) z

)2
< ynewL

2

)
(B.6)

and the generalization error in the infinite dimensional limit d→∞ is

εgen(t) = (1− ρ)erfc

(
L√

2ΔC(t, t)

)
+

ρ

2

(
erf

(
L−m(t)√
2ΔC(t, t)

)

+ erf

(
L+m(t)√
2ΔC(t, t)

))
. (B.7)
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Appendix C. Oracle error

We call oracle error the classification error made by an ideal oracle that has access
to the vector v∗ that characterizes the centers of the clusters in the two models under
consideration (see section 2 in the main text). We define the oracle’s estimator ŷOnew
given a new data point xnew as

ŷOnew = argmax
ỹnew

p (ỹnew|xnew) , (C.1)

where the prior over the label ỹnew and the coefficient c̃new along with the channel
distribution

p (xnew|c̃new) ∝ exp

[
− 1

2Δ
‖xnew − c̃new√

d
v∗‖22

]
(C.2)

are known. We can rewrite the probability in equation (C.1) as

p (ỹnew|xnew) ∝
∑

c̃new=0,±1

p (ỹnew, c̃new) p (xnew|c̃new)

= (1− ρ)δ(ỹnew + 1)e−
1
2Δ ‖xnew‖22 +

ρ

2
δ(ỹnew − 1)

(
e
− 1

2Δ‖xnew− 1√
d
v∗‖22 + e

− 1
2Δ ‖xnew+

1√
d
v∗‖22
)

= e−
1
2Δ‖xnew‖22

[
(1− ρ)δ(ỹnew + 1) + ρδ(ỹnew − 1)e−

1
2Δ cosh

(
1

Δ
√
d
x�
newv

∗
)]

. (C.3)

The oracle error is then

εOgen = P
(
ŷOnew 
= ynew

)
= (1− ρ)P

(
ŷOnew = 1|ynew = −1

)
+ ρP

(
ŷOnew = −1|ynew = 1

)
.

(C.4)

We can compute the two terms in the above equation separately

P
(
ŷOnew = 1|ynew = −1

)
= P

(
ρ e−

1
2Δ cosh

(
1√
Δd

z�newv
∗
)

> 1− ρ

)

= P

(
ρ e−

1
2Δ cosh

(
ζnew√
Δ

)
> 1− ρ

)

= erfc

(√
Δ

2

∣∣∣∣arccosh
(
(1− ρ)

ρ
e1/2Δ

)∣∣∣∣
)
, (C.5)
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and

P
(
ŷOnew = −1|ynew = 1

)
= P

(
1− ρ > ρ e−

1
2Δ cosh

(
cnew
Δ

+
1√
Δd

z�newv
∗
))

= P

(
1− ρ > ρ e−

1
2Δ cosh

(
cnew
Δ

+
ζnew√
Δ

))

=
1

2

⎡
⎣erf

⎛
⎝Δ

∣∣∣arccosh ( (1−ρ)
ρ

e1/2Δ
)∣∣∣+ 1

√
2Δ

⎞
⎠

+ erf

⎛
⎝Δ

∣∣∣arccosh ( (1−ρ)
ρ

e1/2Δ
)∣∣∣− 1

√
2Δ

⎞
⎠
⎤
⎦ , (C.6)

where znew ∼ N (0, Id), ζnew ∼ N (0, 1), and cnew = ±1 with probability 1/2.
Finally, we obtain that the oracle error is

εBO
gen = (1− ρ)erfc

(√
Δ

2

∣∣∣∣arccosh
(
(1− ρ)

ρ
e1/2Δ

)∣∣∣∣
)

+
ρ

2

⎡
⎣erf

⎛
⎝Δ

∣∣∣arccosh( (1−ρ)
ρ

e1/2Δ
)∣∣∣+ 1

√
2Δ

⎞
⎠+ erf

⎛
⎝Δ

∣∣∣arccosh ( (1−ρ)
ρ

e1/2Δ
)∣∣∣− 1

√
2Δ

⎞
⎠
⎤
⎦ .

(C.7)
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