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Abstract. Neural networks have been shown to perform incredibly well in clas-
sification tasks over structured high-dimensional datasets. However, the learning
dynamics of such networks is still poorly understood. In this paper we study in
detail the training dynamics of a simple type of neural network: a single hidden
layer trained to perform a classification task. We show that in a suitable mean-
field limit this case maps to a single-node learning problem with a time-dependent
dataset determined self-consistently from the average nodes population. We spe-
cialize our theory to the prototypical case of a linearly separable data and a linear
hinge loss, for which the dynamics can be explicitly solved in the infinite dataset
limit. This allows us to address in a simple setting several phenomena appear-
ing in modern networks such as slowing down of training dynamics, crossover
between rich and lazy learning, and overfitting. Finally, we assess the limitations
of mean-field theory by studying the case of large but finite number of nodes and
of training samples.
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1. Introduction

Despite their proven ability to tackle a large class of complex problems [1], neural
networks are still poorly understood from a theoretical point of view. While general
theorems prove them to be universal approximators [2], their ability to obtain general-
izing solutions given a finite set of examples remains largely unexplained. This behavior
has been observed in multiple settings. The huge number of parameters and the opti-
mization algorithms employed to optimize them (gradient descent and its variations)
are thought to play key roles in it [3–5].

In consequence, a large research effort has been devoted in recent years to under-
standing the training dynamics of neural networks with a very large number of nodes
[6–8]. Much theoretical insight has been gained in the training dynamics of linear
[9, 10] and nonlinear networks for regression problems, often with quadratic loss and in a
teacher-student setting [11–14], highlighting the evolution of correlations between data
and network outputs. More generally, the input–output correlation and its effect on the
landscape has been used to show the effectiveness of gradient descent [15, 16]. Other
approaches have focused on infinitely wide networks to perform a mean-field analysis of
the weights dynamics [17–22], or study its neural tangent kernel (NTK, or ‘lazy’) limit
[23–26].

In this work, we investigate the learning dynamics for binary classification problems,
by considering one of the most common cost functions employed in this setting: the
linear hinge loss. The idea behind the hinge loss is that examples should contribute to
the cost function if misclassified, but also if classified with a certainty lower than a given
threshold. In our case this cost is linear in the distance from the threshold, and zero for
examples classified above threshold, that we shall call satisfied henceforth. This specific
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choice leads to an interesting consequence: the instantaneous gradient for each node due
to unsatisfied examples depends on the activation of the other nodes only through their
population, while that due to satisfied examples is just zero. Describing the learning
dynamics in the mean-field limit amounts to computing the effective example distri-
bution for a given distribution of parameters: each node then evolves ‘independently’
with a time-dependent dataset determined self-consistently from the average nodes
population.

Contribution. We provide an analytical theory for the dynamics of a single hidden
layer neural network trained for binary classification with linear hinge loss. In section 2,
we obtain the mean-field theory equations for the training dynamics. Those equations
are a generalizations of the ones obtained for mean-square loss in [17–22]. In section 3,
we focus on linearly separable data with spherical symmetry and present an explicit
analytical solution of the dynamics of the nodes parameters. In this setting we provide
a detailed study of the cross-over between the lazy [23] and rich [27] learning regimes
(section 3.2). Finally, we assess the limitations of mean-field theory by studying the case
of large but finite number of nodes and finite number of training samples (section 3.3).
The most important new effect is overfitting, which we are able to describe by analyzing
corrections to mean-field theory. In section 3.4, we show that introducing a small fraction
of mislabeled examples induces a slowing down of the dynamics and hastens the onset
of the overfitting phase. Finally in section 4, we present numerical experiments on a
realistic case, and show that the associated nodes dynamics in the first stage of training
is in good agreement with our results.

The merit of the model we focused on is that, thanks to its simplicity, several effects
happening in real networks can be studied analytically. Our analytical theory is derived
using reasoning common in theoretical physics, which we expect can be made rigor-
ous following the lines of [17–22]. All our results are tested throughout the paper by
numerical simulations which confirm their validity.

Related works. The study of neural network dynamics with one (or few) nodes
started in statistical physics [11], but was mainly focused on the online setting. More
recent works on separable data [28, 29] observed the main trend of logarithmic align-
ment with the max margin vector under rather general settings. Mean-field analysis of
the training dynamics of very wide neural networks have mainly focused on regression
problems with mean-square losses [17–23], whereas fewer works [30, 31] have tackled
the dynamics for classification tasks1. The task and architecture we focus on bears
strong similarities to the one proposed in des Combes et al [30], but with fewer assump-
tions on the dataset and initialization. With respect to [30], we show the relation with
mean-field treatments [17–22] and provide a full analysis of the dynamics, in particular
the cross-over between rich and lazy learning. Moreover, we discuss the limitations of
mean-field theory, the source of overfitting and the change in the dynamics due to
mislabeling.

1 In the NTK (or ‘lazy’) limit [23–25] general losses have been considered.
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2. Mean-field equation for the density of parameters

We consider a binary classification task for N points in d dimensions {xn} ⊂ R
d with

corresponding labels yn = ±1. We focus on a hidden layer neural network consisting of
M nodes with activation σ. The output of the network is therefore

f(x;θ) =
1

M

M∑
i=1

aiσ

(
wi · x√

d

)
, (1)

where θi = {ai,wi} represents all the trainable parameters of the model: {wi}, the
d-dimensional weight vectors between input and each hidden node, and {ai}, the contri-
butions of each node to the output. All components are initialized before training from
a Gaussian distribution with zero mean and unit standard deviation. The 1/M in front
of the sum leads to the so-called mean-field normalization [17]. In the large-M limit,
this allows to do what is called a hydrodynamic treatment in physics, a procedure that
have been put on a rigorous basis in this context in [17–23] (here the θis play the role
of particle positions). One of the main assumptions of this procedure is that in the large
M -limit one can rewrite the output function in terms of the averaged nodes population
(or density) ρ(θ):

f(x;θ) =

∫
dθ ρ(θ)aσ

(
w · x√

d

)
. (2)

To optimize the parameters we minimize the loss function

L =
1

N

N∑
n=1

�(yn, f(xn; θ)) (3)

by gradient flow θ̇ = −β∗∂L/∂θ (�(x, y)will be specified later). The dynamical equations
for the parameters {ai,wi} read:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ȧi = − β

N

N∑
n=1

∂�(yn, f(x ;θ))

∂f
σ

(
wi · x√

d

)

ẇi = − β

N

N∑
n=1

∂�(yn, f(x ;θ))

∂f
aiσ

′
(
wi · x√

d

)
x√
d
,

(4)

where we have defined the effective learning rate β = β∗/M . These equations show that
the coupling between the different nodes has a mean-field form: it is through the function
f, i.e. only through the density ρ(θ, t). Following standard techniques one can obtain a
closed hydrodynamic-like equation on ρ(θ, t) in the large M limit:

∂tρ(θ, t) = β∇θ

(
ρ(θ, t)∇θ

δL[ρ(θ, t)]
δρ(θ, t)

)
ρ(θ, 0) = N (0, I) (5)

where we have made explicit that the L is a functional of the density ρ since it
depends on f(x ; θ), see equations (2) and (3). The convergence of the dynamical pro-
cess to the hydrodynamic limit is usually assumed in the physics literature, proofs
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(that we expect can be generalized to our case) have been worked out in [32, 33]. (See
online supplementary material (https://stacks.iop.org/JSTAT/2021/124005/mmedia)
for details.)

To be more concrete, in the following we consider the case of linear hinge loss,
�(y, f) = R(h− yf) (h being the size of the hinge, often taken as 1), and rectified
linear unit activation function: σ(x) = R(x) = max(0, x). With this choice

δL[ρ(θ, t)]
δρ(θ, t)

= −a

〈
u(x, y ; t)θ (w · x) yw · x√

d

〉
x,y

, (6)

with θ being the Heaviside step function. The notation u(x, y ; t) ≡ Ih−yf(x ;θ(t))>0 denotes
the indicator function of the unsatisfied examples, i.e. those (x, y) for which the loss is
positive, and 〈·〉x,y denotes the average over examples and classes (y = ±1 for binary
classification). The dynamical equations on the node parameters simplify too:⎧⎪⎪⎨

⎪⎪⎩
ȧi(t) =

β√
d
wi · 〈u(x, y ; t)θ (wi · x) yx〉x,y

ẇi(t) =
β√
d
ai〈u(x, y ; t)θ (wi · x) yx〉x,y.

(7)

Remarkably, the equation on the wi is very similar to the one induced by the Hebb rule
in biological neural networks.

3. Analysis of a linearly separable case

We now focus on a linearly separable model, where the dynamics can be solved explicitly.
We consider a reference unit vector ŵ∗ in input space and examples distributed according
to a spherical probability distribution P (x). We label each example based on the sign of
its scalar product with ŵ∗, leading to a distribution for y = ±1: P (x, y) = P (x)
θ(y(ŵ∗ · x)).

In order to be able to explore different training regimes, we adopt a rescaled loss
function, similar to the one proposed in Chizat et al [23]:

Lα(θ) =
1

α2N

N∑
n=1

R [h− αyn (f(xn ;θ)− f(xn ;θ0))] , (8)

where α is the rescaling parameter and θ0 are the parameters at the beginning of train-
ing. Subtracting the initial output of the network ensures that no bias is introduced by
the specific finite choice of parameters at initialization, while having no influence in the
hydrodynamic limit since the output is 0 by construction.

3.1. Explicit solution for an infinite training set

We first consider the limit of infinite number of examples, and later discuss the effects
induced by a finite training set.
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The explicit solution of the training dynamics is obtained making use of the cylin-
drical symmetry around ŵ∗, which implies that the average in the equations of motion
(7) does not depend on w, i.e.

〈u(x, y; t)θ (w · x) yx〉x,y = I(t)ŵ∗, (9)

where I(t) ≡ 〈u(x, y ; t)θ (w · x) yx · ŵ∗〉x,y. By plugging the identity (9) into
equations (6) and (7) one finds that the hydrodynamic equation (5) can be solved
by the method of the characteristic, where ρ(θ, t) is obtained by transporting the ini-
tial condition through the equation (7). By decomposing the vector w in its parallel
and perpendicular components with respect to ŵ∗, i.e. w = w‖ŵ∗ +w⊥, and using the
solution ρ(θ, t), one finds that the parameters θ at time t are distributed in law as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a(t)

d∼ a(0) cosh(γ(t)) + w‖(0) sinh(γ(t))

w‖(t)
d∼ w‖(0) cosh(γ(t)) + a(0) sinh(γ(t))

w⊥(t)
d∼ w⊥(0)

; γ(t) =
β

α
√
d

∫ t

0

I(t)dt, (10)

where a(0),w‖(0),w⊥(0) are given by the initial condition distributions: since all initial
components of w were taken as i.i.d. Gaussian, so is w‖(0) and every component of
w⊥(0) for any choice of basis. Using the distribution of θ at time t, one can then
compute 〈u(x, y ; t)θ (w · x) yx · ŵ∗〉x,y and hence obtain a self-consistent equation on
I(t), which completes the mean-field solution. Similarly, one can obtain explicitly the
output function and the indicator function which acquire a simple form:

f(x ;θ) =
sinh(2γ(t))

2
√
d

ŵ∗ · x, (11)

u(x, y ; t) = θ

(
2h

√
d

α sinh(2γ(t))
− yŵ∗ · x

)
(12)

where we have used that f(x ;θ) = 0 at t = 0. As expected, both functions have cylindri-
cal symmetry around ŵ∗. The analytical derivation of these results and the following ones
is presented in the SM. Since by definition I(t) � 0 the function γ(t) is monotonously
increasing and starts from zero at t = 0. To be more specific, we consider two cases:
normally distributed data with unit variance in each dimension, and uniform data on
the d-dimensional unit sphere. The corresponding self-consistent equations on γ(t) read
respectively:

γ̇(t) =
βIN (0)

α
√
d

(
1− exp

[
− 2h2d

α2 sinh2(2γ(t))

])
, (13)

γ̇(t) =
βIS(0)

α
√
d

(
1−max

(
0, 1− 4h2 d/(α2 sinh2(2γ(t)))

)d−1
2

)
, (14)

where IN(0) = 1/
√
2π and IS(0) = Γ

(
d+2
2

)
/(Γ

(
d+1
2

)
d
√
π). Both equations imply that

γ(t) ∼ t for small t and γ(t) ∼ ln t for large t.
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We have now gained a full analytical description of the training dynamics: the node
parameters evolve in time following equation (10). Note that their trajectory is inde-
pendent of the training parameters and the initial distribution, which only affect the
time dependence, i.e. the ‘clock’ γ(t). The change of the output function is given by
equation (11), where one sees that only the amplitude of f(x, θ) varies with time and is
governed by γ(t). The amplitude increases monotonically so that more examples can be
classified above the margin h at later times; the more examples are classified the slower
becomes the increase of γ(t) and hence the dynamics.

Our theoretical prediction can be directly compared with a simple numerical exper-
iment. Figure 1 shows the training of a network with M = 400 on Gaussian input data.
The top panels (a) and (b) compare the analytical evolution of the network parame-

ters ai and w
‖
i obtained from equation (10) to the numerical one. In (c) we plot γ(t)

(computed numerically) showing that it grows linearly in the beginning and logarithmi-
cally at longer times, as expected from theory. In (d) we show a scatter plot illustrating
that the time when an example is satisfied is proportional to its projection on the ref-
erence vector, following on average our estimate based on equation (12). Overall, the
agreement with the analytical solution is very good. The spread around the analytical
solution in (d) is a finite-M effect, that we will analyze in section 3.3. The departure
from the analytical result (10) happens at large time when the finiteness of the training
set starts to matter (the larger is the training set the larger is this time). In fact, for
any finite number of examples the empirical average over unsatisfied examples deviates
from its population average and the dynamics is modified eventually, and ultimately
stops when the whole training set is classified beyond margin. We study this regime in
section 3.3.

3.2. Lazy learning and rich learning regimes

The presence of the factor α in the loss function (8) allows us to explore explicitly
the crossover between different learning regimes, in particular the ‘lazy learning ’ regime
corresponding to α→∞ [23]. The dynamical equations can be studied in this limit
by introducing γ(t) = αγ(t). For concreteness, let us focus on the case of normally
distributed data. Taking the α→∞ limit of equation (13) one finds the equation for
γ(t):

γ̇(t) =
βIN (0)√

d

(
1− exp

[
− 2h2 d

4γ(t)2

])
. (15)

As for the evolution of the parameters and the output function, we obtain:⎧⎪⎨
⎪⎩
ai(t)− ai(0) = w

‖
i (0)

γ(t)

α
+O(α−2)

w
‖
i (t)− w

‖
i (0) = ai(0)

γ(t)

α
+O(α−2)

; αf(x ; θ) =
γ(t)√

d
ŵ∗ · x. (16)

The equations above provide an explicit solution of lazy learning dynamics and illustrate
its main features: the θi evolves very little and along a fixed direction, in this case given

by (w
‖
i (0), ai(0), 0). Despite the small changes in the nodes parameters, of the order of

https://doi.org/10.1088/1742-5468/ac3a76 7
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Figure 1. Training of a network with M = 400, N = 105, d = 100, α = 1.0, h = 1,
β∗ = 103, for tmax = 2× 103 timesteps (until all examples are classified) with final
generalization error ∼ 0.01 evaluated on 105 examples. Data and initial parameters
are taken from a normal distribution of zero mean and width 1 per dimension.
(a) and (b) Evolution of ten of the ai(t)s in (a) and of the w

‖
i (t)s in (b) during

training (circles) compared to our theoretical prediction (lines) for the same initial
values. (c) Evolution of γ(t) obtained through numerical integration of equation (13)
for the parameters of this example. The dashed lines represent the linear approx-
imation near t = 0 and the logarithmic slope log(t)/4 for large γ (shifted with a
fitted constant). (d) Projection of examples on the vector ŵ∗ as a function of the
time tsat when they are first satisfied. The red line is the estimate of our theory,
the dashed lines represent our estimate for a standard deviation due to the finite
number of nodes M (see section 3.3).

1/α, the network does learn since classification is performed through αf(x ;θ) which
has an order one change even for α→∞. In this regime, the correlation between a and
w‖ only increases slightly, but this is enough for classification, since an infinite amount
of displacements in the right direction is sufficient to solve the problem.

On the contrary, when α is of order one or smaller, the dynamics is in the so-
called ‘rich learning ’ regime [27]. At the beginning of learning, the initial evolution
of the θis follows the same linear trajectories of the lazy-learning regime. However, at
later stages, the trajectories are no more linear and the norm of the weights increases
exponentially in γ(t), stopping only at very large values of γ when all nodes are almost
aligned with ŵ∗ (for small α). Note that, as observed in Geiger et al [34], with the

https://doi.org/10.1088/1742-5468/ac3a76 8
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Figure 2. Evolution of ai and w
‖
i for a network with M = 400, N = 104, d = 100,

h = 1 in two different regimes. Data and initial parameters are taken from a normal
distribution of zero mean and width 1 per dimension. (a) First and last step of a
case with α = 103 (learning rate β∗ = 104, training set is fitted by t = 3000, final
generalization error ∼0.04). The arrows indicate the analytical derivative at t = 0,
showing that the evolution is approximately linear. (b) Initial steps (time indicated
in legend) of a case with α = 10−3 (learning rate β∗ = 1, training set is fitted by
t = 300, final generalization error ∼0.02). The gray lines follow the evolution of
each node.

standard normalization 1/
√
M it would be the parameter α

√
M governing the crossover

between the two regimes.
We compare the two dynamical evolutions in figure 2. The left panel (a) shows the

displacement of parameters between initialization and full classification (zero training
loss) for a network with α = 103. As expected, the displacement is small and linear.
A very different evolution takes place for α = 10−3 in the right (b) panel. The trajec-
tories are non-linear, and all nodes approach large values close to the a = w‖ line at
the end of the training. Correspondingly, the initially isotropic Gaussian distribution
evolves toward one with covariance matrix cosh(2γ) on the diagonal and sinh(2γ) off
diagonal.

Note that for all values of α, even very large ones, the trajectories of the θis are
identical and given by equation (10). What differs is the ‘clock’ γ(t), in particular for
large α the system remains for a much longer time in the lazy regime. This is true as
long as the number of training samples is infinite. Instead, if the number of data is finite,
the dynamics stops once the whole training set is fitted: for large α this happens before
the system is able to leave the lazy regime, whereas for small α a full non-linear (rich)
evolution takes place. Hence, the finiteness of the training set leads to very distinct

https://doi.org/10.1088/1742-5468/ac3a76 9
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dynamics and profoundly different ‘trained’ models (having both fitted the training
dataset) with possibly different generalization properties [25, 34, 35].

3.3. Beyond mean-field theory

The solution we presented in the previous sections holds in the limit of an infinite number
of nodes and of training data. Here we study the corrections to this asymptotic limit,
and discuss the new phenomena that they bring about.

Finite number of nodes. In the large M limit the ai and wi are Gaussian i.i.d.
variables. By the central limit theorem, the function (2) concentrates around its average,

and has negligible fluctuations of the order of 1/
√
M when M →∞. If M is large but

finite (keeping an infinite training set), these fluctuations of f(x, θ) are responsible
for the leading corrections to mean-field theory. In the SM we compute explicitly the
variance of the output function, limM→∞ M Var[f(x, θ)] = σ2

f(t), with

σ2
f(t) ≡ ((5 cosh2(2γ(t))− 2 cosh(2γ(t))− 3)(ŵ∗ · x)2 + 2 cosh(2γ(t))|x|2)/(4d). (17)

The main effect of this correction is to induce a spread in the dynamics, e.g. of the data
with same satisfaction time. This phenomenon is shown in figure 1(d) for M = 400,
where we compare the numerical spread to an estimate of the values of ŵ∗ · x such that
the hinge is equal to the average plus or minus one standard deviation (details on this
estimate in the SM).

Finite number of data. We now consider a finite but large number of examples
N (keeping infinite the number of nodes). In the large N limit the empirical average
over the data in 〈u(x, y ; t)θ (w · x) y x〉x,y converges to its mean I(t)ŵ∗. The main effect
of considering a finite N is that the empirical average fluctuates around this value.
Using the central limit theorem we show in the SM that the leading correction to the
asymptotic result reads:

〈u(x, y ; t)θ (w · x) yx〉x,y = I(t)ŵ∗ +
J(t)√
N

δw⊥ +O(1/N), (18)

where δw⊥ is a unitary random vector perpendicular to ŵ∗ and J(t) ≡
√

(d− 1)fU (t)/2.
The term fU (t) ≡ 〈u(x, y ; t)〉x,y, the fraction of unsatisfied examples at time t, controls
the strength of the correction, as expected since only unsatisfied data contribute to the
empirical average 〈·〉x,y. The vector on the rhs of (18) is the one toward which all the wi

align, see equation (10). Therefore, the main effect of the correction (18) is for the nodes
parameters to align along a direction which is slightly different from ŵ∗ and dependent
on the training set. This naturally induces different accuracies between the training and
the test sets, i.e. it leads to overfitting2. Note that the strength of the signal, I(t), is
roughly of the order of the fraction of unsatisfied data fU (t), whereas the noise due to

2The two accuracies instead coincide for N →∞, since all possible data are seen during the training and no overfitting is present
in the asymptotic limit.
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Figure 3. (a) Training (blue) and generalization (orange) error (fraction of misclas-
sified examples), during training with same parameters as figure 1. (b) Components
of 〈u(x, y; t)θ (w · x) yx〉x,y along ŵ∗ (parallel) and perpendicular to it, during train-
ing. The dots are numerical results for the same training show in (a). The lines
represent our analytical predictions I(t) and J(t)/

√
N for the same parameters.

Figure 4. (a) Training (blue) and generalization (orange) error for a network with
M = 400, trained on N = 104 MNIST data (d = 784), with parity labels. Inputs
are only rescaled by a factor 1/255, no further processing is done. The training is
performed with β∗ = 1000, α = 1, h = 1 and the validation error on 104 examples
is ∼0.03 after 2000 evolution steps. The shaded area represents the area where our
theory applies. (b) Evolution of ai and w

‖
i in the first 30 steps of training. The color

(see color bar) represents the step of evolution.

the finite training set is proportional to the square root of it. The larger the time, the
smaller fU (t) is, hence the stronger are the fluctuations with respect to the signal. In
figure 3(b), we compute numerically the components of 〈u(x, y ; t)θ (w · x) yx〉x,y parallel
and perpendicular to ŵ∗, and compare them to I(t) and J(t)/

√
N . Remarkably, we find

a very good agreement even for times when J(t)/
√
N is no longer a small correction.

This suggest that an estimate of the time to when overfitting takes place is given by
I(to) = J(to)/

√
N . We test this conjecture in (a): indeed the two contributions are of

the same order of magnitude for to ∼ 50, which is around the time when training and
validation errors diverge.
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3.4. Mislabeling

We now briefly address the effects due to noise in the labels, see the SM for detailed
results and numerical experiments. Mislabeling is introduced by flipping the label of
a small fraction δ of the examples. The main effect is to decrease the strength of the
signal, I(t), since the mislabeled data lead to an opposite contribution in (9) with
respect to the correctly labeled ones. In the asymptotic limit of infinite N and M ,
the reduction of the signal slows down the dynamics, which stops when the number of
unsatisfied correct examples equals the one of mislabeled ones. For large but finite N ,
the noise J(t)/

√
N is enhanced with respect to the signal because its strength is related

to the fraction of all unsatisfied examples, and not just the correctly labeled ones.
Hence, overfitting is stronger and takes place earlier with respect to the case analyzed
before.

4. Discussion and experiment

We have provided an analytical theory for the dynamics of a single hidden layer neu-
ral network trained for binary classification with linear hinge loss. We have found
two dynamical regimes: a first one, correctly accounted for by mean-field theory, in
which every node has its own dynamics with a time-dependent dataset determined
self-consistently from the average nodes population. During this evolution the nodes
parameters align with the direction of the reference classification vector. In the second
regime, which is not accounted for by mean-field theory, the noise due to the finite
training set becomes important and overfitting takes place. The merit of the model we
focused on is that, thanks to its simplicity, several effects happening in real networks can
be studied in detail analytically. Several works have shown distinct dynamical regimes
in the training dynamics: first the network learns coarse grained properties, later on it
captures the finer structure, and eventually it overfits [8, 13, 36, 37]. Given the simplicity
of the dataset considered, we expect our model to describe the first regime but not the
second one, which would need a more complex model of data.

In particular, the effective one-dimensional nature of the w evolution is due to the
cylindrical symmetry of the data, resulting in a direction-independent expression for
the integral in equation (9). In a more general setting, we can still expect to recover
a similar behavior at the beginning of training, where the difference between the two
classes averages dominates most of the dynamics. After that, the integral will depend
more and more on the direction of w, leading to specialization and a departure from
our simple model. To test this conjecture, we train our network to classify the parity of
MNIST handwritten digits [38]. To establish a relationship with our case, we define ŵ∗

as the direction of the difference between the averages of the two parity sets. We can

now define w‖ for each node, and study the dynamics of ai,w
‖
i . We report in figure 4

the evolution of these parameters in the early steps of training, in which the training
loss decreases of 65% of its initial value (figure 4(a)). The evolution of the parameters
(figure 4(b)) bears a strong resemblance with our findings, see the remarkable similarity
with figure 2(b). A similar experiment for even richer datasets (CIFAR10 and ImageNet)
is presented in the SM.
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Broader impact

Given the purely theoretical scope of this paper, it does not seem to present any
foreseeable societal consequence.
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[21] Araújo D, Oliveira R I and Yukimura D 2019 A mean-field limit for certain deep neural networks
(arXiv:1906.00193)

[22] Nguyen P-M 2019 Mean field limit of the learning dynamics of multilayer neural networks (arXiv:1902.02880)
[23] Chizat L, Oyallon E and Bach F 2019 On lazy training in differentiable programming NeurIPS 2019: 33rd Conf.

Neural Information Processing Systems (Vancouver, Canada)
[24] Jacot A, Gabriel F and Hongler C 2018 Neural tangent kernel: convergence and generalization in neural networks

Advances in Neural Information Processing Systems vol 31 ed S Bengio, H Wallach, H Larochelle, K Grauman,
N Cesa-Bianchi and R Garnett (New York: Curran Associates) pp 8571–80

[25] Lee J, Xiao L, Schoenholz S, Bahri Y, Novak R, Sohl-Dickstein J and Pennington J 2019 Wide neural networks of
any depth evolve as linear models under gradient descent Advances in Neural Information Processing Systems
vol 31 ed H Wallach, H Larochelle, A Beygelzimer, F d’Alché Buc, E Fox and R Garnett (New York: Curran
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