
PAPER • OPEN ACCESS

Destabilization of geodesic acoustic-like mode in
the presence of poloidally inhomogeneous heat
sources in tokamak plasmas
To cite this article: Young-Hoon Lee and Jungpyo Lee 2024 Nucl. Fusion 64 066021

 

View the article online for updates and enhancements.

You may also like
Magnetohydrodynamic theory of the global
structure and magnetic components of the
geodesic acoustic continuum modes in
tokamaks
C Wahlberg and J P Graves

-

Singular global components and frequency
shift of the geodesic acoustic continuum
modes in shaped tokamaks
C Wahlberg and J P Graves

-

GAM observation in the TUMAN-3M
tokamak
V V Bulanin, L G Askinazi, A A Belokurov
et al.

-

This content was downloaded from IP address 18.119.139.50 on 05/05/2024 at 14:47

https://doi.org/10.1088/1741-4326/ad3e8d
https://iopscience.iop.org/article/10.1088/0741-3335/58/7/075014
https://iopscience.iop.org/article/10.1088/0741-3335/58/7/075014
https://iopscience.iop.org/article/10.1088/0741-3335/58/7/075014
https://iopscience.iop.org/article/10.1088/0741-3335/58/7/075014
https://iopscience.iop.org/article/10.1088/1361-6587/ab1d22
https://iopscience.iop.org/article/10.1088/1361-6587/ab1d22
https://iopscience.iop.org/article/10.1088/1361-6587/ab1d22
https://iopscience.iop.org/article/10.1088/0741-3335/58/4/045006
https://iopscience.iop.org/article/10.1088/0741-3335/58/4/045006


International Atomic Energy Agency Nuclear Fusion

Nucl. Fusion 64 (2024) 066021 (15pp) https://doi.org/10.1088/1741-4326/ad3e8d

Destabilization of geodesic acoustic-like
mode in the presence of poloidally
inhomogeneous heat sources in
tokamak plasmas

Young-Hoon Lee and Jungpyo Lee∗

Hanyang University, Seoul, Korea, Republic Of

E-mail: jungpyo@hanyang.ac.kr

Received 14 January 2024, revised 4 April 2024
Accepted for publication 15 April 2024
Published 3 May 2024

Abstract
The effects of poloidally inhomogeneous heat sources are investigated through a gyrokinetic
formula in collisionless toroidal plasmas. A gyrokinetic dispersion relation is newly derived
under the assumption that equilibrium parallel heat flows are generated to remove the injected
poloidally nonuniform heat source. The dispersion relation is numerically solved, considering
both inboard and outboard heat source injections. In the case of the inboard source injection,
both Stringer spin-up and geodesic acoustic mode (GAM) are excited. Conversely, outboard
injection leads to the emergence of a heat source-driven GAM (referred to as Q-GAM),
featuring a frequency around half that of the standard GAM. Various physical quantities of the
Q-GAM, such as mode frequency and source threshold, are analyzed through parametric scans.
The Q-GAM exhibits similarities with the energetic-particle-driven GAM (EGAM), particularly
in its frequency range, and both belong to one of the strong Landau damped poles. Despite
having distinct driving mechanisms and structural differences in parallel velocity and poloidal
coordinates, the response function of the perturbed parallel pressure to the potential, mainly
contributing to the destabilization of each mode around half of the GAM frequency, is derived
to have a similar form for both the Q-GAM and EGAM cases.

Keywords: tokamak, geodesic acoustic modes, Stringer spin up, gyrokinetics,
poloidal inhomogeneity, dispersion relation, response function

(Some figures may appear in colour only in the online journal)

1. Introduction

On a transport time scale in a tokamak, the parallel dynam-
ics or the poloidal structure of certain lowest-order fluid
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quantities are often disregarded. This assumption arises from
the perception that parallel dynamics occur too rapidly, res-
ulting in the damping out of all poloidal inhomogeneities on
a time scale faster than that of transport, primarily through
Landau damping or ion-ion collisions. However, it may be
necessary to reconsider this assumption, as there are instances
where poloidally nonuniform particles, momentum, or energy
external sources are injected locally in the poloidal direction
and remain constant over longer timescales than the transport
time. These sources include systems such as pellet injection,
neutral beam injection (NBI), or RF heating. Furthermore, this
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poloidal inhomogeneity is also obvious in respect of transport.
Turbulent transport, considered the primary cause of the anom-
alous transport, is well known to have a ballooning structure,
resulting in relatively low transport on the low field side due to
its favorable curvature. If there exists a difference in the radial
flux, it can lead to additional accumulation or loss of particles
and energy along the poloidal direction.

In such cases when poloidally inhomogeneous external
sources or transport exist, poloidal rotation is prone to
be unstable. Stringer first found that the poloidal rotation
becomes unstable in the presence of poloidally nonuniform
Pfirsch-Schlüter diffusion, a phenomenon known as Stringer
spin-up (SSU) [1]. Subsequent analyses by Hassam and Drake
revealed that poloidally nonuniform particle sources can accel-
erate this process [2, 3], and it was also found that particle
sources can destabilize not only SSU but also geodesic acous-
tic mode (GAM) [4, 5]. However, damping physics was not
considered in the studies by Hassam and Drake. Recently,
Hassam’s theory has been extended [6] to capture Landau
damping physics, using both gyro-Landau fluid [7–9] and
gyrokinetic [10, 11] models. These extensions concluded that
a kinetic description is necessary for accurate calculation of
the source threshold of GAM. Nevertheless, all these studies
on poloidal source effects have far focused solely on particle
sources.

In this study, we extend the theory of poloidal source
effects to include heat sources. A gyrokinetic dispersion rela-
tion is derived under the assumption that equilibrium heat
flows are generated to prevent the local accumulation of heat
by sources. The dispersion relation is numerically solved con-
sidering both outboard and inboard source injections. Both
the GAM and SSU become unstable with the inboard source
injection. On the other hand, a new mode, with a frequency
approximately half that of the GAM, becomes unstable with
outboard heat source injection. For this new mode, we have
named it the Q-GAM for the simple reason that the heat
source is usually denoted by a letter Q. Parametric scans are
conducted the on the frequency and growth rate of the Q-
GAM, and an empirical equation for the source threshold is
derived.

Interestingly, several theoretical and experimental obser-
vations about electric field oscillations with about one-half
frequency of the GAM have been reported (e.g. energetic
particle driven GAM (EGAM) by NBI injection [12, 13] and
ETRO in I-mode [14, 15]). Especially, the Q-GAM has some
phenomenological similarities with so-called Landau-EGAM
[16–18]. Both modes originate from one of strongly damped
Landau poles and excited around half of the GAM frequency.
Despite these similarities, the two modes have completely dif-
ferent driving mechanisms: the Q-GAM is driven by E×B
convection coupled with the poloidal asymmetry in the back-
ground equilibrium heat flow, while the EGAM is driven by
inverse Landau damping arsing from the positive slope in the
fast particle distribution function. The similarity between the
two modes, despite their different driving mechanisms, arises
from the similar form of the response function of the perturbed
parallel pressure to the electric potential.

The scope of this paper is limited to the initial growing
phase of an unstable mode. Nonlinear saturation and final
damping of E×B flow are beyond its scope, as these involve
physical elements with longer time scales, such as residual
zonal flow [19, 20] or collisional damping [21, 22]. The pol-
oidal source effects discussed in this study arise from theE×B
convection due to poloidal asymmetry in the background equi-
librium flows. Once poloidally asymmetric particle or heat
sources are injected, equilibrium flows are assumed to be gen-
erated to prevent local heat accumulation along the poloidal
direction. The dynamics of the generation of these equilibrium
heat flows and their effects are left for future work.

The remainder of this paper is organized as follows: In
section 2, we provide a brief summary of the derivation of
the gyrokinetic dispersion relation with poloidally inhomo-
geneous particle sources, along with some numerical results.
In section 3, we extend the theory of poloidal sources to
include heat sources and derive a gyrokinetic dispersion rela-
tion accordingly. Here, we find that the Q-GAM is driven
by the outboard injection of heat sources. Further investiga-
tion on the Q-GAM, including parametric scans on frequency,
growth rate, and source threshold, is presented in section 4. In
section 5, we explore phenomenological similarities between
the Q-GAM and E-GAM using root-locus plots and discuss
these similarities in terms of the response functions of per-
turbed fluid variables to the electric potential. Finally, we con-
clude the paper in section 6 with a summary of the main results
and discussions.

2. Poloidally inhomogeneous particle source
effects

The poloidally inhomogeneous particle source-driven instabil-
ity is investigated by deriving a gyrokinetic dispersion rela-
tion and numerically solving it. For simplicity, we consider
an axisymmetric toroidal system with a concentric circu-
lar equilibrium and a standard magnetic field, given by B=
B0{[1/(1+ ϵcosθ)]êφ +(ϵ/q)êθ}, where φ and θ are toroidal
and poloidal angles, respectively, and ϵ= r/R0 is the inverse
aspect ratio, assumed to be small. We are interested in a meso-
scale instability whose scale length is set by that of the pol-
oidal source. Since the poloidal source can be considered to
have a long wavelength compared to the ion gyroradius and
a low poloidal mode number, we assume n= 0, m≃ 0, and
k⊥ρi ∼O(ϵ), where n and m are toroidal and poloidal mode
numbers, respectively, k⊥ is a perpendicular wavenumber,
and ρi is the ion gyroradius. Thus, we start our derivation
from the gyrokinetic equation for the zonal component with
the perpendicular wavenumber vector k⊥ ≃ kr∇r, which is
given by

(
∂

∂t
+ v∥b ·∇+ iωD

)
δfk⊥

=−
(
v∥b ·∇+ iωD

)(
FMJ0 (k⊥ρ)

eϕk⊥

T

)
+ CE×B, (1)
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where ϕk⊥ is the electrostatic potential, δfk⊥ is the perturbed

gyrocenter distribution, FM = n0
(

m
2πT

)3/2
exp[−m(v2∥ +

v2⊥)/(2T)] is the usual Maxwellian distribution with an
equilibrium density n0, J0 is a zeroth-order Bessel func-
tion, ρ= v⊥/Ω is the gyroradius with the gyrofreqeuncy

Ω= eB0/(mc), and ωD = kr(
v2∥+v

2
⊥/2

ΩR0
)sinθ is the radial drift

frequency, while the poloidal part is neglected considering
its smallness. Here, subscripts for the particle species are
omitted. The last term on the right-hand side of equation (1)
represents the E×B convection due to the poloidal asym-
metry in the equilibrium distribution function and serves as
the main instability source term in this study. In the pres-
ence of the poloidal particle source, the equilibrium distri-
bution function can be given by F0 = FM + F̃, as demon-
strated in [3, 6], where F̃ is the poloidally asymmetric part,
given by

F̃= FM

(
2v∥ũ

Eq
∥

v2T

)
. (2)

Here, vT = (2T/m)1/2 is the thermal ion velocity, ũEq∥ is
the equilibrium particle flow generated to remove out the
poloidally inhomogeneous particle source S̃, and the vari-
ables with (̃· · ·) mean poloidally inhomogeneous terms.
It satisfies a kinetic equilibrium condition, ∇∥(v∥F0) =

(S̃/n0)(mv2∥/T)FM, and a fluid equilibrium one, ∇∥(n0ũ
Eq
∥ ) =

S̃, respectively. Due to the poloidally asymmetric part
shown above, the E×B convection term is derived using
equation (2) as

CE×B =−vE ·∇F̃=−ikr
ϕkr0
rB0

∂F̃
∂θ

=−ikr
ϕkr0
rB0

S̃
n0ωt

2v∥
vT

FM, (3)

where vE = e(B×∇ϕk⊥)/B
2
0 is the E×B drift and ωt =

vT/(qR0) is a transit frequency of thermal ions. It is
worth noting that the E×B convection term, associated
with an up-down asymmetric particle source, S̃∝ sinθ does
not satisfy the original GAM symmetry property [10],
which means that it cannot contribute to the GAM dis-
persion relation. Therefore, only the in-out asymmetric
part of the particle source, S̃∝ cosθ, whose correspond-
ing E×B convection term satisfies the GAM symmetry
property (see section 5 for details), will be considered
hereafter.

In deriving the gyrokinetic dispersion relation, we follow
the approaches of [10, 11], neglecting the mirror force term
while retaining the E×B convection term. Because the
detailed derivations are available in [6], main results of [6]
are just summarized here. Using the Fourier-Laplace trans-
form with respect to θ and t, respectively, the perturbed ion
distribution function can be derived from equation (1) as

δ̂fkr,m (ω) =
∑
l,l ′

il
′−lJlJl ′

(
(m+ l)

(
v∥/qR0

)
ω− (m+ l)

(
v∥/qR0

))

×
(
eϕkr,m+l−l ′ (ω)

T

)
+ δÎkr,m (ω)

+
q
ϵ

(
krρT
2

)(
S̃c
n0ωt

)(
eϕkr0 (ω)

T

)

·

∑
l,l ′ ′

il
′ ′−lJlJl ′ ′

(
δm+1
l−l ′ ′ + δm−1

l−l ′ ′
)

×

( (
v∥/qR0

)
ω− (m+ l)

(
v∥/qR0

))} (4)

for m ̸= 0 Fourier components, where Jn = Jn(krδ̂) with
n= l, l ′, l ′ ′ is the nth order Bessel function, which stems
from an expansion eikrδ̂ cosθ =

∑+∞
n=−∞ ineinθJn(krδ̂), and

δ̂ cosθ represents the radial displacement of the passing
ion. Here, δ̂fkr,m = (δfkr,m/FM), ρT = vT/Ω, δ̂ ≡ (ϵ/Ωp)[v∥ +
µB0/(mv∥)], Ωp = eBp/(mc). The term S̃c represents the cosθ
component of the particle source, δÎkr,m denotes initial condi-
tion term, and δm±1

l ′ ′−l is the Kronecker delta function. For elec-
trons, due to their small gyroradius and fast parallel motion,
an adiabatic response is assumed as δnekr,m = n0e(ϕkr,m−
⟨ϕkr,m⟩FS)/Te, where δnekr,m and Te denote perturbed density
and temperature of electrons, respectively, and ⟨·⟩FS means
average on a given flux-surface. The quasineutrality condition
is given by

´
d3vδfikr,m− (n0/2)(krρT)2eϕkr,m/Ti = δnekr,m.

From equation (4) and the quasineutrality condition, we find
that the solution for the GAM with a poloidally inhomo-
geneous particle source satisfies the original GAM sym-
metry property, given by δ̂fkr,m(v∥) = (−1)mδ̂fkr,−m(−v∥) and
ϕkr,m = (−1)mϕkr,−m, as shown in [10]. If one consider finite-
orbit width (FOW) |krδ̂|> 0 in equation (4), the first term on
the right-hand side generates an infinite number of resonance
conditions ω− (m+ l)(v∥/qR0), where the condition with
m+ l= 1 corresponds to usual Landau damping and those
with m+ l⩾ 2 give enhanced damping to the GAM [10, 11].
In this study, however, we only consider Landau damping and
neglect ϕkr,m with m⩾ 2 components, considering the propor-
tional relation ϕkr,m/ϕkr0 ∝ (krδ̂)m and the smallness of the
FOW |krδ̂| ≪ 1. Then, from equation (4), the perturbed ion
distribution function for m=±1 Fourier components is given
by

δ̂fkr±1 (ω) =
±
(
v∥/qR0

)
ω∓

(
v∥/qR0

) [eϕkr±1 (ω)

T
+ i

(
krρTq
2

)
×

{(
v̂∥ +

v̂2⊥
2v̂∥

)
∓ i

Ŝc
ϵ

}
eϕkr0 (ω)

T

]
, (5)

where normalized variables Ŝc = S̃c/(n0ωt), v̂∥ = v∥/vT,

and v̂⊥ = v⊥/vT are used. By substituting δ̂fkr±1 into

3
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Figure 1. Root-locus plots of the gyrokinetic dispersion relation (6) with equations (7) and (8). Results with outboard Ŝout(= Ŝc) and
inboard Ŝin(=−Ŝc) source intensities increasing from 0 to 1 are shown in figures (a) and (b), respectively. Other parameters are fixed as
ϵ= 0.1, q= 3, and τe = 1.0. Root-loci of the GAM and SSU are plotted by blue and red curves, respectively.

equations (2.4) and (2.5) of [10], the gyrokinetic dispersion
relation with the particle source effects is finally derived as

1
q2

+ Ā(ω̂)+ Ã(ω̂)−
N̄(ω̂)

[
N̄(ω̂)+ Ñ(ω̂)

]
τ−1
e + D̄(ω̂)

= 0 (6)

with

Ā(ω̂) = Z (ω̂)

(
ω̂3 + ω̂+

1
2ω̂

)
+ ω̂2 +

3
2
,

N̄(ω̂) = Z (ω̂)

(
ω̂2 +

1
2

)
+ ω̂,

D̄(ω̂) = 1+ ω̂Z (ω̂) , (7)

and

Ã(ω̂) =−i
[
Z (ω̂)

(
ω̂2 +

1
2

)
+ ω̂+

1
ω̂

]
Ŝc
ϵ
,

Ñ(ω̂) =−i [1+ ω̂Z (ω̂)]
Ŝc
ϵ
, (8)

where Z(ω̂) is the usual plasma dispersion function, ω̂ =
ω/ωt is the mode frequency normalized to transit one, and
τe = Te/Ti is the temperature ratio of electrons to ions. In
equation (6), the coefficients with (· · ·) given in equation (7)
represent the original GAM dispersion contributions, while
those with (̃· · ·) given in equation (8) represent the particle
source effects.

To study the poloidally inhomogeneous particle source
effects, we numerically solve the gyrokinetic dispersion
relation (6) with equations (7) and (8) considering both
the outboard and inboard source injections. Root-locus
plot with increasing outboard (Ŝout = Ŝc > 0) and inboard
(Ŝin =−Ŝc > 0) particle source intensities from 0 to 1 are
shown in figures 1(a) and (b), respectively, while other para-
meters are fixed as ϵ= 0.1, q= 3, and τe = 1. One can eas-
ily see that the outboard particle source destabilizes the SSU,

while the inboard source destabilizes the GAM. These results
are well consistent with those from fluid models like reduced
MHD model [3] or gyro-Landau fluid model [7, 8]. However,
as reported in [6], the gyrokinetic model is essential for accur-
ate calculation of the GAM threshold because the Hammet-
Perkins closure model cannot fully capture the Landau damp-
ing physics. Especially, the gyrokinetic calculation is desirable
for studying the heat source effects, where we find a newmode
excited around frequency of half of the GAM one.

3. Poloidally inhomogeneous heat source effects

In this section, we extend the analysis of particle source effects
to include those of heat sources. Except for adopting a dif-
ferent poloidally asymmetric part in the equilibrium distribu-
tion function, the derivation of the gyrokinetic dispersion rela-
tion follows the same approach used in the previous section.
Referring to section 4 of [9], with assumptions of u∥ = 0 and
T∥ = T⊥, the poloidally inhomogeneous part of the equilib-
rium distribution function is rewritten as

F̃= FM

 q̃Eq∥
p0vT

v̂∥
(
2v̂2∥ − 3

)
3

+
q̃Eq⊥
p0vT

2v̂∥
(
v̂2⊥ − 1

) , (9)

where p0 = n0T is the equilibrium ion pressure, and q̃Eq∥ and

q̃Eq⊥ are equilibrium parallel heat flows of parallel and perpen-
dicular energies, which are generated to balance out the par-
allel and perpendicular heat sources Q̃∥ and Q̃⊥, respectively.
This modified equilibrium distribution function satisfies a kin-

etic equilibrium condition, ∇∥(v∥F0) = [(Q̃∥/p0)
v̂2∥(2v̂

2
∥−3)

3 +

(Q̃⊥/p0)2v̂2∥(2v̂
2
⊥ − 1)]FM, and fluid equilibrium conditions,

∇∥q̃
Eq
∥ = Q̃∥ and ∇∥q̃

Eq
⊥ = Q̃⊥, respectively. Due to the pol-

oidal asymmetry in themodified equilibrium distribution func-
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tion, the E×B convection term is derived using equation (9)
as

CE×B =−vE ·∇F̃=−ikr
ϕkr0
rB0

∂F̃
∂θ

=−ikr
ϕkr0
rB0

(
Q̃∥

p0ωt

v̂∥
(
v̂2∥ − 3

)
3

+
Q̃⊥

p0ωt
2v̂∥
(
v̂2⊥ − 1

))
FM.

(10)

As in the case of particle sources, only the in-out asymmetric
part of the heat sources, Q̃∥, Q̃⊥ ∝ cosθ will be considered for
the same reason that the E×B convection term with the up-
down asymmetric heat sources, Q̃∥, Q̃⊥ ∝ sinθ does not con-
tribute to the GAM dynamics due to their mismatch with the
GAM symmetry property.

Using the Fourier-Laplace transform again, perturbed ion
distribution function is derived as

δ̂fkr,m (ω) =
∑
l,l ′

il
′−lJlJl ′

(
(m+ l)

(
v∥/qR0

)
ω− (m+ l)

(
v∥/qR0

))

×
(
eϕkr,m+l−l ′ (ω)

T

)
+ δÎkr,m (ω)+

q
ϵ

(
krρT
2

)
×
(
eϕkr0 (ω)

T

)(
Q̃∥c

p0ωt

(
2v̂2∥ − 3

)
3

+
Q̃⊥c

p0ωt
2
(
v̂2⊥ − 1

))

×

∑
l,l ′ ′

il
′ ′−lJlJl ′ ′

(
δm+1
l ′ ′−l+ δm−1

l ′ ′−l

)

×

( (
v∥/R0q

)
ω− (m+ l)

(
v∥/R0q

))} (11)

for m ̸= 0 Fourier components. Here, Q̃∥c and Q̃⊥c represent
cosθ component of parallel and perpendicular heat sources,
respectively. Note that the solution for equation (11) also sat-
isfies the GAM symmetry property, just like in the case of
particle source. Neglecting FOW contributions and ϕkr,m with
m⩾ 2 from equation (11), the perturbed ion distribution func-
tion for m=±1 Fourier components is given by

δ̂fkr±1 (ω) =
±
(
v∥/R0q

)
ω∓

(
v∥/R0q

) [eϕkr±1 (ω)

T
+ i

(
krρTq
2

)
eϕkr0 (ω)

T

×

{(
v̂∥ +

v̂2⊥
2v̂∥

)
∓ i

(
2v̂2∥ − 3

3

)
Q̂∥c
ϵ

× ∓ 2i
(
v̂2⊥ − 1

) Q̂⊥c

ϵ

}]
, (12)

where parallel and perpendicular heat sources are normalized
by Q̂∥c = Q̃∥c/(p0ωt) and Q̂⊥c = Q̃⊥c/(p0ωt), respectively.
Finally, by substituting equation (12) into equations (2.4) and
(2.5) of [10], the gyokinetic dispersion relation is derived to
have the same form as the particle source case, as shown in
equation (6). The only difference lies in the coefficients with
(̃· · ·), which are given by

Ã(ω̂) =−2i
3

[
Z (ω̂)

(
ω̂4 − ω̂2 − 3

4

)
+ ω̂3 − ω̂

2
− 1

2ω̂

]
Q̂∥c

ϵ

− 2i

[
Z (ω̂)

2
+

1
2ω̂

]
Q̂⊥c

ϵ
,

Ñ(ω̂) =−2i
3

[
Z (ω̂)

(
ω̂3 − 3ω̂

2

)
+ ω̂2 − 1

]
Q̂∥c

ϵ
, (13)

while the other coefficients with (· · ·) are derived the same as
equation (7).

To study the poloidally inhomogeneous heat source effects,
we numerically solve the gyokinetic dispersion relation (6)
with equations (7) and (13), considering both the out-
board and inboard heat source injections. As done with the
particle source case, root-locus plots with increasing outboard
(Q̂∥out = Q̂c > 0) and inboard (Q̂∥in =−Q̂c > 0) parallel heat
source intensities from 0 to 2 are shown in figures 2(a) and (b),
respectively, while other parameters are fixed as ϵ= 0.1, q= 3,
τe = 1, and Q̂⊥c = 0. At this moment, we set our perpendicu-
lar heat source to zero to focus on the effects of the parallel
one. Compared to the results with the particle source shown in
figure 1, the patterns of instability with parallel heat sources
differ significantly. Remarkably, we found a new mode with a
frequency of about half of the GAM becomes unstable when
the heat source is injected on the outboard, as shown with the
green curve in figure 2(a).

We have named this newly discovered mode Q-GAM,
choosing the letter Q because it commonly represents the heat
source. One remarkable characteristic of the Q-GAM is that
it lies much below the real axis when there is no heat source
injection, originating from one of the many strongly damped
Landau poles. However, it rapidly becomes unstable with the
increase of the heat source intensity, while maintaining its
frequency around half of the GAM. This behavior resembles
the Landau-EGAM reported by [16–18], where the EGAM
also arises from a strongly damped landau pole. However, the
EGAM is driven by inverse Landau damping due to the pos-
itive slope of the distribution function, whereas the Q-GAM
is driven by the E×B convection resulting from the poloidal
asymmetry of the background heat flows. The similarities and
differences between themwill be further explored in section 5.
On the other hand, in the case of inboard heat source injec-
tion, as shown in figure 2(b), both SSU and GAM are driven.
It is interesting that the SSU and GAM, respectively driven by
the outboard and inboard particle source injections, are driven
simultaneously with inboard heat source injection. In sub-
sequent sections 4 and 5, we will focus on the Q-GAM driven
by the outboard heat source injection and explore its paramet-
ric dependencies and destabilization mechanism in compar-
ison to the EGAM.

4. Parametric scans on frequency and threshold of
Q-GAM

In this section, parametric scans of the Q-GAM are conduc-
ted and various physical quantities are measured. First, the
frequency and growth rate of the Q-GAM are measured as
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Figure 2. Root-locus plots of the gyrokinetic dispersion relation (6) with equations (7) and (13). Results with outboard Q̂∥out(= Q̂∥c) and
inboard Q̂∥in(=−Q̂∥c) parallel heat source intensities increasing from 0 to 2 are shown in figures (a) and (b), respectively. Other parameters
are fixed as ϵ= 0.1, q= 3, τe = 1, and Q̂⊥c = 0. Root-loci of the GAM, SSU and Q-GAM are plotted by blue, red, and green curves,
respectively.

Figure 3. Real frequency (top) and growth rate (bottom) of the SSU (red), GAM (blue), and Q-GAM (green) as functions of the outboard
heat source intensity. Parametric scans are conducted regrading inverse aspect ratio ϵ (left), safety factor q (middle), and temperature ratio of
electrons to ions τ e (right), respectively. All parameters are fixed as ϵ= 0.1, q= 3, τe = 1, and Q̂⊥c = 0, except for the one being used as a
scanning variable.

functions of source intensity for each of the following scanning
variables: inverse aspect ratio ϵ; safety factor q; and temperat-
ure ratio of electrons to ions τ e, as shown in figure 3. Here, the
frequency and growth rate are normalized by the GAM fre-
quency ωG and vT/R0, respectively, and the outboard source
intensity Q̂∥out increasing from 0 to 2 is used. It shows that
the frequency of the Q-GAM hardly changes with increasing
source intensity once determined by each parameter (see top

row of figure 3), while the initially strongly negative growth
rate rapidly increases (see bottom row of figure 3). From the
ϵ scan (see left column of figure 3), the same results for dif-
ferent values of ϵ are shown when the frequency and growth
rate are displayed as functions of Q̂∥out/ϵ. This is because the
instability term in our dispersion relation is always inversely
proportional to ϵ, as shown in equation (13). On the other
hand, the scans for q and τ e exhibit nonlinear behavior across

6
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Figure 4. Threshold source intensity of the Q-GAM as a function of (a) inverse aspect ratio ϵ, (b) safety factor q, and (c) temperature ratio
of electrons to ions τ e. All parameters are fixed as ϵ= 0.1, q= 3, τe = 1, and Q̂⊥c = 0, except for the one being used as a variable.
Empirical equation (14) derived for Q̂Th

∥out is also plotted by red curves.

different values of each scanning variable. From the q scan (see
middle column of figure 3), we observe that the frequency of
the Q-GAM decreases with increasing q. On the other hand,
the growth rate may either increase or decrease depending on
its sign; it particularly decreases when it is positive. It is also
noteworthy that the sign of the growth rate changes at the same
source intensity value. These observations suggest that the Q-
GAM is more likely excited in the core region rather than
the edge one if the injected source intensity exceeds a certain
threshold. From the τ e scan (see right column of figure 3), it
is evident that the frequency generally decreases with increas-
ing τ e, while remaining relatively constant with respect to the
source intensity. However, when τ e has a very low value (see
green dotted line in figure 3(c)), the frequency does not remain
constant but decreases regarding the source intensity. In the
case of growth rate, it decreases with increasing τ e, and it
appears that the threshold of the Q-GAM increases, unlike the
results shown with the q scan.

As shownwith parametric scans on theQ-GAMgrowth rate
(see bottom row of figure 3), there exists a certain amount
of the heat source intensity at which the growth rate shifts
from negative to positive. This critical value of the outboard
heat source intensity, which changes the sign of the Q-GAM
growth rate, is defined as the Q-GAM threshold and denoted
by Q̂Th

∥out. Parametric scans for Q̂Th
∥out are conducted and shown

in figure 4. First, Q̂Th
∥out appears to be linearly proportional

to ϵ, as shown in figure 4(a). Again, this linear relation ori-
ginates from the fact that source intensity is divided by ϵ in
the gyrokinetic dispersion relation. In other words, Q̂Th

∥out/ϵ
remains constant for fixed values of q and τ e, thus ϵ has noth-
ing to do with the physics of the Q-GAM threshold. Next, in
the q scan shown in figure 4(b), Q̂Th

∥out seems almost unchanged
by q. It is useful to remind that, in the case of GAM driven by
the inboard particle source injection, the threshold follows a
proportional relation ŜThin ∝ exp

(
−q2τe

)
[6]. It is because the

Landau resonance around q= 1 surface (ω = v∥/R0) matches
well with the frequency range of the GAM (ωG ∼ vT/R0). So,
it significantly damps the GAM around q= 1 surface, and

the Landau damping rate is exponentially attenuated when
it crosses the resonance surface. However, in the case of Q-
GAM, it has no chance of meeting this condition because
its frequency range lies around half of the GAM (ωQ-GAM ∼
(0.5)vT/R0). Nevertheless, including the FOW effects, which
are neglected in this study, could lead to additional damping
of the Q-GAM arising from the q= 2 surface (ω = v∥/(2R0)).
In such a case, the FOW effects would likely cause more
enhanced damping of the Q-GAM compared to the original
GAM, given its lower frequency range. For an accurate predic-
tion of the Q-GAM source threshold, the FOW effects should
be considered. Lastly, in the τ e scan shown in figure 4(c), it
is found that Q̂Th

∥out has a proportional relation with
√
τe. From

the numerical results, we can derive an empirical expression
for Q̂Th

∥out, which is given by

Q̂Th
∥out = 2.45ϵ

√
τe+ 1.16, (14)

whose results are also plotted with red curves in figure 4.
In the case of SSU driven by outboard particle source injec-
tion, the threshold is analytically derived as ŜThout = ϵ

√
π/2 (see

equation (28) in [6]). Unlike the particle source threshold,
which exhibits a simple linear proportional relation with ϵ,
it exhibits additional τ e dependency. This additional depend-
ency suggests that moment effects, rather than other kinetic
effects, are responsible for the observed variation. The neg-
lected FOW effects, which could enhance the damping of the
Q-GAM through q and τ e, further support this interpretation.

At this point, let us estimate Q̂∥out, considering the bal-
looning structure of the turbulent transport. Assuming there
are no external heat sources and parallel energy accumu-
lates soley from the divergence of turbulent radial heat
flux, the parallel heat source can be expressed as Q∥,Turb =
−(1/r)∂(rqTurb)/∂r, where qTurb =−χTurb(r,θ)(dp0/dr) rep-
resents the turbulent radial heat flux with the turbulent thermal
diffusivity χTurb. By substituting qTurb into Q∥,Turb, it can be
rewritten as

7
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Figure 5. Frequency ratio of Q-GAM to GAM at source threshold as a function of (a) inverse aspect ratio ϵ, (b) safety factor q, and (c)
temperature ratio of electrons to ions τ e. All parameters are fixed as ϵ= 0.1, q= 3, τe = 1, and Q̂⊥c = 0, except for the one being used as a
variable.

Q∥,Turb =
χTurb

r
dp0
dr

+
∂χTurb

∂r
dp0
dr

+χTurb
d2p0
dr2

. (15)

Assuming d2p0/dr2 = 0 and ŝχ = (r/χTurb)(∂χTurb/∂r)≫
1, equation (15) reduces to Q∥,Turb = (∂χTurb/∂r)(dp0/dr).
Next, we make an assumption on the thermal diffusivity as
χTurb(r,θ) = χ̂GBχ̂r(r)(1+ cosθ)ρ2T(vT/a), where χ̂GB rep-
resents the maximum value of χTurb divided by ρ2T(vT/a) and
χ̂r is the normalized function that represents the radial struc-
ture of χTurb. Note that the factor (1+ cosθ) implies the bal-
looning structure of the turbulent transport. By substituting
χTurb intoQ∥,Turb, dividing by p0ωt, and taking only cosθ com-
ponent, the normalized form of the in-out asymmetric Q∥,Turb
is given by

Q̂∥c,Turb =−q
ϵ
χ̂GB

(ρT
a

)2(∂χ̂r
∂ρ

)(
a
Lp0

)
, (16)

where L−1
p0 =−(dlnp0/dr) represents the equilibrium pres-

sure scale length and ρ= r/a is the normalized radius
of a given flux-surface. One can readily recognize that
equation (16) is related to Q̂∥out in this paper. Considering
strong turbulent diffusion with steep negative gradi-
ents for both p0 and χ̂r, we use following parameters:
q= 3, ϵ= 0.1, χ̂GB = 7, ρT/a= 8 · 10−3, ∂χ̂r/∂ρ=−5,
and a/Lp0 = 6. With these parameters, we obtain Q̂∥c,Turb ≃
0.4, closely matching the source threshold of Q-GAM (see
figure 4).

Lastly, the frequency ratio of Q-GAM to GAM, measured
at the Q-GAM source threshold, is shown in figure 5. From
the ϵ scan shown in figure 5(a), it appears that ϵ does not
affect the frequency of Q-GAM. From the q scan shown in
figure 5(b), it is shown that the frequency ratio decreases from
around 0.6 to 0.3 as q increases from 1 to 3. In the τ e scan
shown in figure 5(c), the ratio also decreases from around 0.4
to 0.2 as τ e increases from 0.5 to 5.0, but this decrease is
more gradual compared to that observed in the q scan. It can
be concluded that, at the source threshold, the frequency of
Q-GAM significantly decreases by q and relatively weakly by

τ e, lying in the frequency range of 0.2ωG < ω < 0.6ωG within
the parameter range of 1< q< 3 and 0.5< τe < 5.0.

5. Similarity between Q-GAM and EGAM

In this section, we compare the characteristics of Q-GAMwith
EGAM to identify the physical mechanisms underlying their
similar destabilization patterns. Let us first compare the equi-
librium distribution functions of these twomodes. Figures 6(a)
and (b) illustrate equilibrium distribution functions for the Q-
GAM and EGAM cases, respectively. For the Q-GAM case,
m= 0 and sinθ components ofF0 stands forFM and F̃, respect-
ively. Equation (9) is used for F̃ with the fixed parameters of
q̃Eq∥ /(p0vT) = sinθ and q̃Eq⊥ /(p0vT) = 0 (Q̂∥c = 1 and Q̂⊥c = 0
in terms of the heat sources). For the EGAM case, thermal and
fast particle components are represented by Ft and Ff+ +Ff−,
respectively, as defined in equation (A.13), with fixed para-
meters of nf/n0 = 0.4, τf = 1, and û∥ = 3 (see appendix A.3
for definitions). Both cases feature tails in their equilibrium
distribution functions; however, the tail of Q-GAM arises
from the poloidally inhomogeneous part and satisfies F̃(v∥) =
−F̃(−v∥), whereas the tail of EGAM results from the fast
particle contribution and satisfies F+

f (v∥) = F+
f (−v∥), where

F+
f = Ff+ +Ff−.
Destabilizing terms for the Q-GAM and EGAM arise from

these tails. For the case of Q-GAM, the E×B convection,
resulting from the particles retaining the poloidally asymmet-
ric heat flows, work as the destabilization term. By consid-
ering only the cosθ component of the parallel heat source in
equation (10), the normalized form of the E×B convection
term is given by

ĈE×B
(
θ, v̂∥

)
=

−vE ·∇F̃(
−2vEθ
R0

)
n0
(

m
2πT

)3/2
= cosθ

 v̂∥
(
v̂2∥ − 3

)
3

F̂M

( Q̂∥c

ϵ

)
, (17)
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Figure 6. Equilibrium distribution functions for the (a) Q-GAM and (b) EGAM cases. For the Q-GAM case, m= 0 and sinθ components
are plotted by blue dotted and red dashed curves, respectively. For the EGAM case, thermal and fast parts are plotted by blue dotted and red
dashed curves, respectively. Total equilibrium distribution functions are plotted by black solid curves for both cases.

where vEθ = ikrϕkr0/B is the poloidal E×B drift and F̂M =

FM/(n0
√

m
2πT

3
). On the other hand, the corresponding

destabilizing term for the EGAM originates from the accel-
eration of energetic particles due to the radial magnetic drift
in the potential. Its normalized form is given by

ÂDr

(
θ, v̂∥

)
=

e(vDr ·∇ϕ)
∂Ff
∂E(

−2vEθ
R0

)
n0
(

m
2πTt

)3/2
= sinθ

1

2τ 5/2f

(
v̂2∥ +

v̂2⊥
2

)[
F̂+
f −

u∥
v∥
F̂−
f

](
nf
n0

)
,

(18)

where F̂±
f = (Ff+ ±Ff−)/(

nf
2

√
m

2πTf

3
). Next, we check

how these terms satisfy the GAM symmetry property,
given by δ̂fkr,m(v∥) = (−1)mδ̂fkr,−m(−v∥) with m= 1. The

E×B convection term for Q-GAM satisfies ĈE×B(θ) =
ĈE×B(−θ) and ĈE×B(v̂∥) =−ĈE×B(−v̂∥), while the accel-

eration term for EGAM satisfies ÂDr(θ) =−ÂDr(−θ)
and ÂDr(v̂∥) = ÂDr(−v̂∥), respectively. These relations
demonstrate that they have opposite even/odd relations
in both poloidal angle and parallel velocity. However, as
a result of these coupled reversed relations, each term
satisfies ÂDr(θ, v̂∥) =−ÂDr(−θ,−v̂∥) and ĈE×B(θ, v̂∥) =

−ĈE×B(−θ,−v̂∥), respectively. This means that, despite hav-
ing different structure along the poloidal angle and parallel
velocity, both terms satisfy the original GAM symmetry con-
dition, allowing them to contribute to the dynamics.

As mentioned in section 3, the Q-GAM and EGAM share
several phenomenological similarities: (1) both modes origin-
ate from one of many strongly damped Landau poles, and
(2) both modes are excited around half the GAM frequency.
For a clearer comparison, contour plots of |D(ω̂)|−1 (D(ω̂):
dispersion relation) for Q-GAM and EGAM are shown in
figure 7 with various source intensities of Q̂∥out and nf/n0,
respectively. In the Q-GAM case, D(ω̂) is defined as the
left-hand side of the dispersion relation (6), together with

equations (7) and (13), and the same parameters shown in
figure 2 are used except for Q̂∥out. On the other hand, in the
case of EGAM, we use the left-hand side of EGAM dis-
persion relation (9) in [18] for D(ω̂), using following para-
meters: q= 3, û∥ = 3, τe = 1, and τf = 1. In figures 7(a) and
(b), Landau poles corresponding to Q-GAM and EGAM are
denoted by green and yellow circles and their root loci are also
plotted by curves with the same color. If there is no instabil-
ity source (Q̂∥out for Q-GAM and nf/n0 for EGAM), both
poles of the Q-GAM and EGAM lie far below the real axis.
However, once the instability term is added, both the Q-GAM
and EGAM are rapidly destabilized with increasing Q̂∥out and
nf/n0, crossing the real axis at Q̂∥out = 0.36 and nf/n0 = 0.044,
respectively. At these thresholds, the Q-GAM is excited at a
slightly lower frequency than half that of the GAM, while the
EGAM is driven at a slightly higher frequency (see middle
column of figure 7). After both modes are excited, the growth
rate of Q-GAM continues to increase with Q̂∥out, while the
frequency is maintained. On the other hand, in the case of
EGAM, the increase of growth rate becomes slow, and the fre-
quency starts to decrease as nf/n0 increases (see right column
of figure 7).

Figure 8 is useful for explaining why Q-GAM and EGAM
share similar characteristics. It shows each real component of
a rearranged gyrokinetic dispersion relation, which is given by

− 1
q2

=
Rp̂∥s (ω̂)

ω̂
+
Rp̂⊥s (ω̂)

ω̂
+ ⟨ω̂Dv∂̂E F̂0⟩v̂

Rn̂s (ω̂)
ω̂

, (19)

on a real axis of ω̂. Here, Rn̂s , Rp̂∥s , and Rp̂⊥s represent the
response functions of the sinθ components of perturbed dens-
ity, parallel pressure, and perpendicular pressure to the m= 0
electric potential, respectively. The term ⟨ω̂Dv∂̂E F̂0⟩v̂ denotes
the magnetic drift contribution in a rate change of the back-
ground distribution, where ⟨·⟩=

´
d3v(·)/(2πT/m)3/2 means

the velocity integral. The response functions and ⟨ω̂Dv∂̂E F̂0⟩v̂
for the GAM, Q-GAM, and EGAM cases are derived with
exact definitions in appendix A and their corresponding

9
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Figure 7. Contour plots of |D(ω̂)|−1 for the (a) Q-GAM dispersion relation with various intensities of Q̂∥out and (b) EGAM dispersion
relation with various values of nf/n0 on the complex plane. In the Q-GAM case, Q̂∥out = 0 (left), 0.36 (middle), and 0.7 (right) are used,
while other parameters are fixed as ϵ= 0.1, q= 3, τe = 1, and Q̂⊥c = 0. In EGAM case, nf/n0 = 0 (left), 0.044 (middle), and 0.158 (right)
are used, while other parameters are fixed as q= 3, û∥ = 3τe = 1, and τf = 1. The frequency of GAM and half of it are plotted by solid and
dashed red vertical lines, respectively.

Figure 8. Real components of the rearranged gyrokinetic dispersion relation (19) on the real axis for the (a) GAM, (b) Q-GAM, and (c)
EGAM cases. Right-hand sided components (Rp̂⊥s

+ ⟨ω̂Dv∂̂E F̂0⟩v̂Rn̂s)/ω̂, Rp̂∥s/ω̂, and their sum are plotted by blue, red, and black curves,

respectively, while the left-hand side,−1/q2, is plotted by black dashed lines. Parameters are fixed as q= 3 and τe = 1 in the standard GAM
case, while the same parameters used in middle figures of figures 7(a) and (b) are used in the case of Q-GAM and EGAM, respectively. The
crossing points between the black curves and dashed lines are denoted by blue (GAM), green (Q-GAM), and yellow (EGAM) stars,
respectively.

equation numbers are summarized in table A1. In the standard
GAMcase shown in figure 8(a), the crossing point between the
black curve (right-hand side of equation (19)) and the dashed
line (left-hand side of equation (19)) is denoted by a blue star,
indicating the typical GAM frequency. For the Q-GAM and
EGAM cases, we used threshold source intensity Q̂∥c = 0.36
and nf/n0 = 0.044 (same values used in the middle column of
figure 7), respectively, so that the dispersion relation could be
satisfied on the real axis. As shown with gray shaded areas in
figures 8(b) and (c), the humps of red solid curves by Rp̂∥s/ω̂
raise the black curves (right-hand side of equation (19)), while
the blue curves by (Rp̂⊥s + ⟨ω̂Dv∂̂E F̂0⟩v̂Rn̂s)/ω̂ lower them.

This results in mode solutions around ω/ωG ∼ 0.4 for the Q-
GAM (see green star in figure 8(b)) and ω/ωG ∼ 0.6 for the
EGAM (see yellow star in figure 8(c)), respectively. It is found
that the hump in Rp̂∥s/ω̂ for the Q-GAM primarily results from

the term − i
ω̂ ⟨

v̂2∥
v̂∥−ω̂ ĈE×B,c⟩v̂, while for the E-GAM, it arises

from the term 1
ω̂ ⟨

v̂2∥
v̂∥−ω̂ ÂDr,s⟩v̂, as illustrated by the red dashed

curves in figures 8(b) and (c), respectively. Here, the sub-
scripts c and s on ÂDr,s and ĈE×B,c denote their sinθ and cosθ
components, respectively. It can be concluded that the phe-
nomenological similarities between the Q-GAM and EGAM
stem from the coincidentally analogous shapes of their main
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destabilizing termswithin their respective dispersion relations,
despite their differing physical mechanisms and opposite sym-
metry conditions along the poloidal angle and parallel velocity.

6. Conclusions and discussions

In this study, we investigate the perturbations in tokamak plas-
mas caused by a poloidally inhomogeneous heat source. The
gyrokinetic dispersion relation is derived under the assump-
tion that an equilibrium heat flow is generated to prevent local
energy accumulation along the poloidal direction. The pol-
oidal structure of heat flow, coupled with the E×B flow,
contributes to the convection and plays a crucial role as an
instability source. The gyrokinetic dispersion relation (6) is
derived with equations (7) and (13), which contains the effects
of the poloidally inhomogeneous heat source. The disper-
sion relation is numerically solved, considering both outboard
and inboard heat source injections. In the case of outboard
source injection, as shown in figure 2(a), we have discovered
the destabilization of a geodesic-like mode with a frequency
approximately half that of the standard GAM. This newmode,
driven by outboard heat source injection, is referred to as Q-
GAM. Conversely, with inboard source injection, as shown in
figure 2(b), both the SSU and GAM are driven. Previous stud-
ies have shown that zonal flows can be also driven and equilib-
rium toroidal rotation flow [23, 24] or turbulent heat flux [25],
with modifications in the frequency of zonal flows and GAM
by the toroidal rotation [23, 24]. However, the primary dis-
tinction between the Q-GAM identified in this study and zonal
flows investigated in [23–25] lies in the poloidal inhomogen-
eity of the background flows or fluxes.

To further investigate the Q-GAM, we conducted paramet-
ric scans of its real frequency and growth rate, as shown in
figure 3. The results reveal that the heat source has a minimal
impact on the frequency of Q-GAM when scanning paramet-
ers such as ϵ, q, and τ e. Instead, it primarily contributes to the
destabilization of the Q-GAM, exhibiting nonlinear behavior
in the growth rate concerning q and τ e. In particular, the q scan
suggests that the Q-GAM could be more likely excited in the
core region rather than edge one if the source intensity is suf-
ficiently higher than the threshold. Since the Q-GAM origin-
ates from a heavily damped Landau pole, a specific threshold
of heat source intensity, denoted by Q̂Th

∥out, is required for its

excitation. We conducted parametric scans of Q̂Th
∥out as shown

in figure 4, and derived an empirical equation (14) for Q̂Th
∥out. It

appears that the Q-GAM threshold has no dependence on ϵ and
q, while a proportional relation with

√
τe is observed, believed

to originate from moment effects. We made a simple estima-
tion of Q̂∥,Turb considering the ballooning structure of the tur-
bulent transport. In scenarios with strong turbulent transport
exhibiting steep negative gradients in p0 and χ̂r, the predicted
value turns out to be comparable to Q̂Th

∥out, suggesting a pos-
sible destabilization of the Q-GAM.

The Q-GAM and EGAM share some phenomenological
similarities, as shown in figure 7. To identify the reason for
these similarities, the velocity structures of the equilibrium
distribution functions are compared for both Q-GAM and

EGAM cases, as shown in figure 6. For both cases, equilib-
rium distribution function exhibits a bump-on-tail-like struc-
ture. However, the detailed velocity structure of the EGAM is
quite different from that of the Q-GAM, leading to the absence
of channelling property in the Q-GAM [26, 27]. The main
destabilizing terms for each mode are also identified as fol-
lows: for the Q-GAM, it is the E×B convection due to pol-
oidal asymmetry in the parallel equilibrium heat flow, denoted
by ĈE×B, and for the EGAM, it is the radial magnetic drift con-
tribution to the acceleration of energetic particles, denoted by
ÂDr . These terms exhibit opposite even/odd relations regard-
ing both parallel velocity and poloidal angle, as shown in
equations (17) and (18). However, thanks to these coupled
reversed relations, they both satisfy the GAM symmetry prop-
erty and contribute to theGAMdynamics. The gyrokinetic dis-
persion relation is reformulated as equation (19) with newly
defined response functions. It turns out that the bump-like
shapes in Rp̂∥s , mainly resulting from ĈE×B for the Q-GAM

and ÂDr for the EGAM, primarily contribute to the mode
solutions for each mode, as shown by the gray shaded areas
in figures 8(b) and (c), respectively. Consequently, the phe-
nomenological similarities between the Q-GAM and EGAM
originate from the similar shapes of Rp̂∥s , within their cor-
responding dispersion relations, despite their distinct driving
mechanisms and opposing symmetry properties of their main
destabilizing terms.

To verify and validate this new mode, additional exper-
imental and numerical studies may be necessary. Since the
main source of the Q-GAM is the heat source injection on the
outboard side, the radial structure of the Q-GAM can be mod-
ulated by adjusting the configuration and intensity of the heat
source. A central assumption in this study is the generation of
equilibrium parallel heat flow to maintain a balance with the
heat source, which requires further investigation through more
self-consistent global dynamic simulations. Furthermore, the
Q-GAM could potentially contribute to the turbulence regula-
tion through the dynamic shearing of turbulence eddies, akin
to the role played by the GAM [28, 29]. Given that the poloid-
ally inhomogeneous radial heat flux, resulting from the bal-
looning structure of the turbulent transport, could destabilize
the Q-GAM, ensuring the self-consistency in how the Q-GAM
is driven by the turbulence and its role in the turbulence reg-
ulation may be crucial. For the EGAM, previous reports [30,
31] have highlighted its complex nonlinear global dynamics
when coupled with the turbulence. Consequently, it is desir-
able to conduct long-time simulations using a global, full-F
gyrokinetic code to comprehensively investigate the impact of
this new mode on the turbulence.
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Appendix A. Derivation of response functions

In this appendix, response functions Rn̂s , Rp̂∥s , Rp̂⊥s , and

⟨ω̂Dv∂̂E F̂0⟩v̂, shown in the reformulated gyrokinetic dispersion
relation (19), are derived for the cases of GAM, Q-GAM, and
EGAM, respectively. Each response function is defined as

Rn̂s =
τen̂s

(krρTq) ϕ̂0

, Rp̂∥s =
p̂∥s/2

(krρTq) ϕ̂0

, Rp̂⊥s =
p̂⊥s/2

(krρTq) ϕ̂0

.

(A.1)
Here, normalized quantities are used as[

n̂s, p̂∥s, p̂⊥s, ϕ̂0

]
=

[
δns
n0

,
δp∥s
p0

,
δp⊥s

p0
,
eϕ0

Ti

]
. (A.2)

They represent the response of sinθ component of perturbed
density δn, parallel pressure δp∥, and perpendicular pressure
δp⊥, respectively, where each perturbed fluid variables is
defined by

[
δn, δp∥, δp⊥

]
=

ˆ
d3v δf

[
1, mv2∥,

1
2
mv2⊥

]
. (A.3)

In following paragraphs, response functions will be derived for
the cases of GAM, Q-GAM, and EGAM, respectively. They
have share the same derivation process. First, perturbed dis-
tribution function for m=±1 will be given for each case.
Next, response functions of δns, δp∥s, and δp⊥s are derived
by taking velocity moments of 1, mv2∥, and (mv

2
⊥)/2, respect-

ively. Thorough this appendix, perturbed and Maxwellian dis-
tribution functions are normalized by n0( m

2πT )
3/2 and denoted

by F̂M and δ̂f, respectively, and the velocity structure of nor-
malized drift frequency and radial displacement of passing
ions are denoted as ω̂Dv = v̂2∥ + v̂2⊥/2 and δ̂v = v̂∥ + v̂2⊥/(2v̂∥),
respectively, for simple representation. For the velocity integ-
ral, ⟨·⟩v̂ is defined as

´
d3v(·)/(2πT/m)3/2. Equation numbers

for response functions, ⟨ω̂Dv∂̂E F̂0⟩v̂, and the main instability
terms for the GAM, Q-GAM and EGAM cases are summar-
ized in table A1 as shown below.

Table A1. Table of equations: response functions and ⟨ω̂Dv∂̂E F̂0⟩v̂
for the GAM, Q-GAM, and EGAM cases.

GAM [10] Q-GAM EGAM [17, 18]

δ̂f±1 (A.4) (A.8) (A.15)
Rn̂s (A.5) (A.9) (A.16)
Rp̂∥s (A.6) (A.10) (A.17)
Rp̂⊥s

(A.7) (A.11) (A.18)
⟨ω̂Dv∂̂E F̂0⟩v̂ 1 1 (A.20)
Main
instability term

— (A.12) (A.19)

A.1. Standard GAM case

The original derivation of the GAM dispersion relation is
given by [10]. Using equation (2.6) from [10], the normalized
perturbed ion distribution function for m=±1 components,
neglecting the FOW effects, is given by

δ̂f±1 (ω̂) =−F̂M
v̂∥

v̂∥ ∓ ω̂

[
ϕ̂±1 (ω̂)+ i

(
krρTq
2

)
δ̂vϕ̂0 (ω̂)

]
.

(A.4)

Then, by taking velocity moments 1, mv2∥, and
1
2mv

2
⊥ on

equation (A.4), response functions for each perturbed fluid
variables are derived as

Rn̂s =

[〈
F̂M

v̂∥δ̂v
v̂∥ − ω̂

〉
v̂

]/[
τ−1
e +

〈
F̂M

v̂∥
v̂∥ − ω̂

〉
v̂

]

=

[
Z (ω̂)

(
ω̂2 +

1
2

)
+ ω̂

]/[
τ−1
e + 1+ ω̂Z (ω̂)

]
, (A.5)

Rp̂∥s =

〈
F̂M

v̂3∥δ̂v

v̂∥ − ω̂

〉
v̂

−Rn̂s

〈
F̂M

v̂3∥
v̂∥ − ω̂

〉
v̂

= Z (ω̂)

(
ω̂4 +

1
2
ω̂2

)
+
(
ω̂3 + ω̂

)
−Rn̂s

[
ω̂3Z (ω̂)+

(
ω̂2 +

1
2

)]
, (A.6)

Rp̂⊥s =
1
2

[〈
F̂M

v̂∥v̂2⊥δ̂v
v̂∥ − ω̂

〉
v̂

−Rn̂s

〈
F̂M

v̂∥v̂2⊥
v̂∥ − ω̂

〉
v̂

]

=
1
2

[
Z (ω̂)

(
ω̂2 + 1

)
+ ω̂−Rn̂s {1+ ω̂Z (ω̂)}

]
. (A.7)

The term ⟨ω̂Dv∂̂E F̂0⟩v̂ simplifies to 1 when F0 is assumed to
have a Maxwell distribution, as in the case of GAM.

A.2. Q-GAM case

The perturbed ion distribution function for m=±1 compon-
ents in the case of Q-GAM is already given by equation (12).
Following the normalization rules in this appendix, perturbed
distribution function is rewritten as

δ̂f±1 (ω̂) =−F̂M
v̂∥

v̂∥ ∓ ω̂

[
ϕ̂±1 (ω̂)+ i

(
kraiq
2

)

×

δ̂v ∓ i

(
2v̂2∥ − 3

)
3

Q̂∥c

ϵ
∓ 2i

(
v̂2⊥ − 1

) Q̂⊥c

ϵ

 ϕ̂0 (ω̂)

 .

(A.8)

By taking velocity moments of equation (A.8), the response
functions are derived as

12
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Rn̂s =

⟨F̂M
v̂∥δ̂v
v̂∥ − ω̂

⟩
v̂

−
i
3

⟨
F̂M

v̂∥
(
2v̂2∥ − 3

)
v̂∥ − ω̂

⟩
v̂

Q̂∥c

ϵ

−2i

⟨
F̂M

v̂∥
(
v̂2⊥ − 1

)
v̂∥ − ω̂

⟩
v̂

Q̂⊥c

ϵ

]/[
τ−1
e +

⟨
F̂M

v̂∥
v̂∥ − ω̂

⟩
v̂

]

=

[
Z (ω̂)

(
ω̂2 +

1
2

)
+ ω̂−

i
3

{
Z (ω̂)

(
2ω̂3 − 3ω̂

)
+2
(
ω̂2 − 1

)} Q̂∥c

ϵ

]/[
τ−1
e + 1+ ω̂Z (ω̂)

]
, (A.9)

Rp̂∥s =

⟨
F̂M

v̂3∥δ̂v

v̂∥ − ω̂

⟩
v̂

−
i
3

⟨
F̂M

v̂3∥

(
2v̂2∥ − 3

)
v̂∥ − ω̂

⟩
v̂

Q̂∥c

ϵ

− 2i

⟨
F̂M

v̂3∥
(
v̂2⊥ − 1

)
v̂∥ − ω̂

⟩
v̂

Q̂⊥c

ϵ
−Rn̂s

⟨
F̂M

v̂3∥
v̂∥ − ω̂

⟩
v̂

= Z (ω̂)

(
ω̂4 +

1
2
ω̂2

)
+
(
ω̂3 + ω̂

)
−
i
3

{
Z (ω̂)

(
2ω̂5 − 3ω̂3

)
+2
(
ω̂4 + ω̂2

)} Q̂∥c

ϵ
−Rn̂s

[
ω̂3Z (ω̂)+

(
ω̂2 +

1
2

)]
, (A.10)

Rp̂⊥s
=
1
2

⟨F̂M
v̂∥v̂

2
⊥δ̂v

v̂∥ − ω̂

⟩
v̂

− i

3

⟨
F̂M

v̂∥v̂
2
⊥

(
2v̂2∥ − 3

)
v̂∥ − ω̂

⟩
v̂

Q̂∥c

ϵ

−2i

⟨
F̂M

v̂∥v̂
2
⊥
(
v̂2⊥ − 1

)
v̂∥ − ω̂

⟩
v̂

Q̂⊥c

ϵ
−Rn̂s

⟨
F̂M

v̂3∥
v̂∥ − ω̂

⟩
v̂

]

=
1
2

[
Z (ω̂)

(
ω̂2 + 1

)
+ ω̂− i

3

{
Z (ω̂)

(
2ω̂3 − 3ω̂3

)
+2
(
ω̂2 − 1

)} Q̂∥c

ϵ
− 2i{1+ ω̂Z (ω̂)} Q̂⊥c

ϵ

−Rn̂s {1+ ω̂Z (ω̂)}] . (A.11)

Among the terms of the parallel pressure response function,
we found that the E×B convection term, given by

−i

〈
v̂2∥

v̂∥ − ω̂
ĈE×B,c

〉
v̂

=− i
3

〈
F̂M

v̂3∥

(
2v̂2∥ − 3

)
v̂∥ − ω̂

〉
v̂

Q̂∥c

ϵ

=− i
3

[
Z (ω̂)

(
2ω̂5 − 3ω̂3

)
+2
(
ω̂4 + ω̂2

)] Q̂∥c

ϵ
(A.12)

in equation (A.10), serves as the main instability source for
Q-GAM. The impact of this term on Q-GAM is well shown
in figure 8(b). For the term ⟨ω̂Dv∂̂E F̂0⟩v̂, only the Maxwellian
part of F0 is considered and it simplifies to 1. This is because F̃
can contribute to the Q-GAM dispersion relation only through
the E×B convection, due to its poloidal structure.

A.3. EGAM case

For the derivation of response functions for EGAM, we fol-
low the approach of [17, 18], assuming the same species for
fast ions and thermal ions. They derive an EGAM dispersion

relation using the gyrokinetic equation, by adequately assum-
ing the equilibrium distribution function as

F0 = Ft+Ff+ +Ff− (A.13)

with

Ft = nt

(
m

2πTt

)3/2

exp

[
− E
Tt

]
,

Ff+ =
nf
2

(
m

2πTtτf

)3/2

exp

[
−
m
(
v∥ − u∥

)2
+mv2⊥

2Ttτf

]
,

Ff− =
nf
2

(
m

2πTtτf

)3/2

exp

[
−
m
(
v∥ + u∥

)2
+mv2⊥

2Ttτf

]
,

where subscripts t and f stands for thermal and fast particles,
and subscripts + and − next to f means positive and neg-
ative shifted part of the fast particle distribution in parallel
velocity. Here, τf = Tf/Tt represents temperature ratio of fast
particles to thermal ones and u∥ stands for parallel velocity
shift in the fast particle distribution, determining the location
of the hump in the fast particle distribution. The equilibrium
density n0 satisfies n0 = nt+ nf. Afterwards, we use following
normalizations:

[
û∥, û∥f, v̂∥f, v̂⊥f, ω̂f

]
=

[
u∥
vTt

,
u∥
vTf

,
v∥
vTf

v⊥
vTf

qR0ω

vTf

]
,

[
⟨·⟩̂vf , δ̂vf , ω̂Dv

]
=

[ ´
d3v(·)(

2πTf/m
)3/2 ,

(
v̂∥f +

v̂2⊥f

2v̂∥f

)
,

(
v̂2∥f +

v̂2⊥f

2

)]
,

[
ft, ff, F̂t, F̂f+, F̂f−

]
=

 nt
n0

,
nf
n0

,
Ft

nt
(

m
2π Tt

)3/2 , Ff+
nf
2

(
m

2π Ttτf

)3/2 ,
Ff−

nf
2

(
m

2π Ttτf

)3/2
 . (A.14)

Here, [vTt ,vTf ] =
√
2[Tf,Tt]/m represent thermal velocities of

thermal and fast ions, respectively. The perturbed ion distribu-
tion function for EGAM can be analytically derived using the
same approach as in [10]. The only difference lies in the fast
particle contribution in F0, which is modeled by double shif-
ted Maxwellian distribution function. By utilizing the Fourier-
Laplace transform and neglecting the FOW effects, the per-
turbed ion distribution function for m=±1 components is
given by

δ̂fkr±1 (ω̂) =−

[
ftF̂t+

ff

2τ 3/2f

∂̂E F̂
+
f

]
v̂∥

v̂∥ ∓ ω̂

×
[
ϕ̂±1 (ω̂)+ i

(
krρTq
2

)
δ̂vϕ̂0 (ω̂)

]
, (A.15)

where F̂±
f = F̂f+ ± F̂f− and ∂̂E =−Tt(∂/∂E) are newly

defined for simple representation. Here, also note that the
kinetic energy derivative of the fast particle distribution
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is calculated as ∂̂E F̂
+
f =

[
F̂+
f −

(
û∥f/v̂∥f

)
F̂−
f

]
/τf. By taking

velocity moments of equation (A.15), the response functions
are obtained as

Rn̂s =

ft⟨F̂t v̂∥δ̂v
v̂∥ − ω̂

⟩
v̂

+
ff
√
τf

2

⟨
∂̂E F̂

+
f

v̂∥fδ̂vf
v̂∥f− ω̂f

⟩
v̂f

/

×

[
τ−1
e + ft

⟨
F̂t

v̂∥
v̂∥ − ω̂

⟩
v̂

+
ff
2

⟨
∂̂E F̂

+
f

v̂∥f
v̂∥f− ω̂f

⟩
v̂f

]

=

[
ft

{
Z (ω̂)

(
ω̂2 +

1
2

)
+ ω̂

}
+

ff
2
√
τf

{
Zf

×
(
ω̂f, û∥f

)(
ω̂2
f +

1
2

)
+ 2ω̂f−

û∥f
ω̂f

Z
(
û∥f
)}]/

×
[
τ−1
e + ft {1+ ω̂Z (ω̂)}+ ff

2τf

{
2+ ω̂fZf

(
ω̂f, û∥f

)}]
,

(A.16)

Rp̂∥s = ft

⟨
F̂t

v̂3∥δ̂v

v̂∥ − ω̂

⟩
v̂

+
ffτ

3/2
f

2

⟨
∂̂E F̂

+
f

v̂3∥fδ̂vf
v̂∥f− ω̂f

⟩
v̂f

−Rn̂s

ft⟨F̂t v̂3∥
v̂∥ − ω̂

⟩
v̂

+
ffτf
2

⟨
∂̂E F̂

+
f

v̂3∥f
v̂∥f− ω̂f

⟩
v̂f


=

[
ft

{
Z (ω̂)

(
ω̂4 +

ω̂2

2

)
+
(
ω̂3 + ω̂

)}
+
ff
√
τf

2

{
Zf
(
ω̂f, û∥f

)(
ω̂4
f +

ω̂2
f

2

)
+ 2
(
ω̂3
f + ω̂f

)}]

− Rn̂s

[
ft

{
ω̂3Z (ω̂)+

(
ω̂2 +

1
2

)}
+
ff
2

{
ω̂3
f Zf
(
ω̂f, û∥f

)
+
(
2ω̂2

f + 1
)}]

, (A.17)

Rp̂⊥s
=

1
2

ft⟨F̂t v̂∥v̂2⊥δ̂v

v̂∥ − ω̂

⟩
v̂

+
ffτ

3/2
f

2

⟨
∂̂E F̂

+
f

v̂∥fv̂2⊥fδ̂vf

v̂∥f − ω̂f

⟩
v̂f


−
Rn̂s
2

ft⟨F̂t v̂∥v̂2⊥
v̂∥ − ω̂

⟩
v̂

+
ffτf
2

⟨
∂̂E F̂

+
f

v̂∥fv̂2⊥f

v̂∥f − ω̂f

⟩
v̂f


=

1
2

[
ft
{
Z (ω̂)

(
ω̂2 + 1

)
+ ω̂
}
+
ff
√
τf

2

{
Zf
(
ω̂f, û∥f

)(
ω̂2
f + 1

)
+2ω̂f −

2û∥f
ω̂f

Z
(
û∥f
)}]

−
Rn̂s
2

[
ft {1+ ω̂Z (ω̂)}+

ff
2

{
2+ ω̂fZf

(
ω̂f, û∥f

)}]
(A.18)

with

Zf
(
ω̂f, û∥f

)
= Z

(
ω̂f− û∥f

)(
1−

û∥f
ω̂f

)
+Z

(
ω̂f+ û∥f

)(
1−

û∥f
ω̂f

)
.

The main instability source of EGAM also originates from the
response of perturbed parallel pressure Rp̂∥s , similar to that in
Q-GAM. The corresponding term, stemming from the accel-
eration term if energetic particles, is given by

〈
v̂2∥

v̂∥ − ω̂
ÂDr,s

〉
v̂

=
ffτ

3/2
f

2

〈
∂̂E F̂

+
f

v̂3∥δ̂v

v̂∥ − ω̂

〉
v̂f

=
ff
√
τf

2

{
Zf
(
ω̂f, û∥f

)(
ω̂4
f +

ω̂2
f

2

)
+2
(
ω̂3
f + ω̂f

)}
(A.19)

in equation (A.17). The impact of this term on EGAM is well
shown in figure 8(c). For the term ⟨ω̂Dv∂̂E F̂0⟩v̂, it does not trivi-
ally simplify to 1 as in the case of GAM or Q-GAM due to the
shifted Maxwellian shape of Ff±. Its calculation is given by

⟨ω̂Dv∂̂E F̂0⟩v̂ = ft
〈
ω̂DvF̂t

〉
v̂
+
ff
2

〈
ω̂Dvf

(
F̂+
f −

û∥f
v̂∥f

F̂−
f

)〉
v̂f

= ft+
ff
2

[
2+Z

(
û∥f
)]
. (A.20)

By substituting the response function equations (A.16)–
(A.18), along with equation (A.20) for ⟨ω̂Dv∂̂E F̂0⟩v̂, into refor-
mulated gyrokinetic dispersion relation (19), the EGAM dis-
persion relation is recovered (see equation (9) in [18]).
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