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Abstract
Measurements of ion cyclotron emission (ICE) are planned for magnetically confined fusion
plasmas heated by neutral beam injection (NBI) in the Wendelstein 7-X stellarator (W7-X).
Freshly injected NBI ions in the edge region, whose velocity-space distribution function
approximates a delta-function, are potentially unstable against the magnetoacoustic cyclotron
instability (MCI), which could drive a detectable ICE signal. Prediction of ICE from NBI
protons in W7-X hydrogen plasmas is challenging, owing to the low ratio of the ions’
perpendicular velocity to the local Alfvén speed, v⊥(NBI)/VA ≃ 0.14. We address this from first
principles, using the particle-in-cell kinetic code EPOCH. This self-consistently solves the
Lorentz force equation and Maxwell’s equations for tens of millions of computational ions (both
thermal majority and energetic NBI minority) and electrons, fully resolving gyromotion and
hence capturing the cyclotron resonant phenomenology which gives rise to ICE. Our
simulations predict an ICE signal which is predominantly electrostatic while incorporating a
significant electromagnetic component. Its frequency power spectrum reflects novel MCI
physics, reported here for the first time. The NBI ions relaxing under the MCI first drive
broadband field energy at frequencies a little below the lower hybrid frequency ωLH, across the
wavenumber range kωc/VA = 40–60, where ωc and VA denote ion cyclotron frequency and
Alfvén velocity. Nonlinear coupling between these waves then excites spectrally structured ICE
with narrow peaks, at much lower frequencies, typically the proton cyclotron frequency and its
lower harmonics. The relative strength of these peaks depends on the specifics of the NBI ion
velocity-space distribution and of the local plasma conditions, implying diagnostic potential for
the predicted ICE signal from W7-X.
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1. Introduction

Ion cyclotron emission (ICE) is spontaneously generated
strongly suprathermal radiation peaking spectrally at multiple
harmonics of the cyclotron frequency of an energetic ion pop-
ulation within a plasma. The narrowband character of the ICE
spectral peaks implies that the source is strongly spatially
localised. ICE spectra are widely observed in magnetic con-
finement fusion (MCF) plasmas, and the peak intensities are
usually a few orders of magnitude stronger than the thermal
radiation.

ICE was early observed from fusion-born ion populations
in pure deuterium and DT plasmas in JET [1–4] and TFTR [5,
6], and from neutral beam injected (NBI) ions in TFTR [7].
Since 2017, ICE has been detected and analysed from NBI
and fusion-born ions in the KSTAR [8–10], DIII-D [11–16],
ASDEX-Upgrade [17–21], NSTX-U [22, 23], JT-60U [24–
26], TUMAN-3M [27–29], EAST [30–33] and HL-2A [34,
35] tokamaks, and the LHD heliotron-stellarator [36–41]. The
magnetoacoustic cyclotron instability (MCI) has been identi-
fied as the excitation mechanism for ICE through analytical
studies [6, 7, 42] and simulations [8–10, 12, 38, 39, 43–46].
TheMCI can arise at spatial locations where the velocity space
distribution of an energetic ion population has a positive slope,
∂f

∂v⊥
> 0 for values of v⊥ ≳ VA, in the velocity space. Under

these conditions, waves propagating nearly perpendicular to
the magnetic field are excited on the fast Alfvén-cyclotron har-
monic branch throughwave-particle cyclotron resonance, with
the fast ions transferring some of their energy to the excited
waves. The spatial location of the population inversion can be
inferred by matching the frequency separation between suc-
cessive ICE spectral peaks to the local cyclotron frequency
of the energetic ions, and hence to the local magnetic field
strength and the corresponding radial location. The energetic
ion species whose free energy has been found to drive ICE
through theMCI include fusion born ions [1–3, 5, 8, 10, 14, 24,
25, 47–51], neutral beam injected(NBI) ions [5, 7, 9, 11–14,
19, 24, 38, 48, 49] and ions heated via ion cyclotron resonant
heating [52, 53].

In this paper, we focus on the likely prospects, physics basis
and spectral character for ICE associated with NBI of ener-
getic ions in future Wendelstein 7-X stellarator plasmas. As
noted above, ICE due to NBI ion populations has been previ-
ously detected from several tokamaks and the LHD heliotron-
stellarator. Comparison between ICE spectra from tokamaks
and stellarators sheds light on the relative importance of over-
all magnetic field structure compared to spatially localised
physics. Edge NBI ICE has been simulated in [9, 12, 38,
39] from first principles, using particle-in-cell (PIC) kinetic

codes which solve the Maxwell–Lorentz system of equations
self-consistently for tens of millions of gyro-orbit resolved
particles. We note that simulations [38, 39] for the LHD stel-
larator, unlike those presented here, were hybrid simulations
with fluid electrons and did not fully resolve electron gyro-
dynamics. Here we report the results of PIC simulations using
the EPOCH code [54] with fully gyro-resolved thermal ions,
energetic ions and electrons. We use a locally uniform (slab
geometry) treatment of the plasma physics of ICE emission
in these simulations, as in the numerous previous PIC sim-
ulations for a wide range of MCF plasmas. This local treat-
ment does not incorporate toroidal magnetic field geometry,
whether tokamak or stellarator. Its past success in matching
observed ICE signals suggests that these spectra are generated
by the spatially localised physics that is captured in our code.
In particular, the recent success in matching ICE simulations
to ICE observations from the LHD heliotron-stellarator [38–
40] provides support for adopting here our predictive approach
for future ICE physics in NBI-heated plasmas in the W7-X
stellarator. These simulations are computationally resource-
intensive, partly due to the low ratio of the perpendicular velo-
city of the NBI ions to the local Alfvén velocity, VNBI/VA =
0.14. The sub-Alfvénic regime of ICE, though uncommon,
has been previously observed in TFTR [5], ASDEX-U [19]
and LHD [39]. Our simulations capture the full frequency
range from ion cyclotron through lower hybrid and beyond,
with high resolution. It appears that both the MCI and the
lower hybrid drift instability, found in related simulations [55,
56], may operate simultaneously under the Wendelstein 7-X
plasma conditions. It appears relevant that turbulence in the
lower hybrid frequency range has been observed from NBI-
heated plasmas in W7-X [57] and LHD [41]. Also import-
ant, and explored here, is the extent to which NBI-driven ICE
phenomenology is predominantly electromagnetic or electro-
static. In the stellarator context, we refer again to [38, 39] on
this topic, together with the PIC studies in [58, 59] which
also bear on lower hybrid aspects. The latter papers are in
the same spirit as the present work, and differ insofar as in
[58] the higher-frequency excitation is electromagnetic as dis-
tinct from electrostatic, and in [59] the ion cyclotron and lower
hybrid frequencies are substantially closer to each other. These
two instabilities, which are taken to be well separated in fre-
quency and wavenumber in a linear analytical description, and
hence decoupled, appear here as manifestations of a single
coupled plasma phenomenon at the level of first principles
self-consistent nonlinear kinetics. The development of a pre-
dictive capability, in addition to interpretive, for linking the
spectral structure of ICE to the velocity-space structure and
spatial location of the emitting ion population is important for
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the diagnostic exploitation of ICE in present and future [60,
61] fusion experiments.

2. Physical and computational approach to W7-X
ICE simulations

It is widely accepted that ICE from MCF plasmas is driven
by the MCI, whereby a minority non-Maxwellian population
of energetic ions excites modes on the fast Alfven-cyclotron
harmonic wave branches, transferring some of its energy also
to the kinetic energy of the thermal ions and electrons [42,
62–66]. Here we study the MCI under conditions relevant
to NBI populations (freshly ionised, or undergoing prompt
loss) in the W7-X edge plasma. This location is the most
likely one for excitation of NBI-driven ICE in W7-X, as pre-
viously observed in the LHD heliotron-stellarator [38, 49] and
the TFTR [5, 7], KSTAR [9], DIII-D [11–14] and ASDEX-
Upgrade [21, 48] tokamaks, for example. The reason is that,
near the NBI injection point in the edge plasma, the velocity-
space distribution of freshly ionised NBI ions, which have
not yet slowed down through collisions, is closest to a delta-
function; and hence most strongly unstable against the MCI
which gives rise to the observed ICE signal. We adopt the
first principles approach previously used to interpret observa-
tions of NBI-driven ICE from other MCF plasmas [9, 12, 38,
39]. This approach involves the use of the PIC code [67, 68]
EPOCH [54], which captures the fully gyro-resolved Lorentz
dynamics of all particle species, and evolves these dynamics
self-consistently with the electric and magnetic fields by solv-
ing the full Maxwell’s equations. We use EPOCH in 1D3V
mode, that is, the simulation domain incorporates one spa-
tial axis, which can be oriented at any angle to the direction
of the ambient magnetic field, and all three vector compon-
ents in velocity-space. It is known that the 1D3V approach,
which demands substantial but not unrealistic computational
resources, provides a good description ofMCI physics for ICE
simulation and interpretation [9, 12, 38, 39, 43]. Hence one
can be moderately confident in now deploying this capability
in predictive mode for W7-X.

EPOCH self consistently evolves the Maxwell equations
using a finite-difference time-domain method for all three
components of electric and magnetic fields defined on a Yee
staggered grid and the gyro orbit resolved charged particle
dynamics using a modified version of the Boris algorithm. The
charged particles are represented by macroparticles. To reduce
noise in the system, we use a fifth order weighing scheme. The
electrons and majority thermal ion(protons) populations form
the maxwell distributed pseudorandom thermal background.
The minority fast ions representing the NBI protons are initial-
ised as a drifting ring-beam distribution, originally modelled
with a delta function for the perpendicular component in [42,
65] and later investigated with a spread in the perpendicular
component in [69], given by

f
(
v∥,v⊥

)
∝ exp

(
−
(
v∥ − vd

)2
v2r

)
exp

(
− (v⊥ − u0)

2

u2r

)
(1)

Table 1. Physical Parameters used in the simulations.

Parameter Value

Electron density (ne) 6× 1018 m−3

Thermal electron and proton temperature 30 eV
Magnetic field 2.25 T
NBI proton beam energy 55 keV
NBI proton density 0.03× ne
Beam injection angle w.r.t. B 70◦

Initial drift along B (vd) 1.11× 106 m s−1

Initial perpendicular velocity (u0) 3.05× 106 m s−1

Perpendicular velocity spread (ur) 0.001× u0
Parallel velocity spread (vr) 0.01× vd

where v⊥ and v∥ are the velocity components perpendicular
and parallel to the background magnetic field, u0 is initial per-
pendicular velocity and vd is initial drift along the background
magnetic field, ur and vr are the perpendicular and parallel
velocity spreads respectively. The system is then allowed to
relax.

We ran several simulations using the physical and compu-
tational approach described above with one higher (by a factor
of 8) resolution simulation used to benchmark the outputs of
simulations at lower resolution. For all simulations except the
higher resolution simulation, we used 150 000 cells with the
time step 0.95 times that required by the CFL condition. The
higher resolution simulation used 1200 000 cells. PIC simu-
lations typically require that the cell size is less than the elec-
tron Debye length λDe thereby resolving the associated plasma
physics. The Nyquist condition in wavenumber space requires
that dk, the resolution in wavenumber (k) space, is smaller than
ωc/vA where ωc is the ion cyclotron frequency and vA is the
Alfvén velocity. To pre-empt numerical heating of electrons,
the cell size must resolve the smallest gyroradius in the system
which is the electron gyroradius. The spatial domain should
also be long enough to have at least several gyroradii of all
species. The data from the simulation cannot be saved at every
timestep due to memory limits, but but must nevertheless be
stored at sufficiently high cadence to resolve the physics being
explored here. This work requires the resolution in angular fre-
quency, dω, to be smaller than the ion cyclotron frequencies
as theMCI is a cyclotron resonant wave-particle phenomenon,
hence the time duration of our simulations must exceed sev-
eral ion gyroperiods. The simulation Nyquist frequency must
exceed the largest frequency present in the system, in our case
the electron cyclotron frequency, to avoid aliasing or adding
noise in the lower frequencies. The noise is also inversely
dependent on the number of macroparticles used to represent
the charged particles. Here we use 1995 000 macro particles
for each species. In these simulations, the spatial domain, and
hence the allowable wavenumber vectors, was oriented qua-
siperpendicular (85–89.5 degrees) to the direction of the mag-
netic field. Other initial parameters are listed in table 1. In the
simulations presented here, we find (see e.g. figure 6) that non-
linear three-wave coupling plays a significant role in the flow
of energy in the frequency-wavenumber space, and hence in
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determining the structure of the simulated ICE spectra. This
nonlinear coupling is quantified in section 3 using bispectral
analysis techniques which are outlined briefly in appendix and
has previously been used to assist interpretation of ICE simu-
lations in, for example, figure 3 of [8].

3. ICE simulation results

Our simulation results are encapsulated in the following six
figures, which we discuss in detail below. To summarise these
briefly, figure 1 displays the time evolution of the change in
energy densities of particles and fields. Figure 2 shows the spa-
tiotemporal Fourier transform of the energy associated with
the z-component of the excited magnetic, that is, the distribu-
tion of power across different frequencies and wavenumbers.
Figure 3 plots simulated ICE power spectra, derived by sum-
ming spatiotemporal Fourier transforms over wavenumber, for
a range of relevant parameters. We compare the power excited
in electric versus magnetic field components in figure 4. The
time evolution of energy with respect to wavenumber is shown
in figure 5. Nonlinear coupling of energy across wavenumber
space is quantified in the bispectral plots of figure 6, for both
electric and magnetic fields, at different propagation angles.
Figure 1 shows the time evolution of particle and field energy
densities from a 1D3V EPOCH PIC simulation of NBI ions
relaxing under the MCI for W7-X edge plasma conditions.
We emphasise that this reflects spontaneous collective relax-
ation of millions of simulation particles—NBI ions, thermal
ions and electrons—together with the self-consistent elec-
tric and magnetic field under the Lorentz-Maxwell system of
equations; the MCI is not present in the simulation initial con-
ditions and emerges as the simulation evolves.

MCI involves a collective relaxation of non-Maxwellian ion
population, i.e. the beam ions in our simulations. This is evid-
enced in figure 1 which shows the change in energy densities
in the field components Ex and Bz and in the different particle
populations. In this sub-Alfvénic regime for the NBI ions, it
is expected from previous analyses of observations of NBI-
driven ICE [7, 9, 38, 39] that the MCI may include a signi-
ficant electrostatic component. This is seen here in figure 1,
where the initial rise is at times corresponding to the growth
of field energy at ω ≈ ωLH(cf figures 2 and 5). This transitions
at t= 1.25τgp in figure 1(cf figure 5, below) to the growth
of spectral peaks at lower ion cyclotron harmonics. The sys-
tem settles into its saturated regime, which presumably cor-
responds to the state determining the observable ICE spec-
trum, well before the simulation ends at three ion gyroperiods.
In figure 1, the time traces are flat after two gyroperiods. As
we shall see later, when resolved with respect to wavenumber,
there is correspondingly little or no time evolution in the upper
third of figure 5 below, covering the time interval between two
and three gyroperiods.

Magnetic field data from the simulation is used to calcu-
late the spatiotemporal Fourier transform (2D discrete Fast
Fourier Transform), as shown in figure 2(left) for the case
with wave propagation at an angle of 89.5◦ with respect to

Figure 1. Time evolution of change in energy densities of particles,
electric field Ex and magnetic field Bz in the 89.5◦ case. The MCI
starts around t= 1.1τgp, which matches figure 5 and is
predominantly electrostatic, with the energy excited in Ex
significantly greater than in Bz.

the magnetic field B. The Bz component of the magnetic field
is chosen for the analysis, because it is perpendicular to the
simulation direction and hence the k-vector, thus capturing the
electromagnetic physics of the system. Figure 2(left) shows
that the spontaneously excited fields are concentrated in dis-
tinct regions of (ω,k) space: spectrally peaked at the second
ion cyclotron harmonic; and an extended lower hybrid feature
between dimensionless wavenumbers k = 1030, and k = 50–
60 (hereafter the ‘ELHF’) close to the lower hybrid resonance
frequency given by equation (5) in [70]

ω2 = ω2
LH

(
1+

mi

me
cos2θ

)
. (2)

Here mi, me are the ion and electron masses, θ is the angle
of propagation and ωLH is the cold plasma lower hybrid fre-
quency given by equation (1) in [70]. Using equation (2) gives
14.96, 25.21, 34.41 and 54.19, normalised to ωc, for propaga-
tion angles 89.5◦,88◦,87◦ and 85◦ respectively. The ELHFs
can be observed around these frequencies also in the spati-
otemporal Fourier transforms displayed in figure 6(below),
where they are paired with their corresponding bispectra (dis-
cussed below). ELHF might be related to the lower hybrid
wave physics studied in [55, 71].

Integrating the squared spatiotemporal FFT of Bz over k-
space and multiplying by the constant 1

2µ0
yields the frequency

power spectrum, figure 2(right). Although the exact values of
the spectral peak in an experiment can vary depending on vari-
ous factors such as measuring device, technique, and position
of antennae, the relative heights of peaks should follow the
same trend in these logarithmic plots.We note that a difference
of α in the log scale (sometimes referred to as ‘prominence’)
indicates that the peak has 10α times the power compared
to the base level. Multiple simulations (figure 3) for quasi-
perpendicular propagation at angles between 85◦ and 89.5◦ to
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Figure 2. Left: spatiotemporal Fourier transform of the z-component of the magnetic field (Bz). The logarithmic (base ten) colour scale
quantifies the relative distribution of energy across frequency-wavenumber space. Frequency is normalised to the proton cyclotron
frequency and wavenumber to the ratio of proton cyclotron frequency to Alfvén velocity. The blue line shows the cold plasma dispersion
relation (equation (5.49) in [72]). The black line is the lower hybrid resonance frequency from equation (2). Right: corresponding simulated
ICE power spectrum obtained by summing, over all k, the power at each frequency in the left panel. The extended lower hybrid feature
appears in both panels in the frequency range 11≲ ω ≲ 16.

the magnetic field show that the excitation of spectral peaks at
the 2nd and 3rd harmonics is a robust feature. Their amplitude
is at least three orders of magnitude above the noise floor,
which is plotted in the upper two panels of figure 3, and these
peaks are consistently present (while others are consistently
absent) in multiple simulation cases. Comparison with the
noise floor (which possesses spectral structure in consequence
of the fluctuation dissipation theorem, whereby noise energy is
concentrated at normal modes) also shows that the simulated
ICE spectrum is strongly suprathermal. This aligns with ICE
observations in all experiments, and has been a prime driver
of ICE interpretation in terms of collective instability since the
earliest measurements, see e.g. [1]. This is a key prediction of
the present work, reinforced by the overall invariance of the
phenomenology with respect to the modest variations in elec-
tron temperature shown in figure 3(b) and in velocity-space
spread shown in figure 3(c). The 1D3V EPOCH PIC simula-
tions reported here follow all three vector components of both
the electric and themagnetic fields, which are evaluated at each
timestep at each grid cell. This enables us to quantify the bal-
ance of the simulated ICE spectrum with respect to electro-
static and electromagnetic components, information which is
important also from a diagnostic perspective. For example, the
field component Ex lies along the spatial domain of the simu-
lation, and is purely electrostatic; whereas the oscillating com-
ponent of Bz is purely electromagnetic. The frequency power
spectrum for the electrostatic component Ex is obtained in the
same way as for the electromagnetic component Bz described
above, but the multiplicative constant is replaced by ϵ0

2 . The
two panels of figure 4 shows examples of these, together with a
computation of the ratio of themagnitude of the electrostatic to
electromagnetic components of this simulated ICE spectrum.
It can be seen that the electrostatic component is dominant
across most of the frequency domain, whereas the electromag-
netic component is dominant around the 2nd cyclotron har-
monic peak. The relative differences in the electric and mag-
netic field spectra also indicate which probe might be more

suitable to detect the signal at different frequency ranges on
W7-X. Since the current B-dot probe ICE diagnostic [73] oper-
ates primarily inductively, it is unlikely that the predominantly
electrostatic high frequency waves which comprise the ELHF
will be detected by it. They should however be detectable in
the ICRF antenna which will be introduced in the next exper-
imental campaign, OP2.2. The variation in nonlinear energy
coupling between the electromagnetic and electrostatic chan-
nels is explored further in figure 6 using bispectral analysis.

The 1D FFTs of magnetic field component Bz in the spatial
domain at a given time show the power in different wavenum-
bers(k) in the system at that instant. Horizontally stacking
these k-space spectra taken at successively later times in the
simulation yields us figure 5. The ELHF structure can be
observed growing first, before the ICE at lower harmonics is
initiated, and then dying out around the time when the lower
harmonics gain energy. This suggests the ELHF may drive the
ICE in the lower harmonics, with the energy transferred by
the nonlinear coupling, which has been tested using bispectral
methods as described below.

Figure 6 shows the dispersion relations and the bicoherence
(see appendix) of the magnetic field Bz and electric field Ex
signals. All the dispersion plots are qualitatively similar with
the ELHF located around the lower hybrid frequency and sig-
nificant power at the lower ICE harmonics. The bicoherence
plots have colourmaps ranging from 0 to 1 since bicoherence
is a normalised bispectrum, see again in the appendix. This
figure only informs about the strength of nonlinear coupling
between each set of three phase-matched waves, but not the
direction of energy transfer among them. The wavenumbers
from the bicoherence can be matched to the dispersion plot to
find the corresponding frequencies. The change in energy in
different wavenumbers from figure 5 indicates which modes
gain or lose energy. It can be seen that the ELHF is nonlin-
early coupled to the lower and middle harmonics for all cases,
sometimes indirectly through a third frequency. The bicoher-
ence of the Bz signal is similar, but not identical, to that of
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Figure 3. Variation of simulated ICE power spectra with respect to k vector orientation, electron temperature and NBI ion velocity space
distribution. Spectra plotted versus frequency following integration, over wavenumber, of spatiotemporal Fourier transforms of the excited
fields. (a) (top) Each coloured trace corresponds to a simulation with different quasi-perpendicular orientation of the spatial domain with
respect to the magnetic field direction, in the range of 85–89.5 degrees. The line labelled thermal background shows the baseline spectrum
from a simulation containing no suprathermal ions. (b) (middle) each trace corresponds to simulations with slightly different electron
temperatures. (c) (bottom) shows power spectra from simulations with slightly different spreads in vd from the ring-beam equation (1). The
2nd and 3rd harmonic peaks arise in all cases with a ring-beam, together with harmonics 4, 5 and 6 in some of them. The ELHF spans
harmonics 8–18 in the 89.5◦ cases; 20–23 for 88◦; and is off scale to the right in the 87◦ and 85◦ cases. Note that the y-axis range is
different in each panel.

Ex. For example, there is nonlinear wave coupling in a small
region of dimensionless k-space, which is visible in the bico-
herence of Bz but not in that of Ex, around (∼58,∼2)for the
89.5◦ cases, around (∼85,∼5) for the 88◦ case, and around

(∼115,∼5) for the 87◦ case. These differences indicate the
importance of self consistently evolving and exploring both
electrostatic and electromagnetic components, as here, when
simulating ICE phenomenology. Faint diagonal lines which
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Figure 4. (top) Simulated ICE power spectra of electric field Ex and magnetic field Bz for the 89.5◦ case, plotted versus frequency following
integration, over wavenumber, of spatiotemporal Fourier transforms of the excited fields. (bottom) Frequency dependence of the ratio of the
power in Bz to Ex.

Figure 5. Time evolution of 1D spatial FFT of magnetic field component Bz. This shows the variation of the energy distribution across
different wavenumbers,k (normalised to the ratio of ion cyclotron frequency to the Alfvén velocity), at different points in time (normalised
to the ion gyroperiod). The ELHF, located approximately between wavenumbers 45 and 65, starts around 0.5τgp. This is earlier than the
spectral peaks at the 2nd and 3rd harmonics, which rise around 1.25τgp, at which time the ELHF declines.
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Figure 6. Each row of plots corresponds to the case for the propagation angle stated on the left-hand margin. The first column shows the
spatiotemporal FFTs of Bz with the logarithmic colour scale indicating the relative distribution of energies in the (ω,k) combination
calculated in similar fashion to that in figure 2. The ELHF appears in each case around the LH resonance frequency indicated by the black
line. The second and third columns show the bicoherence of the magnetic field Bz and electric field Ex respectively. The colour scale ranges
from 0 to 1, with values closer to 1 indicating stronger nonlinear coupling between the two wavenumbers. The first two rows correspond to
the same case, but top row data was obtained from the higher resolution simulation used in figure 2.

intersect the ELHF are visible in some dispersion plots. These
features, seen also in [58], are a factor of order one thou-
sand weaker than the dominant features of the spatiotemporal
Fourier transform, hence are close to the thermal noise floor in

these simulations. While it cannot yet be established whether
they are numerical or physical in origin, it seems likely that
they are an effect, rather than a cause, of the ELHF; they may
repay investigation in future studies.
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4. Conclusions

We predict the excitation of ICE spectral peaks at the 2nd and
3rd proton cyclotron harmonics in the edge region of hydro-
gen plasmas heated by proton NBI in the W7-X stellarator.
The predominantly electrostatic character that we predict for
these ICE peaks suggests that they could be detectable with
probes, as previously in TFTR [5, 7], as well as antennas. The
lower cyclotron harmonics in our simulation may be driven
by nonlinear interactions within the ELHF structure, which is
excited at frequencies closer to the lower hybrid frequency.
The excitation of the ELHF, involving radiation at frequencies
comparable to the lower hybrid frequency, is our second main
prediction. Based on the change in power in the wavenumbers
with time and the nonlinear coupling revealed by the bispec-
tral analysis of the fields excited in our simulations, cross-scale
energy transfer is expected between the ELHF and the lower
frequency ion cyclotron harmonic peaks characteristic of ICE.
Whilst these predictions are specialised to theW7-XNBI edge
plasma scenario specified, we note that the nonlinear coup-
ling between lower hybrid waves, identified here, could also
arise in other MCF plasmas irrespective of their overall con-
fining magnetic field geometry, and indeed in solar-terrestrial
and astrophysical plasmas where ICE-type phenomena have
been observed [74–77] or are anticipated [78, 79]. In summary,
the phenomenology predicted by these simulations is not nar-
rowly concentrated in frequency and wavenumber. Instead,
energy flows initially into wavenumbers corresponding to
frequencies near the lower hybrid frequency, the broadband
ELHF. It appears from figures 5 and 6 that, probably, energy
then flows by nonlinear self-interactions into: wavenumbers
corresponding to the intermediate frequency range, which
would also be expected to be excited by standard MCI
and ICE physics; and to the lowest ion cyclotron harmonic
peaks.
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Appendix

We use bispectral analysis to identify nonlinear phase
coupling, which is indicative of energy being transferred
between waves. In particular, we indentify where three waves
interact nonlinearly while satisfying the wavenumber and
(angular) frequency matching conditions k3 = k1 + k2 and
ω3 = ω1 +ω2; i.e. where waves ‘1’ and ‘2’ interact to produce
‘3’. We use a Fourier transform based bispectrum bs, defined
as [80]

b2s (k1,k2) = |B(k1,k2) |2 = |⟨F(k1)F(k2)F∗ (k1 + k2)⟩|2 (3)

where F(k1) is the complex Fourier transform of the quant-
ity being analysed, in our case the electric field Ex or mag-
netic field Bz. The angled brackets ⟨.⟩ can represent averaging
over time or ensemble. In our case, we implement ensemble
averaging by creating multiple records of the signal by using a
sliding window of the signal with respect to time. Computing
this for the entire space is expensive, in terms of computa-
tion time and memory. Therefore, we calculate the bicoher-
ence around the regions with maximum power in the spati-
otemporal Fourier transform. The bispectrum can be normal-
ised in a number of ways [81, 82] to obtain the bicoherence,
bc, and we choose to do so using Schwartz’s inequality:

b2c (k1,k2) =
|⟨F(k1)F(k2)F∗ (k1 + k2)⟩|2

⟨|F(k1)F(k2) |2⟩⟨|F∗ (k1 + k2) |2⟩
(4)

such that the bicoherence is bounded by 0⩽ bc ⩽ 1. A value
closer to 1 indicates there is coupling between the two frequen-
cies and their sumwhile a value close to 0 indicates its absence.
For example, if there is an intense region around (a, b) then
waveswithwavenumbers a, b and a+ b are coupled. The value
of b2c measures the fraction of power at a+ b that is coupled in
the three wave coupling. The preceding definitions are in terms
of wavenumber(k) which is relevant to our case, but the same
definitions and relations hold in (angular) frequency space and
k can be substituted by ω. We note that equation (4) posses the
following symmetries: B(k1,k2) = B(k2,k1) = B∗(−k1,−k2)
andB(k1,k2) = B(−k1 − k2,k2) = B(k1,−k1 − k2) [80]. These
symmetries apply equally to the bicoherence in three wave
interactions [83].
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