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Abstract
To obtain engineering-feasible designs of stellarators with permanent magnets and simplified
coils, a new algorithm has been developed based on Fourier decomposition and surface
magnetic charges method. The strong toroidal fields in a quasi-axisymmetric stellarator are
still generated by coils. The permanent magnets are designed to compensate the normal
magnetic field Bn on the plasma surface ∂P created by the coils and plasma. The normal
magnetic fields created by the permanent magnets Bpmn are calculated as the difference
between the magnetic fields created by the surface magnetic charges on the inner surface ∂D
and the outer surface ∂Dh of the magnets. The Fourier coefficients of the magnet thickness
function h (θ,φ) are computed through matrix division operation based on the least square
principle with dominant Fourier components selected through 2D Fourier transformation of
Bpmn. The residual uncompensated Bn is minimized through iteration to progressively optimize
the thickness function. This new algorithm has been successfully applied to design the
permanent magnets of an l = 2 quasi-axisymmetric stellarator with background magnetic field
created by 12 identical circular planar coils for demonstrations. High accuracy has been
achieved, allowing for a flux-surface-averaged residual Bn relative to the total field
〈|Bn/B|〉 ∼ 1.3 × 10−5 and a maximum residual Bn of less than 2 Gs for ∼1 T total field. This
new design has some advantages in engineering implementations: all permanent magnet
pieces have the same remanence Br; only one single layer of magnets are mounted
perpendicular to the winding surface; the magnets can be easily inserted into the cells of a
gridded frame attached to the winding surface and fixed with springs from the back, which
greatly simplifies the manufacture, assembly and maintenance of the magnets, and thus
facilitates precision control and cost reduction.
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1. Introduction

Intrinsically steady-state operation, nearly disruption-free and
low recirculating power make stellarator an attractive fusion
reactor candidate [1]. Historically, stellarators lagged behind
tokamaks due to their relatively poor neoclassical con-
finement. To improve the neoclassical confinement, quasi-
symmetry was introduced into the stellarator optimization and
the effect has been demonstrated in the HSX stellarator experi-
ments [2]. Recently, the remarkable success of the W7-X stel-
larator shows that neoclassical optimization can improve the
confinement of stellarators up to a level similar to tokamaks
[3]. The conventional stellarators use external coils to produce
a non-axisymmetric magnetic field which confines the plasma
and create the required rotational transform. The required coils
in a stellarator are thus very complicated and contribute signif-
icantly to the overall cost of the device [4]. Coil complexity is
one of the main challenges for stellarators. Modern stellarators
use discrete modular coils instead of continuous coils. Even
with optimized modular coils, difficulties in fabrication and
assembly of the complex 3D non-planar coils with required
accuracy and the anticipated strong mechanical stresses in the
coils and the support structure of the coils for a reactor-size
device have been the main challenges for the development of
the stellarator approach as a fusion reactor candidate [5].

Recent study suggests that permanent magnets can be
used to create rotational transform in a stellarator, thus sub-
stantially simplifying the coils [6], which may facilitates
machine construction and cost reduction. More important,
higher field strength can be achieved for a reactor-size stel-
larator as the mechanical stresses in the coils and the sup-
port structure of the coils are reduced. Identical planar coils
with circular cross-section have been proven sufficient for
a quasi-axisymmetric stellarator, leaving permanent mag-
nets to do most of the plasma shaping. The strong back-
ground toroidal magnetic fields in a quasi-axisymmetric stel-
larator are still generated by coils. The permanent mag-
nets can be used just to compensate the fields perpendic-
ular to the plasma outermost surface, i.e., the last closed
flux surface. Therefore, the required field strength created by
the permanent magnets is not so strong (typically <0.5 T)
for an experimental device without blanket or with a thin
blanket (<0.3 m). Such field strength is achievable with
commercially available permanent magnets which have a
remanence of Br � 1.55 T [7]. In contrast to coils, permanent
magnets can provide a steady magnetic field without energy

consumption, be arranged in complicated patterns, and more
importantly, the materials are relatively inexpensive com-
pared with superconducting materials, thus may drastically
reduce the capital cost of a stellarator. However, compared
with superconducting magnets the disadvantage is that the
magnetic field strength produced by permanent magnets can-
not change once the device has been assembled.

Several algorithms have been proposed recently for the
design of permanent magnets and applied to the design of
quasi-axisymmetric stellarators with highly simplified coils.
One is to design the distribution and orientation of the mag-
netization M of permanent magnets with a fixed thickness
[6]. This work verifies the feasibility of creation of rotational
transform in a stellarator using permanent magnets. With
spatially varying magnetization, engineering realization is
difficult as the magnets need to be magnetized to different
remanence, which would dramatically increase the difficulty
in magnetization precision control and the manufacturing cost.
An improved algorithm, the so-called ‘multi-layer method’,
has been explored, through varying the thickness of perma-
nent magnets perpendicular to the installation surface, i.e.,
the ‘winding surface’, with a fixed magnetization M [8]. This
algorithm calculates the distribution of one thin layer (1 mm
thick) of permanent magnets for each step, and then iterates
through incrementally stacking magnets layer by layer from
innermost to outermost surface with linear method based on
the surface current potential distributions, so that the existing
codes for stellarator coil design can be used for the perma-
nent magnet design. The solution with this algorithm provides
a good initial guess for further optimizations. Recently, a more
sophisticated algorithm has been proposed based on finite ele-
ments of discretized magnetic dipole moments [9] using the
so-called ‘density method’ [10] with a penalization technique
which employs a continuous exponential function to penalize
the intermediate values between 0 and 1 to achieve a polar-
ized distribution of the magnet normalized density ρ. With this
algorithm, the restriction on the magnetic-dipole orientations
can be relaxed, so that the so-called ‘Halbach’ arrays [11] are
formed and less magnets are used than the linear method. In
addition, it allows to reserve space for ports, showing attrac-
tively large access on the outboard side. More recently, a pre-
liminary study of geometric concepts for magnet arrays is
performed [12]. Two classes of magnet geometry, curved
bricks and hexahedra, are explored.

Engineering implementation favors uniform remanence and
simple geometry for all magnet pieces and a relatively small
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number of magnet pieces, to simplify the manufacture, assem-
bly and maintenance of the magnets, and reduce the cost. If
each magnet piece is too small, there will be a huge num-
ber of pieces, which may lead to assembly errors and accu-
mulated errors in the produced magnetic field. Thus, it is
worth seeking more advanced algorithms for engineeringly
practical magnet design. In this paper a new algorithm is
proposed with fixed remanence Br and varying magnet thick-
ness perpendicular to the installation surface based on Fourier
decomposition and surface magnetic charges method, which
has been demonstrated to be a very effective algorithm, capa-
ble of achieving the design targets with high accuracy and
a relatively small number of magnet pieces, thus exhibiting
attractive engineering feasibility.

This paper is organized as follows. In section 2, the new
algorithm and its design logic are introduced with formula-
tions. In section 3, application of this new algorithm to an
l = 2 quasi-axisymmetric stellarator with a β = 0 equilibrium
is presented. In section 4, numerical validations with field-line
tracing are carried out to check the accuracy of the produced
flux surfaces relative to the equilibrium flux surfaces. A sum-
mary and discussions for future application and development
are presented in the last section.

2. Algorithm

To introduce the new algorithm with illustrations, a β = 0
equilibrium for ESTELL stellarator [13] is used, which is an
optimized two-period l = 2 quasi-symmetric stellarator with
average major radius of the magnetic axis R0 = 1.3944 m and
average field strength on the magnetic axis B0 = 1 T. It was
originally obtained by deforming a classical l = 2 stellarator
with aspect ratio A = 5 into a shape that makes the magnetic
field quasi-axisymmetric. This means that the field strength is
nearly independent of the toroidal angle in Boozer or Hamada
coordinates, which ensures good orbit confinement [14–16].
Here, β = 0 implies that there is no magnetic field produced
by plasma current, Bplasma = 0. Figure 1 shows the permanent
magnet distribution designed for this ESTELL equilibrium.

The permanent magnets are composed of 120 (poloidal) ×
240 (toroidal) small pieces, mounted on the winding surface
∂D with their magnetic axes perpendicular to this surface.
∂D could be the outer surface of the vacuum-chamber wall,
which encloses and at a distance d from the plasma surface
∂P. ∂Dh is the outer surface composed by the permanent mag-
nets. This design greatly facilitates engineering assembly. The
permanent magnets can be easily inserted into the cells of a
gridded frame attached to the winding surface and fixed with
springs and caps from the back as shown in figure 2. The
distance between the winding surface ∂D and the plasma sur-
face ∂P is d = 10 cm and the maximum magnet thickness is
hmax = 17.22 cm in this example.

2.1. Magnetic field calculation using the surface magnetic
charges method

We need to calculate the normal magnetic field component
on the plasma surface generated by permanent magnets Bpmn.

Figure 1. Permanent magnet distribution designed for a two-period
l = 2 quasi-axisymmetric stellarator with 120 (poloidal) × 240
(toroidal) pieces mounted on the winding surface ∂D with their
magnetic axes perpendicular to this surface. The red flux surfaces
show the area of plasma. The colorbar indicates the magnet
thickness h, i.e., the distance between ∂D and ∂Dh. Positive value
(red) means that the magnetic axis of the permanent magnet points
away from the plasma and negative value (blue) means toward the
plasma.

Figure 2. Schematic diagram of the concept for permanent magnet
assembly. Magnet pieces are inserted into the cells of a gridded
frame attached to the winding surface, fixed with springs and caps
from the back.

The magnetic field generated by a piece of permanent magnet
is governed by the Biot–Savart law. There are three meth-
ods to calculate the magnetic field, i.e., surface magnetic
charges, effective currents and discretized magnetic dipoles.
The method adopted in this paper is the surface magnetic
charges [17], where the permanent magnets are modeled as
distributed positive and negative magnetic monopoles with
surface charges concentrating on the inner and outer surfaces

3



Nucl. Fusion 61 (2021) 026025 G.S. Xu et al

Figure 3. The iteration flow chart of the algorithm. The green part is a database of 2D Fourier base functions, which only needs to be
calculated once. The red part is the iteration flow, which uses the database and upgrade the database if additional high-order Fourier base
functions are needed.

Figure 4. (a) The winding surface (blue) of a β = 0 equilibrium for ESTELL, a two-period l = 2 quasi-symmetric stellarator, shown with
12 identical circular cross-section planar coils, all carrying the same current 4.4116 kA. Each coil has 15 × 9 turns. (b) The outer surface of
the permanent magnets with color indicating the thickness.

of the permanent magnets situated ‘h’ distance apart. The field
strength at a field point x′

(
x′, y′, z′

)
on the plasma surface ∂P

is a 2D integral across the winding surface ∂D,

B =
1

4π

∫∫
© ∂D

(
rh

r3
h

− r
r3

)
dΨ (1)

Hereafter, primes are used to denote coordinates on the plasma
surface and un-primed for the winding surface.

Here, r = x′ − x is the position vector pointing from the
source point on the winding surface ∂D to the field point and
rh = x′ − xh is the position vector pointing from the source
point on the outer surface of the permanent magnets ∂Dh to
the field point. r = |r| and rh = |rh| are the corresponding dis-
tances. x (x, y, z) is the source point on the winding surface ∂D
and xh (xh, yh, zh) is the source point on the outer surface of the
permanent magnets ∂Dh, which is calculated with the coor-
dinate relationship xh = x + hn, where n is the unit normal
vector of the winding surface with positive direction pointing
outwards (away from the plasma). dΨ = Br± dS is the mag-
netic flux passing through the inner surface of a magnet piece,

i.e., a small quadrilateral on the winding surface. dS is its sur-
face area, which is computed numerically from the coordinates
of the quadrilateral’s four vertices. Br± is the surface density
of the surface magnetic charges. As the magnets are installed
perpendicular to the winding surface, Br± is also the normal
field produced by the magnets on the winding surface,

Br± = μ0n · M = Br sign (n · M) (2)

where sign (. . .) is the sign function. Br± is positive when the
magnetization M of the permanent magnet points outwards,
i.e., away from the plasma. Its absolute value is equal to the
remanence, |Br±| = Br. The remanence varies with materials
and material grades. In this paper, we choose Br = 1.4 T for
all the calculations, as this is one of the most widely commer-
cially available neodymium–iron–boron (Nd–Fe–B) magnet
at room temperature in the market [7]. Note that here it has
been assumed that the magnetic flux passing through the outer
surface of the permanent magnets is approximately equal to
that passing through the inner surface, since there are nearly
no gaps between adjacent magnets.
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Figure 5. Cross sections of plasma surface (solid curves) and
winding surface (dashed curves) at 4 toroidal locations. Projection
of the coil at φ = 0◦ (skyblue circles). Toroidally averaged magnetic
axis (black hollow dot).

2.2. Design logic

2.2.1. Coil design and optimization target. Most of the mag-
netic fields in a quasi-axisymmetric stellarator are toroidal
magnetic fields which are still produced by coils. Identical
circular cross-section planar coils are used to generate the
background magnetic field Bcoil (mostly toroidal field) with
the minimum field strength (near the outer midplane) equal
to that of the equilibrium field strength, Bcoil min = Beq min, to
minimize the magnet coverage and offer large access to the
plasma on the outboard side, which can be used for heating sys-
tems, diagnostics and remote maintenance. The easy access for
remote maintenance is extremely favourable for future fusion
reactors. The magnetic field component normal to the plasma
surface generated by the coils is Bcoiln = Bcoil · n′, where n′

is the unit normal vector of the plasma surface with posi-
tive direction pointing outwards (away from the plasma). The
total equilibrium magnetic field consists of three components,
Beq = Bcoil + Bpm + Bplasma. Since there is no magnetic field
produced by plasma current in this case, Bplasma = 0, the mag-
netic field needs to be produced by the permanent magnets is
Bpm = Beq − Bcoil.

The permanent magnets are designed to compensate the
normal fields produced by the coils and plasma on the plasma
surface, Bpmn = Bpm · n′ = −Bcoiln − Bplasman, so as to mini-
mize the surface integral of the residual normal field square,
the so-called residual normal field error,

χ2
B =

∫∫
∂P

B2
n dS′ (3)

where Bn = Bcoiln + Bapprox
pmn + Bplasman is the residual normal

field on the plasma surface, which progressively vanishes
through iteration, so that χ2

B → 0. Here, Bapprox
pmn is produced by

the permanent magnets, which approximates the compensation
target, Bapprox

pmn ≈ Bpmn.
Figure 3 outlines the algorithm. After coil design, a

database of 2D Fourier base functions is built, as shown in

the green part of figure 3, introduced in subsection 2.2.4.
The database only needs to be calculated once. Then, itera-
tion starts until a convergence criterion is reached. The itera-
tion flow is shown in the red part of figure 3, which will be
introduced step by step in the following subsections.

2.2.2. 2D Fourier transformation of normal field on the plasma
surface. A magnetic-flux coordinate system (θ,φ,ψ) is used
with grids 120 (poloidal) × 240 (toroidal) × 65 (radial). Here,
θ, φ and ψ are the poloidal angle, toroidal angle and mag-
netic flux surface coordinates, respectively. For the flux sur-
face coordinate ψ, the first layer is the magnetic axis and the
outermost layer (65) is the plasma surface. Note that some
calculations in this algorithm are performed in the Cartesian
coordinate system (x, y, z). A transformation connects these
two coordinate systems.

We find that the normal field Bpmn (θ,φ) is a 2D continuous
function. Its 2D Fourier transformation is calculated,

BFFT
pmn (m, l) = FFT 2

[
Bpmn (θ,φ)

]
(4)

and normalized to its maximum, B̂FFT
pmn = BFFT

pmn/max
(
BFFT

pmn

)
.

Here, m is the poloidal mode number and l is the toroidal mode
number. Next, a threshold is used to find out the dominant
Fourier components,

B̂FFT
pmn > B̂threshold (5)

Only these Fourier components are compensated by the mag-
netic field generated by the permanent magnets. The other
Fourier components are neglected as their amplitudes are
small. This spectral truncation method effectively saves com-
puting resources. The NESCOIL code developed by Merkel
also uses the spectral truncation method to represent the sur-
face current potential Φ in the design of stellarator coils
[18].

2.2.3. 2D Fourier expansion of thickness function on the wind-
ing surface. The distributions of magnet thickness and ori-
entation (toward or away from the plasma) on the winding
surface are 2D functions, h (θ,φ) and sign [Br± (θ,φ)]. Here,
Br± (θ,φ) is the normal field generated by permanent magnets
on the winding surface. We introduce a thickness function to
describe both the distribution and orientation of the permanent
magnets.

h± (θ,φ) ≡ h (θ,φ) sign [Br± (θ,φ)] (6)

Note that h± (θ,φ) is a signed function. Since in this design the
permanent magnets are mounted perpendicular to the wind-
ing surface, also nearly perpendicular to the plasma surface,
and the winding surface is very close to the plasma surface,
h± (θ,φ) has a 2D distribution pattern similar to Bpmn (θ,φ).
Therefore, the dominant Fourier components in Bpmn (θ,φ)
are also the ones in h± (θ,φ). The 2D Fourier expansion of
h± (θ,φ) can be written as,

h± (θ,φ) = h0

∑
m,l,g

cm,l,gĥm,l,g (θ,φ) (7)

5
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Figure 6. Magnetic fields on the plasma surface, (a) total magnetic field generated by coils Bcoil, (c) total equilibrium magnetic field Beq, (b)
3D plot and (d) contour plot of the normal field produced by the coils Bcoiln.

Figure 7. (a) 2D spectrum of the normal field on the plasma surface
with natural logarithm of the normalized amplitude ln

(
B̂FFT

pmn

)
, (b)

2D spectrum with the normalized amplitude above a threshold
B̂threshold = 0.01. In order to reduce computational cost, for those
Fourier modes with the same |m| and |l| numbers, only one mode is
left.

Figure 8. Contour plots of (a) the 2D Fourier base function
ĥ2,2,1 (θ,φ) for the largest Fourier component m, l = 2, 2 and (b) the
normal field on the plasma surface B2,2,1

pmn (θ,φ) produced by the
corresponding permanent magnets.

where h0 = 0.1m is a constant, cm,l,g are the Fourier coeffi-
cients and ĥm,l,g (θ,φ) are the 2D Fourier base functions. The
thickness and orientation can be calculated from h± (θ,φ), i.e.,
h (θ,φ) = |h± (θ,φ)| and Br± (θ,φ) = Br sign [h± (θ,φ)].

The 2D Fourier base functions ĥm,l,g (θ,φ) have four
kinds of combinations: ĥm,l,1 (θ,φ) = cos (mθ) cos (lφ),
ĥm,l,2 (θ,φ) = cos (mθ) sin (lφ), ĥm,l,3 (θ,φ) = sin (mθ) cos (lφ)
and ĥm,l,4 (θ,φ) = sin (mθ) sin (lφ). Note that there are some
Fourier base functions equal to zero for sin (. . .) = 0 when
m = 0 or l = 0. Now, the problem translates into calculating
the Fourier coefficients, cm,l,g. Because of the truncation of
Fourier series, the magnetic field will inevitably lose some
details with the finite Fourier modes. This is an ill-posed
inverse problem, which can be solved using matrix division
operation based on the least square principle [19].

2.2.4. Build a database of 2D Fourier base functions. The
normal fields on the plasma surface Bm,l,g

pmn (θ,φ) produced
by the permanent magnets with each Fourier component of

the thickness distribution hm,l,g (θ,φ) = h0

∣∣∣ĥm,l,g (θ,φ)
∣∣∣ and

orientation distribution Bm,l,g
r± (θ,φ) = Br sign

[
ĥm,l,g (θ,φ)

]
described by the 2D Fourier base functions ĥm,l,g (θ,φ) are
calculated in advance, constituting a database for m = 0 : M,
l = 0 : L and g = 1 : 4. Only nonzero Fourier base functions
ĥm,l,g (θ,φ) are included in the database. It is found that a
database with M = 16 and L = 42 can provide sufficient preci-
sion for the following optimization. In the code, for each time
iteration, if a Fourier mode outside the database appears, i.e.,
m > M or l > L, the corresponding data of this Fourier mode,
including the normal fields on the plasma surface Bm,l,g

pmn (θ,φ),
will be calculated and added into the database to update the
database. When the iteration ends, if the database is almost
unchanged, which means that most of the Fourier modes
involved in the optimization process have been included in
the database with the given selection criteria of Fourier mode,
the database is considered to be big enough. The magnetic

6
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Figure 9. (a) Threshold B̂threshold scan to find out the best threshold
with minimum residual normal field error χ2

B, shown in blue. The
maximum of residual normal field on the plasma surface Bmax

n is
shown in red. (b) For the best threshold B̂threshold = 0.28, χ2

B (blue)
and Bmax

n (red) converge to 4.786 × 10−9 and 1.986 Gs, respectively,
after 77 times iterations.

field on the plasma surface Bm,l,g
pm (θ,φ) is calculated using the

surface magnetic charges method according to equation (1)
with the coordinate relationship xh = x + nhm,l,g (θ,φ) and
the magnetic flux dΨ = Bm,l,g

r± (θ,φ) dS. Then, the normal field
is obtained, Bm,l,g

pmn (θ,φ) = n · Bm,l,g
pm (θ,φ).

2.2.5. Calculations of Fourier coefficients and residual nor-
mal field. For each iteration, the Fourier decomposition is
conducted with the updated normal field on the plasma sur-
face. A subset of Fourier modes {m, l, g} is picked out from
the database of the 2D Fourier base functions with the selec-
tion criteria, in equation (5), and sorted out according to the
normalized spectral amplitude. The parameter g = 1:4 cor-
responds to four kinds of combinations, as given in the last
paragraph of section 2.2.3. Then, the Fourier coefficients cm,l,g

are calculated through matrix division operation based on the
least square principle [19],

cm,l,g =
[
Bm,l,g

pmn (θ,φ)
]−1

Bpmn (θ,φ) (8)

where [. . .]−1 is the generalized inverse of a matrix. The
magnet thickness function h± (θ,φ) is constructed from the
Fourier components by following equation (7). Then, we have
the thickness h (θ,φ) and orientation Br± (θ,φ). The mag-
netic field on the plasma surface Bapprox

pm (θ,φ) produced by
these permanent magnets is calculated using the surface mag-
netic charges method according to equation (1) with the
coordinate relationship xh = x + nh (θ,φ) and magnetic flux
dΨ = Br± (θ,φ) dS. Finally, we obtain the approximate nor-
mal field on the plasma surface produced by the permanent
magnets Bapprox

pmn (θ,φ) = n · Bapprox
pm (θ,φ) and the residual nor-

mal field Bresidual
pmn (θ,φ) = Bpmn (θ,φ) − Bapprox

pmn (θ,φ) which is
the compensation target for the next iteration.
2.2.6. Iteration to progressively correct the thickness function.
Iteration starts. The 2D Fourier transformation of Bresidual

pmn (θ,φ)
is calculated and the dominant Fourier components is obtained
with the same threshold B̂threshold. A new subset {m, l, g} in
the database of the 2D Fourier base functions is sorted out
according to the dominant Fourier components. Then, a new
set of Fourier coefficients are calculated through matrix divi-

sion operation cm,l,g =
[
Bm,l,g

pmn (θ,φ)
]−1

Bresidual
pmn (θ,φ) based on

the least square principle. With these Fourier coefficients, we
obtain a correction to the magnet thickness functionΔh± (θ,φ)

according to equation (7) and a corrected thickness func-
tion hi

± (θ,φ) = hi−1
± (θ,φ) +Δhi

± (θ,φ). Note that h± (θ,φ)
is still a signed function. Again, Bapprox

pm (θ,φ) is calculated
using the surface magnetic charges method. Bapprox

pmn (θ,φ) and
Bresidual

pmn (θ,φ) are obtained as well. Next, we use the residual
normal field on the plasma surface Bn (θ,φ) = Bcoiln (θ,φ) +
Bapprox

pmn (θ,φ) to calculate the residual normal field error χ2
B

according to equation (3). Eventually, the threshold B̂threshold

is scanned, repeating the iteration, to find out the best thresh-
old with minimumχ2

B. The iteration stops when a convergence
criterion is reached, i.e.,χ2

B exceeds the average of the last 5χ2
B

values. Then, the iteration with the minimumχ2
B is given as the

final result. Under ideal condition,χ2
B will decrease all the way

down and never increase between iterations. However, some
fine structures associated with the high-order Fourier compo-
nents of the normal field on the plasma surface are abandoned
due to the truncation of the Fourier series. As approaching
convergence, the optimization focuses on the fine structures,
χ2

B thus fluctuates between iterations. The stopping condition
used in this paper is equivalent to the last five-point average of
χ2

B over iterations, which is thus insensitive to the fluctuations.
Although tolerance can also be used as a stopping condition.
However, if the default tolerance cannot be reached, the itera-
tion will be stuck in an endless loop and wastes a lot of machine
time. More important, it is difficult to find appropriate toler-
ances for different cases. The stopping condition used here can
be applicable to most cases, provides good results with rela-
tively few iterations and effectively avoids getting stuck in an
endless loop.

3. Apply to an l = 2 quasi-axisymmetric stellarator

3.1. Design of the circular planar coils

The first step is to design the coils. Since permanent magnets
cannot create toroidal magnetic flux, coils are still necessary
to generate a background magnetic field. The strongest mag-
netic field component in a quasi-axisymmetric stellarator is the
toroidal field which is mainly created by coils. However, the
utilization of permanent magnets substantially simplifies the
coils. Only 12 identical circular cross-section planar coils are
used with their coil planes perpendicular to the local magnetic
axis, as shown in figure 4, so as to minimize the magnetic field
created by permanent magnets, thus minimize the total usage
of magnet material. Note that the magnetic axis is a closed 3D
curve for a quasi-symmetric stellarator.

The coil centers have been shifted radially outward in the
same coil planes by 0.12 m relative to the local magnetic axis
to allow more space on the outboard side for easy access to the
plasma and enough gaps between coils on the inboard side to
avoid coil interacting with each other. The coil radius is set to
0.9 m to ensure that there is enough space between the coils
and the winding surface for the assembly of permanent mag-
nets, see figure 5. The distance between the plasma surface
(solid curves) and the winding surface (dashed curves) keeps
constant at d = 10 cm.

Each coil has 15 × 9 turns, carrying the same current
Icoil = 4.4116 kA. The magnetic field generated by the coils are

7
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Figure 10. For the best threshold B̂threshold = 0.28 after convergence, the contour plots of (a) the magnet thickness function h±, (b) the
normal field on the plasma surface produced by the permanent magnets Bapprox

pmn , (c) the residual normal field on the plasma surface
Bn = Bcoiln + Bapprox

pmn and (d) the normal field need to be produced by the permanent magnets Bpmn = −Bcoiln.

Figure 11. (a) The total equilibrium magnetic field Beq = |Bcoil + Bpm| and (b) the total magnetic field B =
∣
∣Bcoil + Bapprox

pm

∣
∣ produced by the

coils and permanent magnets on the plasma surface.

calculated by following the Biot–Savart law. The coil current
is adjusted to match the minimum magnetic field strength (near
the outer midplane) with that of the equilibrium magnetic field,
Bcoil min = Bmin = 0.8213 T. The maximum magnetic field on
the inboard side is slightly stronger than that of the equilibrium
magnetic field, as shown in figures 6(a) and (c). The differ-
ences need to be compensated by the magnetic field generated
by permanent magnets.

The 3D plot and contour plot of the normal field produced
by the coils Bcoiln are shown in figures 6(b) and (d), respec-
tively. The normal field needs to be produced by the perma-
nent magnets is Bpmn = −Bcoiln. The target is to calculate an
approximate normal field Bapprox

pmn ≈ Bpmn to compensate the
normal field produced by the coils Bcoiln on the plasma surface

so that Bn = Bapprox
pmn + Bcoiln vanishes. Bpmn (θ,φ) appears to

be a 2D continuous function. Its largest Fourier component is
m, l = 2, 2 mode and l = 12 toroidal ripples can be clearly seen
on the outboard side in figures 6(a), (b) and (d).

3.2. 2D Fourier transformation of the normal field on the
plasma surface

In order to find out the dominant 2D Fourier components need
to be produced by the permanent magnets, 2D Fourier trans-
formation is applied to Bpmn (θ,φ). There are many Fourier
modes as shown in the 2D spectrum in figure 7(a), how-
ever, most of them have very small amplitude. Note that to
enhance the spectral visibility natural logarithm has been used
in figure 7(a), ln

(
B̂FFT

pmn

)
. The dominant Fourier components

8
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are sorted out with a normalized-spectral-amplitude thresh-
old, B̂FFT

pmn > B̂threshold = 0.01. The largest Fourier component
appears to be m, l = 2, 2 mode, as shown in figure 7(b).

3.3. Build a database of 2D Fourier base functions

The next step is to build a database of 2D Fourier base
functions ĥm,l,g (θ,φ) and calculate the normal magnet field
Bm,l,g

pmn (θ,φ) on the plasma surface produced by the permanent
magnets described by the Fourier base functions. The largest
Fourier component is m, l = 2, 2. The corresponding 2D
Fourier base function ĥ2,2,1 (θ,φ) and normal field B2,2,1

pmn (θ,φ)
exhibit very similar distribution pattern, see figure 8. The
similarity indicates that the Fourier expansion is an effective
method in solving the inverse problem of permanent magnet
design, similar to the NESCOIL code in designing the stellara-
tor coils. We note that a deviations is visible in the distribution
patterns between the two plots in figure 8, i.e., the magnet
thickness pattern and the corresponding magnetic field pattern.
It is not due to the mismatch in shape between the winding sur-
face ∂D and the plasma surface ∂P, because the winding sur-
face is generated through extending from the plasma surface
along its normal vector with a fixed distance d, and thus they
have the same shape. If the winding surface and the plasma
surface are both planes and parallel to each other, there will
be very little deviation. However, they are complicated three-
dimensional surfaces with spatially varying surface curvatures.
Therefore, the magnetic field pattern will be distorted relative
to the magnet thickness pattern.

3.4. Iteration and convergence

Following the calculation steps introduced in section 2.2.5,
we truncate a finite number of 2D Fourier components by
setting a threshold to the spectral normalized amplitude,
B̂FFT

pmn > B̂threshold, and calculate the Fourier coefficients cm,l,g

through matrix division operation based on the least square
principle. Then, we obtain the approximate normal field
on the plasma surface produced by the permanent magnets
Bapprox

pmn (θ,φ) and the residual normal field Bresidual
pmn (θ,φ). At this

point, the first design cycle is complete. The initial maximum
normal field on the plasma surface produced by the permanent
magnets Bmax

n (∼1000 Gs) and the residual normal field error
χ2

B (∼3 × 10−2 T2 m2) are still very large. They are effectively
reduced through the iterations, as shown in figure 9(b).

Finally, the threshold B̂threshold is scanned from 0.1 to 0.5 as
shown in figure 9(a). The best threshold with minimum resid-
ual normal field error χ2

B is found, B̂threshold = 0.28. With this
threshold,χ2

B and the maximum of residual normal field on the
plasma surface Bmax

n converge to 4.786 × 10−9 and 1.986 Gs,
reduced by 7 and 3 orders of magnitude, respectively, after 77
times iterations, as shown in figure 9(b).

The computation was performed using a computer work-
station with 48 CPUs at 2.5 GHz. For spatial resolution
120 (poloidal) × 240 (toroidal) grids, each iteration needs
roughly 16 min and the threshold scan from 0.1 to 0.5 with
step 0.01 totally consumed ∼8.1 h. In addition, the 2D Fourier
base function database calculation took ∼7.1 h, which only
needs to be computed once.

Figure 12. Poincaré plot on the plane at toroidal angle φ = 0 from
field-line tracing in the magnetic field produced by the coils and
permanent magnets B = Bcoil + Bapprox

pm is shown with blue dots. The
cross-sections of equilibrium magnetic flux surfaces are shown with
red curves. The winding surface is shown with a black curve. The
field-line tracing appears to fit the equilibrium magnetic flux
surfaces quite well.

With the best converged optimization results, the nor-
mal field on the plasma surface produced by the permanent
magnets Bapprox

pmn is a very good approximation to the nor-
mal field need to be produced by the permanent magnets
Bpmn = −Bcoiln, as shown in figures 10(b) and (d). Further-
more, the total magnetic field on the plasma surface produced
by the coils and permanent magnets B =

∣∣Bcoil + Bapprox
pm

∣∣
is almost identical to the total equilibrium magnetic field
Beq = |Bcoil + Bpm|, as shown in figure 11, which demon-
strates the validity of the design algorithm. The residual nor-
mal field on the plasma surface |Bn| =

∣∣Bcoiln + Bapprox
pmn

∣∣ is
less than 2 Gs, see figure 10(c). The most uncompensated Bn

mainly located near the outboard midplane around toroidal
angle φ= 0 and π, where Bcoiln has a sharp transition between
positive and negative as shown in figure 6(b). More high order
Fourier components are needed to compensate such sharp
transition. This sets the lower limit of field-compensation
and design accuracy for the Fourier based method. How-
ever, this location can be used to set up a divertor where
finite Bn is favorable. The flux-surface-averaged residual nor-
mal fields relative to the total field on the plasma surface is
〈|Bn/B|〉 ∼ 1.3 × 10−5, exhibiting very high accuracy in the
normal field compensation. In addition, the magnet thickness
function h± is shown in figure 10(a), which has a 2D distribu-
tion pattern very similar to Bapprox

pmn , see figure 10(b). This leads
us to come up with the idea of Fourier decomposition of the
magnet thickness function.

4. Field line tracing to check the accuracy in
generating the target equilibrium

Field-line tracing is calculated to check the accuracy of the
produced magnetic flux surfaces relative to the equilibrium
magnetic flux surfaces. Since a β = 0 equilibrium has been
used, there is no magnetic field produced by plasma current,
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i.e., Bplasma = 0, the total magnetic field is just the vacuum
field, which is produced by the coils and permanent magnets
B = Bcoil + Bapprox

pm , and the Shafranov shift is zero as shown
in figure 12. The field-line tracing results indicate that the
vacuum flux surface fits the target equilibrium magnetic flux
surfaces quite well. The relative difference of the rotational
transform at the plasma surface (the last closed flux surface)
is only Δι/ι = 0.49%, which verifies the validity of the design
algorithm.

The field-line tracing is calculated in the Carte-
sian coordinate system with an improved six-order
Runge–Kutta algorithm [20] following the field-line equation
dBx/dx = dBy/dy = dBz/dz. For each point on the trac-
ing trajectory, the magnetic field is calculated based on the
Biot–Savart law for the coils and the surface magnetic charges
method for the permanent magnets.

5. Discussions and summary

By using permanent magnets, it has been proven possible
to build optimized stellarators with extremely simple coils
[6, 8, 9]. In this paper, a new algorithm has been proposed for
the design of the permanent magnets. It mainly has three new
features:

(a) The surface magnetic charges method [17] has been intro-
duced in this algorithm to calculate the magnetic field pro-
duced by the permanent magnets. Compared with other
methods, such as the surface-current-potential method [8]
and magnetic-dipole-moment method [9], this method is
more suitable for the design of permanent magnets with
varying thickness.

(b) The permanent magnets are designed through progres-
sively optimization of the thickness distribution with 2D
Fourier decomposition of the thickness function. The
Fourier components are selected according to a spectral
amplitude truncation of the 2D Fourier transformation of
the normal field on the plasma surface.

(c) To solve the inverse problem, the Fourier coefficients
of the magnet thickness function are computed through
matrix division operation based on the least square prin-
ciple [19].

For engineering implementations, this new design
algorithm has several advantages:

(a) All permanent magnet pieces have the same remanence
Br, which greatly simplifies the manufacture of the mag-
nets, especially the magnetizing process and precision
control. The cost is thus reduced.

(b) Only one single layer of permanent magnets is installed
perpendicular to the winding surface, which greatly sim-
plifies the assembly process and maintenance. The per-
manent magnets can be easily inserted into the cells of a
gridded frame attached to the winding surface and fixed
with springs from the back.

(c) Since there is only one single layer of magnets, for each
grid location (θ,φ) on the winding surface, there is no
reversed magnetizations or vacancies in between magnet

layers, as in the previous designs [8, 9]. This may reduce
the redundancy in the usage of magnet material. To fur-
ther reduce the total amount of the magnet material usage,
relaxing the magnet orientation is required.

(d) In this work, a dense mesh (120 × 240) has been used
in the computation to improve the field design accuracy.
However, this design allows for a much coarser mesh for
the magnet distribution during engineering implementa-
tion. Since the outer surface ∂Dh of the permanent mag-
nets constitutes a continuous surface, it can be re-divided
into a much coarser mesh to reduce the number of magnet
pieces and simplify the engineering implementation.

(e) Although establishment of the 2D Fourier base function
database needs a relatively long computational time, it
only needs to be computed once. The rest part of the
algorithm is rather fast.

Although we have only shown the design results for a quasi-
axisymmetric stellarator, the new algorithm can be applied
to any configurations. The design solution obtained with this
algorithm could be a relatively good initial guess for fur-
ther nonlinear optimization with more sophisticated codes. For
future work, further development in the algorithm is required
to relax the constraint on the orientation of the permanent mag-
nets to reduce the total volume of the magnets and allow stay-
away zones to incorporate ports. The total volume of magnets
used depends on the grids of magnet distribution. Given the
same grids, in principle relaxing the constraint on the mag-
net orientation would allow the total volume of magnets to
be reduced, as it would make use of the effect of Halbach
array [11]. However, if the grids are different, the result may
be opposite. For example, the results of Zhu et al [9] shows
that with the same grids, compared with the perpendicular
only solution, an orientation-optimized solution uses less mag-
nets. However, with the so-called ‘curved bricks’ grids, an
orientation-optimized solution uses more magnets than the for-
mer two solutions. On the other hand, an arbitrary orientation
of the magnets would dramatically increase the difficulty and
cost of permanent magnet manufacturing.

The feasibility of using permanent magnets in reactor-size
stellarators for fusion energy application is still debatable. One
should consider the fact that the permanent magnets have to
be placed outside the vacuum vessel which will be at least
1 m away from the plasma as there is a breeding blanket in
between. To achieve tritium self-sufficiency, a breeding blan-
ket of at least 1 m thick is required [21]. The field strength
produced by the permanent magnets on the plasma surface
is limited by the maximum achievable remanence Br of the
material, which is less than 1.59 T even at liquid nitrogen tem-
perature for currently commercially available magnets such as
Pr–Fe–B and Nd–Fe–B [22], except for some special mate-
rial such as Fe16N2 with Br up to 2.9 T [23]. Although the
permanent magnets are used only to compensate the normal
field on the plasma surface, which is typically one order of
magnitude smaller than the strong background field, it is still
very challenging. However, we can use permanent magnets to
compensate part of the normal field or produce part of the rota-
tional transform, while we still use 3D modular coils instead of
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the identical circular planar coils. Even though, the coil com-
plexity can be substantially reduced, which will greatly facili-
tate the machine construction and cost reduction. Furthermore,
higher field strength can be achieved for a reactor-size stel-
larator as the mechanical stresses in the coils and the support
structure of the coils are reduced.

At liquid nitrogen temperature, permanent magnet mate-
rials, such as Pr–Fr–B, have a higher remanence Br

(up to 1.59 T) and intrinsic coercivity Hcj (larger than 7 T)
[22], supposing that the permanent magnets are contained in a
cryostat. We note that the demagnetization is mostly effective
when the applied background magnetic field is in the opposite
direction of the magnet magnetization. However, the projec-
tion of the background field in the opposite direction of the
magnet magnetization is usually much smaller than the back-
ground field for most permanent magnets, especially in an
n = 2 quasi-axisymmetric configuration, such as the ESTELL,
where the maximum ratio of the projection to the background
field is only about 20%. This may imply that the magnets could
maintain magnetization in a relatively strong background field.
More study is required to clarify this point.

The magnetic field strength produced by permanent mag-
nets appears to be insufficient for a self-sustained fusion reac-
tor. However, it may be sufficient for a fusion neutron source
with a neutron wall loading of �0.2 MW m−2, corresponding
to a neutron flux rate of �9 × 1016 m−2 s−1, which only needs
a shielding blanket of �0.3 m thick [24]. Furthermore, a big
advantage of using permanent magnets relative to copper coils
is steady state operation without energy consumption. Com-
pared with superconducting magnets, permanent magnets are
much inexpensive. Stellarators with permanent magnets and
simple superconducting coils may thus open up a promising
new avenue for the development of less-expensive steady-state
fusion neutron sources.
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