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Abstract
We derive the balance equation for the Favre averaged angular momentum in toroidal not
necessarily axisymmetric magnetic field equilibria. We find that the components of angular
momentum are given by the covariant poloidal and toroidal components of E×B and parallel
flow velocities and we separately identify all relevant stress tensors, torques and source terms
for each of these components. Our results feature the Favre stress generalisations of previously
found Reynolds stresses like the diamagnetic or parallel E×B stress, as well as the density
gradient drive term. Further, we identify the magnetic shear as a source of poloidal E×B
angular momentum and discuss the mirror and the Lorentz force. Here, we find that the
geodesic transfer term, the Stringer-Winsor spin-up term and the ion-orbit loss term are all part
of the Lorentz force and are in fact one and the same term.

Discussing the relation to angular velocity we build the inertia tensor with the help of the first
fundamental form of a flux-surface. In turn, the inertia tensor is used to construct a flux-surface
averaged rotational energy for E×B surface flows of the plasma. The evolution of this
rotational energy features a correction of previous results due to the inertia tensor. In particular,
this correction suggests that density sources on the high-field side contribute much more to
zonal flow energy generation than on the low field side.

Our derivation is based on a full-F, electromagnetic, gyro-kinetic model in a long-wavelength
limit. The results can be applied to gyro-kinetic as well as gyro-fluid theories and can also be
compared to drift-kinetic and drift-fluid models. Simplified cases for the magnetic field
geometry including the axisymmetric purely toroidal and purely poloidal magnetic fields are
discussed, as are the angular momentum balance of the electromagnetic fields, the ion-orbit loss
mechanism and the parallel acceleration.

Keywords: Reynolds stress, Favre stress, zonal flows, ion orbit loss, parallel acceleration,
gyro-kinetic, flux coordinates
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1. Introduction

The double periodicity of a toroidal magnetic field configura-
tion can be associated with two rotational degrees of freedom:
toroidal and poloidal rotation. In a toroidally confined plasma
both toroidal and poloidal rotation are observed and subject to
intensive research.
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Studies of toroidal rotation favour the toroidally symmetric
tokamak case, where the symmetry leads to the exact conser-
vation of the collective3 canonical angular momentum [1–3].
Of particular interest is the so-called intrinsic rotation, which
refers to the ability of the plasma to spontaneously rotate
without application of an external torque like neutral beam
injection [4–6]. This is an important topic because toroidal
rotation stabilizes the plasma against instabilities like the res-
istive wall mode.

The ideal toroidal symmetry of a tokamak is broken in
stellarators and in reality also in tokamaks due to magnetic
ripple effects from external field coils spacing. In fact, stel-
larator physics is different from tokamaks in some important
aspects [7]. Neoclassical transport levels are much higher in
a stellarator than in a tokamak even though stellarator optim-
ization aims at reducing these levels down or below turbulent
transport levels. More importantly however, the exact invari-
ance of toroidal angular momentum is lost in a stellarator due
to the lack of axial symmetry4. It is argued that in this case
it is impossible for the plasma to rotate as fast as in (quasi-)
axisymmetric devices [8, 9] since the radial electric field is
restricted by the ambipolarity condition but that zonal flows
may still develop.

Poloidal angular momentum, just as toroidal angular
momentum, has two components in a general magnetic field,
one stemming from the parallel velocity projected to the pol-
oidal direction u∥b̂ · eϑ, the other from the drifts perpendic-
ular to the magnetic field u⊥ · eϑ (toroidal momentum ana-
logously with eφ). Here, u∥ ≡ u · b̂ is the parallel flow velo-

city, u⊥ ≡ b̂× (u× b̂) is the perpendicular flow velocity, b̂
is the magnetic unit vector and eϑ and eφ are the covariant
poloidal and toroidal base vectors. In reverse this means that
both parallel velocity as well as the perpendicular drifts con-
tribute to both toroidal as well as poloidal rotation. This is
simply the geometrical observation that parallel and perpen-
dicular directions versus poloidal and toroidal directions are
different basis vectors for a flux-surface. This being said, the
poloidal component of E×B velocity uE,ϑ ≡ uE · eϑ gains
significant interest because of its role in the formation of
a transport barrier during the L-H transition [10–12]. The
high confinement mode is accompanied by a narrow poten-
tial well just inside the separatrix of a diverted magnetic
field geometry. The associated radial electric field drives a
strongly sheared and flux-aligned E×B mean flow, which
suppresses turbulence and thus reduces the radial flow of
particles and heat out of the confined region. ThisE×B shear
flow is believed to emerge out of turbulent fluctuations via
the Reynolds stress, yet other mechanisms like the ion-orbit
loss mechanism [13–15] or the Favre stress and background
density gradient drive [16] are currently under discussion as

3 After species and particle summation - individual particles exchange
momentum through fluctuating electromagnetic fields.
4 Axisymmery, axial symmetry and toroidal symmetry are used interchange-
ably throughout this manuscript.

well. Recent results suggest that the latter significantly alter
the generation mechanism of E×B zonal flows for high
density fluctuation amplitudes and steep density gradients
[16, 17].

It is instructive to introduce rotation also from a purely
mechanical perspective. Consider a particle of mass m
confined to a toroidal surface. Its Lagrangian reads Lp =
m(R2φ̇2 + a2ϑ̇2)/2 with the geometrical toroidal angle φ and
poloidal angle ϑ. In an ideal torus the distance from the major
axis R(ϑ)=R0+acosϑ, with R0 the major radius, is independ-
ent of the geometric toroidal angle φ. The distance from the
minor axis a= a0 remains the minor radius a0. The Euler–
Lagrange equations directly yield the conservation of toroidal
angular momentum L̇φ = 0 with Lφ = mR2φ̇. This is a con-
sequence of the independence of R and a of the toroidal angle
φ. We then have φ̇= Lφ/m(R0 + acosϑ)2. Notice that the
angular frequency φ̇ is higher on the torus inside ϑ=π than
on the outside ϑ= 0, which we intuitively expect. In contrast,
the equation for the poloidal angle is given by the non-linear
differential equation ϑ̈=−L2φ sinϑ/m2a4(R0/a+ cosϑ)3. We
observe that the poloidal angularmomentum is not a conserved
quantity for Lφ ̸= 0. Furthermore, on a generally shaped tor-
oidal flux-surface like that of a stellaratorR as well as a depend
on both φ and θ. There, neither toroidal nor poloidal angular
momenta are conserved and ϑ and φ obey a coupled set of
non-linear differential equations.

In this contribution we calculate the toroidal and poloidal
angular momentum balance separately for both the E×B
and the parallel velocity part. Previous work is mostly restric-
ted to toroidal symmetry [1–3], simplified magnetic field geo-
metry [16, 18–20] or delta-f modelling [18–20]. Here, we are
interested in how the angular momentum anchors to the back-
ground magnetic field in the absence of a symmetry, what
components appear in the complete stress tensor beside the
ever present Reynolds stress and the impact of high fluctuation
amplitudes and small gradient length scales.

Our derivation rests upon two pillars: (i) a full-F gyro-
kinetic formalism, where finite Larmor radius and polariza-
tion effects are taken in the long-wavelength limit and (ii)
a drift ordering of the resulting energy-momentum balance
itself. The long-wavelength limit is a way to obtain closed
expressions in the energy-momentum balance. Themain effect
of the full-F formalism is the appearance of the density inside
flux-surface averages. In order to present the main nonlin-
earities in a convenient form we introduce the Favre aver-
age - a density weighted flux-surface average [16]. As a nat-
ural consequence, the Favre stress emerges, which generalizes
the conventional Reynolds stress. The drift ordering is neces-
sary to neglect geometric correction terms that would other-
wise clutter the resulting expressions and to easily identify
fluid moments from velocity space integrals. However, our
momentum balance equations are valid only up to order three
within this ordering.

The magnetic field geometry is arbitrary and we in
particular do not invoke a toroidal symmetry. Thus, as long
as the orderings hold, our results are applicable to various
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devices, including tokamaks and stellarators, the reversed field
pinch and field-reversed configurations. Further, we make no
assumptions on the form of the gyro-kinetic distribution func-
tion and our results thus apply to gyro-kinetic as well as gyro-
fluid models. At the same time we allow a direct comparison to
drift-reduced fluid equations due to the applied drift ordering.

We carefully recall the definition of angular momentum
from the underlying particle Lagrangian in suitable coordin-
ates and construct the inertia tensor with the help of the first
fundamental form of general flux-surfaces. This enables us to
then construct and discuss a rotational energy balance. Within
the energy balance equations we keep terms up to order four
in the drift ordering.

This manuscript is divided into the following parts. In
section 2 we review the magnetic field representation via flux-
coordinates in order to setup suitable poloidal and toroidal
angle coordinates. Our main derivation then proceeds with the
definition of the gyro-kinetic action in section 3, which encom-
passes our assumptions on the model, specifically the long-
wavelength limit. The drift ordering scheme is presented in
section 4. The latter enables us to then derive the poloidal and
toroidal angular momentum balance up to order three within
this ordering and in particular replace gyro-fluid with regular
fluid moments in the result. In section 5 we apply the previ-
ously proposed Favre decomposition [16] in order to identify
the signature of relative density fluctuations in both known and
novel components of the stress tensor. In section 6 we derive
the relation between angular momentum and angular velocity
and identify the inertia tensor. Furthermore, we find the time
evolution for the rotational energy using the previously derived
momentum balance. Finally, we discuss the significance of our
results on various topics discussed in the literature in section 7,
including the electromagnetic field momentum, drift-fluid
models, the ion orbit loss mechanism and the transition to
simplified geometries. A provides a formulary intended as
a quick reference list of the most often used relations and
notations.

2. Preliminary: the magnetic field in
flux-coordinates

A toroidal magnetic field equilibrium can be represented
by so-called flux-coordinates ρ,ϑ,φ ([21] calls them mag-
netic coordinates) where the magnetic field lines appear
straight

B2 = dψp ∧ dφ+ dψt ∧ dϑ (1)

Here, ψp(ρ) is the poloidal flux and ψt(ρ) is the toroidal flux
andwe have dψp = ι(ρ)dψt wherewe introduced the rotational
transform ι. Further, ρ is any radially increasing flux label, ϑ is
the poloidal flux angle and φ is the toroidal flux angle coordin-
ate. Note that ϑ increases in the counter-clockwise direction in
the poloidal plane while φ increases clockwise if viewed from
above to get a right-handed coordinate system. We emphas-
ize that in general φ and ϑ are different from the geometric

Figure 1. Numerically integrated [23] flux coordinates for an
axisymmetric equilibrium. The contours of the poloidal flux label
ψp are given in colour with white markers for the separatrix and the
starting contour for ϑ integration, while the lines of constant
poloidal flux angle ϑ are given in white as well.

angles. In this manuscript we always refer to flux angles when
speaking of the toroidal and poloidal angles or directions and
will highlight when these angles coincide with the geometric
angles.

There are many different toroidal flux coordinate systems,
notably Hamada and Boozer coordinates [21, 22]. In figure 1
we show an example of a numerically integrated [23] flux-
coordinate system for an axisymmetric tokamak magnetic
field. Here, we show the lines of constant ψp in colour and the
lines of constant poloidal flux angle ϑ in white. The toroidal
flux angle φ coincides with the geometric angle.

The magnetic field B2 = dA1 can be written as a total dif-
ferential of the magnetic potential

A1 = ψpdφ+ψtdϑ (2)

which notably identifies Aφ = ψp(ρ) and Aϑ = ψt(ρ). At the
same time dB2 = d ◦ dA1 = 0 immediately as d ◦ d= 0 for the
exterior derivative d. This is the coordinate-free expression of
vanishing divergence.

We formulate equations (1) and (2) in terms of differen-
tial forms, which we here introduce because the gyro-kinetic
theory heavily relies on them (for an excellent introduction to
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differential geometry for physicists see Frankel’s text [24]).
An interesting (if somewhat aloof) property of using differen-
tial forms is that they (and therefore the magnetic field) can
be defined without the existence of a metric tensor. Recall for
example that the 1-form dϑ symbolizes the planes that are con-
structed by keeping ϑ constant and varying ρ and φ, which is
a purely topological operation. In contrast, the gradient basis
vector ∇ϑ is the vector that is perpendicular to the planes of
constant ϑ, which requires a metric to define.

We are of course aware of the practicality that the physi-
cist’s notation of Equation (1) provides

B=∇ψp×∇φ+∇ψt×∇ϑ (3)

We are here able to identify the poloidalBp :=∇ψp×∇φ and
toroidal Bt :=∇ψt×∇ϑ parts of the magnetic field vector B.
With the choice of signs in equation (3) and assuming ∇ψp
points radially outwards, we get a left-handed field-line wind-
ing when going in the positive φ direction since Bp ∼−eϑ.
Furthermore, notice the useful properties

∇ψp = eφ ×B (4)

∇ψt = eϑ ×B (5)

where eφ and eϑ are the covariant basis vectors, that is the vec-
tors that generate the directional derivatives along φ and ϑ, or
in other words, eφ is the tangent vector to the line that we get
when keeping ρ and ϑ constant and varying φ (eϑ analogous).
We emphasize that we mean these two vectors when we speak
of toroidal eφ and poloidal eϑ directions in contrast to the∇φ
and∇ϑ directions. For example, in figure 1 eφ points perpen-
dicularly out of the plane while eϑ is tangent to the contours
of ψp (!) and in particular does not point in the same direction
as ∇ϑ, which has component out of the flux-surface as well.

When we deal with a symmetric field independent of the
geometric toroidal angle, we will choose φ as the geomet-
ric toroidal angle and keep ϑ as a flux-coordinate with ∇ϑ ·
∇φ=∇ρ ·∇φ= 0 as we do in figure 1. This type of coordin-
ates is known as symmetry flux or PEST coordinates [25].
Notice that we do not use the geometric poloidal angle since
we want to keep the form equation (1). A useful property of
this type of coordinate is that qR2/

√
g≡ I(ρ) is a flux function,

which allows us to write

B= I(ρ)∇φ+∇ψp×∇φ (6)

Last, note that all flux coordinates are problematic when an
X-point with ∇ψp = 0 is present in or close to the domain of
interest. In fact, any coordinate system with a flux label as the
first coordinate is problematic when an X-point is present [26].
On the one hand the poloidal flux ψp is continuous and well-
defined across the separatrix. However, the toroidal flux ψt
as well as the poloidal flux angle ϑ are only well-defined up
to but not including or across the separatrix and furthermore
ι−1 diverges on the separatrix. This is expected since the pol-
oidal component of B vanishes at the X-point. In practice,

the divergence manifests for example in figure 1 where the
coordinate lines for ϑ are distorted when getting close to the
separatrix on the low field side of the tokamak.

Last, we introduce the flux surface average (see for example
[22]) as an average over a small volume - a differential shell
centered around the flux-surface. We define

⟨ f ⟩(ψp) :=
∂

∂v

ˆ
Ω

dV f=
ˆ
ψp

f(x)
|∇v|

dA (7)

where we define v(ψp) :=
´ ψp

0 dV as the volume flux label.
In flux coordinates we have dA=

√
g|∇ρ|dϑdφ. The average

fulfills the identity

⟨∇ · j⟩= ∂

∂v
⟨j ·∇v⟩ (8)

Also note that for any divergence free vector field ∇ · j= 0
and a flux function f (ψp) we have

⟨∇ · (jf)⟩= 0 (9)

which is proven straightforwardly.
In summary, using flux coordinates for the following deriv-

ation defines suitable angle coordinates as well as poloidal and
toroidal directions. We expect the resulting expressions to be
valid for any flux coordinate system within the closed field-
line region up to the separatrix. We remark that the numerical
issues of flux coordinates close to the separatrix do not affect
the theoretical results presented here.

3. Fundamentals of Hamiltonian dynamics

3.1. Model definition

In this section we define our gyro-kinetic model and discuss
the approximations that go into it. Our goal is to set up a
model suitable for edge and scrape-off layer conditions. Lit-
erature on the derivation of gyro-kinetic models based on
Lie-transform perturbation theory include the rather technical
review [27] and references therein. A friendlier tutorial can be
found in [28] or the more recent [29]. Here, we start directly
with the gyro-centre Poincaré 1-form expressed in the trans-
formed phase-space coordinatesZ := {X,w∥,µ,θ}, with gyro-
centre coordinate X, parallel canonical moment w∥, magnetic
moment µ, gyro-angle θ

γ :=
(
qA+mw∥b̂

)
· dX+

m
q
µdθ (10)

with species mass m and charge q and we omit the species
label.We have themagnetic background potentialA · dX≡A1

from equation (2) and the background magnetic field unit
vector b̂ := B/B. In flux-coordinates equation (10) explicitly
reads

γ = (qψt+mw∥bϑ)dϑ+(qψp+mw∥bφ)dφ+
m
q
µdθ (11)
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We remark that this 1-form is already enlightening because it
immediately identifies

γφ = qψp+mw∥bφ (12)

as the toroidal angular momentum and

γϑ = qψt+mw∥bϑ (13)

as the poloidal angular momentum. Recall here that angular
momentum is defined as the canonically conjugate momentum
to the angle coordinate. In anticipation of the following discus-
sion we here remark that qψp and qψt will lead to the toroidal
and poloidal components of the E×B velocity contribution.
The parallel velocity contribution is given by the two compon-
ents of the magnetic field unit vector bϑ and bφ as expected.
Unfortunately however, the definitions for toroidal and pol-
oidal angular momentum in equations (12) and (13) are not
coordinate invariant and therefore care must be taken when
comparing results from different coordinate systems. This is
evident since the value of bφ and bϑ depend on the choice
of coordinates. Physically, we attribute this to different refer-
ence points/axes for the rotation that different angle coordin-
ates entail.

The symplectic 2-form, defined by the Poincaré 1-form,
w := dγ, defines the geometry of phase-space much the same
way themetric tensor g defines the geometry of ordinary space.
The difference is that ω defines areas instead of distances
and is skew-symmetric instead of symmetric (see [24]). In 6-
dimensional phase-space coordinates we have

ωij =
∂γj
∂Zi

− ∂γi
∂Zj

ω =


−q(B∗×) −mb̂ 0 0

mb̂
T

0 0 0
0 0 0 m

q

0 0 −m
q 0

 (14)

qB∗ := qB+mw∥∇× b̂ (15)

B∗
∥ = B∗ · b̂= B+

mw∥

q
(∇× b̂)∥ (16)

Note the covariant vector components bi (with b̂
T
:=

(b1,b2,b3)) and the appearance of the determinant of the met-
ric tensor g in the definition of the cross-product (B∗×)ij :=√
gεikjB∗k with contravariant components B

∗k.
The phase space volume vol := ω ∧ω ∧ω =

√
det(ω)d6Z

reads

√
det(ω)d3Xdw∥dµdθ = m2√g|B∗

∥|d
3Xdw∥dµdθ (17)

Notice that the volume form is proportional to |B∗
∥| not just

B∗
∥ as often noted since it needs to remain positive. More

importantly, it is apparent that the coordinate system possesses

a (coordinate) singularity at mw∥ =−qB/(∇× b̂)∥, where
B∗
∥ = 0 and thus det(ω)= 0. This destroys the symplecticity

of the 2-form ω, the volume form Eq (17) vanishes and the
inverse of ω diverges (and thus the equations of motion). It is
questionable how we can deal with this singularity especially
when we later integrate over the phase-space volume to form
the field Equations. Furthermore, when deriving gyro-fluid
models terms ∝ (B∗

∥)
−1 prevent identifying velocity space

moments that involve B∗
∥ in the volume element. This problem

is often ignored in the literature or circumvented by requiring
(∇× b̂)∥ = 0 and we will follow this approach in this work.
For a low-β stellarator ∇×B= 0, however for general toka-
mak magnetic fields the requirement is only approximately
fulfilled. As we will show in section 7.1 the problem is also
resolved by simplifying the magnetic field to purely toroidal or
poloidal. Interestingly, the requirement (∇× b̂)∥ = 0 relates
to the integrability condition for vector fields perpendicular
to the magnetic field. The Frobenius theorem [24] states that
planes perpendicular to b̂(x) everywhere exist in the sense that
there exist functions λ(x) and f(x) such that λ(x)b̂(x) =∇f if
and only if (∇× b̂) · b̂= 0. In other words we surmise that the
existence of drift-planes is a prerequisite for gyro-kinetic and
-fluid models. Our Hamiltonian reads

H : =

(
mw∥ − qA1,∥

)2
2 m

+µB+ qΨ

≡ 1
2
mw2

∥ +µB+Hf (18)

with the effective gyro-centre potentials

qA1,∥ := qA1,∥ +
mµ
2qB

∆⊥A1,∥ (19)

qΨ := qϕ+
mµ
2qB

∆⊥ϕ−
1
2
m

(
∇⊥ϕ

B

)2

(20)

where we define the field HamiltonianHf := qΨ− qw∥A1,∥ +
q2A2

1,∥/2 m to contain all terms dependent on the electromag-
netic field perturbations ϕ and A1,∥. The potential ϕ is in fact
a first order term where the zeroth order ϕ0 has been neg-
lected. The first order perturbation A1,∥ is not to be confused
with the zeroth order magnetic field potential A1. Finally, see
table A1 in A for definitions of ∇⊥ and ∆⊥. Here, we fol-
low [1, 2] and use the Hamiltonian formulation with mw∥ :=
mv∥ + qA1,∥ such that the electromagnetic field variations
appear in the Hamiltonian only and do not disturb the sym-
plectic geometry (10). We note that we

(a) neglect all terms k3⊥ρ
3
0 with gyro-radius ρ0 :=

√
2Bµm/eB

and higher in the Hamiltonian (this especially neglects the
second order guiding centre contributions, which accord-
ing to [30] leads to guiding centre drifts in the polariza-
tion equation). In particular, both the polarization contri-
bution (the last term in equation (20)) as well as the finite
Larmor radius effects are taken in the long-wavelength
limit [31].

5
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(b) neglect compressional Alfvén waves entering through
A1,⊥ [32]

(c) neglect all terms non-linear in the magnetic potential A1,∥
(except in the parallel kinetic energy). This approximation
implies the absence of A1,∥ terms in the polarization and
of ϕ terms in the parallel Ampère law [32] Equation and
vice versaϕ terms in the parallel Ampère law and therefore
decouples the two equations, which is numerically desir-
able 5

Our model is comparable to Reference [33] with the dif-
ference that we additionally take the long-wavelength limit in
the gyro-average operator. We note that with our approxima-
tions the Hamiltonian formulation with w∥ is entirely equival-
ent to the symplectic formulation using v∥ in the sense that the
resulting equations are the same. The Hamiltonian formula-
tion is more convenient here since γ is time-independent. We
also remark that the gyro-average and polarization corrections
in our gyro-kinetic model equation (18) resemble the second
order guiding centre transformation terms in guiding-centre
models [34, 35]. However, since we logically start with and
approximate a gyro-kinetic model we will keep referring to
our model as gyro-kinetic.

We introduce the gyro-kinetic particle distribution function
F(Z, t)≡ F(X,w∥,µ, t) (independent of gyro-angle θ, which is
averaged out). The Vlasov equation states

d
dt
F=

∂F
∂t

+ Żi
∂F
∂Zi

= S (21)

Here, S is a general kinetic source term in gyro-centre phase-
space S(X,w∥,µ, t). With the kinetic source function S we
formally represent effects like for example non-elastic colli-
sions, plasma-neutral interactions, heating of the plasma, or
plasma fuelling and bear in mind that detailed expressions for
S are not part of this manuscript. We call S a source under-
standing that it can act as a sink as well.

Next, with the 1-form γ in equation (10) and the Hamilto-
nian H in equation (18) we can define a particle Lagrangian

Lp := γiŻ
i−H (22)

Together with the volume form in equation (17) and the phase
space distribution function F we can then define the sys-
tem Lagrangian Lp :=

∑
s

´
vol(Z)F(Z, t)Lp(Z, Ż, t), where

we sum over species. Finally, we close the system with a field
Lagrangian and propose the action integral

S :=
∑
s

ˆ
dt
ˆ

dVdw∥dµdθm
2BF(γiŻ

i−H)

−
ˆ

dt
ˆ

dV
(∇⊥A1,∥)

2

2µ0
(23)

5 Desirable might be an understatement. We are not aware of any successful
attempts to numerically solve the completely coupled set of equations in a
turbulence simulation.

pagebreak where dV :=
√
gd3X is the spatial volume form.

The action in equation (23) plus the Vlasov equation (21) are
the central relations in every gyro-kinetic model. They com-
pletely define the system that we investigate. In particular this
means that S contains all approximations to our model and
that the following calculations are exact. We remark that

(a) the neglect of the electric energy E2 in the field part of
equation (23) leads to quasineutrality (that is a vanishing
right hand side in equation (42))

(b) the magnetic field energy in (23) neglects the A1,∥(∇×
B)∥ contribution from the backgroundmagnetic field. This
leads to the omission of the background equilibrium cur-
rent in the Ampère equation (43). This approximation is in
line with (∇× b̂)∥ = 0.

3.2. The Vlasov-Maxwell equations

In the Lagrangian picture [36] the equations of motion can
be retrieved from the action equation (23) by expressing
Z= Z(Z0, t0; t), using F(Z, t) = F0(Z0, t0) by the Vlasov equa-
tion (21), taking the integration to the initial positions and
time6 and then varying δS/δZ= 0. This indeed recovers the
Euler–Lagrange equations

d
dt
∂Lp
∂Żi

−
∂Lp
∂Zi

= 0 (24)

The application of the Euler Lagrange equations (24) yields
the Hamilton equations of motion (using dγi/dt= Żj∂γi/∂Zj)

ZiHωij =−∂jH ↔ iZω =−dH (25)

where we define ZiH ≡ Żi as the components of the Hamilto-
nian vector field on phase space. Here, iZ is the inner product
with the vector field ZH and d is the total differential. The
particle trajectories are given by the streamlines of ZH (with
J :=ω−1)

dZi

dt
= ZiH = Jij

∂H
∂Zj

(26)

The time-derivative of any phase-space function along the tra-
jectory is then given by

d
dt
f(Z, t) =

∂f
∂t

+ Żi
∂f
∂Zi

=
∂f
∂t

+ZiH
∂f
∂Zi

(27)

Here and in the following we use Ż synonymously with ZH . In
particular, the derivative of the Hamiltonian gives

d
dt
H(Z, t) =

∂H
∂t

+ZiH
∂H
∂Zi

=
∂H
∂t

(28)

where we use equation (26) and the antisymmetry of J.

6 Technically, here we also need to know that the volume form is conserved
in time B(z)d6Z= B(z0)d6z0, something that we will need to show explicitly.
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Explicit expressions for the inverse of the symplectic 2-
form equation (14) and the gradient of the Hamiltonian (18)
are

J=


1
qB (b̂×) 1

mBB
∗ 0 0

− 1
mBB

∗T 0 0 0

0 0 0 − q
m

0 0 q
m 0

 (29)

(∂H)T =
(
µB∇ lnB+∇Hf mv∥ B# 0

)
(30)

with (b̂×)ij :=
√
g−1ϵikjbk and ∇Hf =−v∥q∇A1,∥ + q∇Ψ.

The µ component of ∂H contains corrections due to the
fluctuating electric field B# := B+m∆⊥ϕ/2q2B. An explicit
expression for the components of ZH (or Ż) can now be formed
given equations (29) and (30) (with mv∥ ≡ mw∥ − qA1,∥)

Ẋ=
1
B

(
B∗v∥ +

1
q
b̂×∇H

)
=
1
B

(
Bv∥ +

mv2∥
q

∇× b̂+
µB
q
b̂×∇ lnB

+ v∥∇×A1,∥b̂+ b̂×∇Ψ
)

(31)

mẇ∥ =− B∗

B
·∇H

=− 1
B

(
B+

mv∥
q

∇× b̂+∇×A1,∥b̂
)

· (µB∇ lnB+ q∇Ψ)+ qẊ ·∇A1,∥ (32)

µ̇= 0 (33)

θ̇ =
qB
m

+
∆⊥ϕ

2B
(34)

The phase space volume vol= ω ∧ω ∧ω is conserved along
the particle trajectories

d
dt
vol= LZvol= (diZω)∧ω ∧ω = 0 (35)

where the Lie derivative on differential forms is given by
Cartan’s formula [24] LZα= d(iZα)+ iZdα and per definition
diZω =−d ◦ dH= 0. In coordinates d(iZvol) = 0 reads

1√
det(ω)

∂i

(√
det(ω)ZiH

)
= 0 (36)

The conservation of volume thus translates to a vanishing
divergence of the Hamiltonian vector field in phase space

∇ · (BẊ)+ ∂

∂w∥
(Bẇ∥) = 0 (37)

Notice that volume conservation does not mean that B is con-
served along particle trajectories, we rather have Ḃ= Ẋ ·∇B.

The conservation of the particle distribution function
F(X,v∥,µ, t) is expressed by the gyro-kinetic Vlasov equation
dF/dt= S, which together with phase space volume conserva-
tion (37) reads in conservative form

∂ (BF)
∂t

+∇ ·
(
BFẊ

)
+
∂
(
BFẇ∥

)
∂w∥

= BS (38)

TheVlasov-equation equation (38) together with the equations
of motion equation (31)-(33) forms the first half of the Vlasov-
Maxwell system.

In order to derive the Maxwell equations we first define the
velocity space moment operator [37]

∥ζ∥ :=
ˆ

dw∥dµdθm
2BFζ (39)

where ζ(X,w∥,µ, t) is any function defined on phase-space and
the integration encompasses the entire velocity space. Notice
that we name the first few fluid moments N := ∥1∥, NW∥ :=
∥w∥∥ and P⊥ := ∥µB∥ and give a comprehensive list in A.2.

We also define the moment operator for the source func-
tion S analogous to the velocity space moment operator for
the gyro-kinetic distribution function F in equation (39)

∥ζ∥S :=
ˆ

dw∥dµdθm
2BSζ (40)

Analogous to the moments of F we name the source moments
SN := ∥1∥S, SP⊥ = ∥µB∥S, etc

Using equation (38) together with the fact that ∂/∂t and∇
commute with the velocity integral and F vanishes for w∥ =
±∞ we find the important identity [37]

∂

∂t
∥ζ∥+∇ · ∥ζẊ∥=

∥∥∥∥dζdt
∥∥∥∥+ ∥ζ∥S (41)

The variation of the action (23) with respect to ϕ(x) yields the
quasi-neutrality equation

δS
δϕ

=
δ

δϕ(x)

∑
s

ˆ
dVdw∥dµdθm

2BFH= 0 (42)

and with respect to A1,∥ the parallel Ampère law

δS
δA1,∥

=
δ

δA1,∥(x)

∑
s

ˆ
dVdw∥dµdθm

2BFH

+
δ

δA1,∥(x)

ˆ
dV

(∇⊥A1,∥)
2

2µ0
= 0 (43)
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where we used that γ does not depend on either ϕ or A∥. Now,
recall the variational derivative. For each ζ ∈ {ϕ,A1,∥} and
H= H(ζ,∇⊥ζ,∆⊥ζ) we have

δ

δζ(x)

ˆ
R3

d3x′FBH= FB
∂H
∂ζ

−∇ ·
(
hFB

∂H
∂∇⊥ζ

)
+∆⊥

(
FB

∂H
∂∆⊥ζ

)
(44)

Notice the appearance of FB inside the divergence/Laplace
operators. Carrying out the variations with the help of equa-
tion (44) in the polarization and Ampère equations (42) and
(43) and identifying the velocity space moments (39) yields7∑

s

qN−∇ ·Pgy = 0 (45)

∑
s

qNU∥ +∇ · (Mgy × b̂) =− 1
µ0

∆⊥A∥ (46)

with mU∥ ≡
(
mW∥ − qA1,∥

)
, jmag,∥ :=∇ · (Mgy

⊥ × b̂) =
(∇×Mgy) · b̂− (∇× b̂) ·Mgy and the gyro-kinetic polar-
ization and magnetization densities

Pgy :=−
∑
s

[
∇⊥

(
mP⊥

2qB2

)
+
mN∇⊥ϕ

B2

]
(47)

Mgy
⊥ :=

∑
s

b̂×∇
(
m(Q∥ +U∥P⊥)

2qB2

)
(48)

Note that the parallel component of the polarization current
jpol · b̂= ∂Pgy · b̂/∂t= 0 vanishes in equation (46). Also, the

parallel part of the magnetization density Mgy
∥ :=−∥µ∥b̂≡

−P⊥b̂/B does not contribute to the parallel magnetization cur-
rent.

In total, we now explicitly derived the equations of
the Vlasov-Maxwell system in equation (38),(45) and (46)
together with the equations of motion in (31)-(33).

3.3. Interlude: relation between gyro-fluid and fluid moments

Gyro-fluid quantities like ∥1∥= N(X, t) or ∥v∥∥= U∥(X, t) are
given in gyro-centre coordinates X and are thus not directly
comparable to the physical fluid quantities, which we denote
with lower case letters n(x, t) :=

´
d3vf(x,v, t), u∥(x, t) :=´

d3vv∥f(x,v, t) ..., where f(x,v, t) is the distribution function
in particle phase-space (and we here overburden the use of v
as the velocity on top of the volume flux-label). We need to

7 The attentive reader will notice that equations (45) and (46) are only semi-
elliptic since the projection tensor h is only positive semi-definite. Concerns
about existence and uniqueness of solutions are dealt with under ''degenerate
partial differential equations'' in the mathematical literature. In particular, the
field of stochastic differential equations contains a solution to the Dirichlet
problem, see for example Reference [38].

use the gyro-kinetic phase-space coordinate transformations
to transform between particle and gyro-kinetic phase-space
moments. Helpfully, Reference [27] relates the coordinate
transformation to the variational derivative of the action. With
our action (23) we obtain

||ξ||v = ∥ζ∥+∆⊥

(
m∥µBζ∥
2qB2

)
+∇ ·

(
m∥ζ∥∇⊥ϕ

B2

)
(49)

where ξ is ζ transformed to particle coordinates and ∥ξ∥v :=´
d3vξf is the particle phase-space moment operator. Thus,

||ξ||v is the physical fluid moment corresponding to ∥ζ∥. In
equation (49) we immediately see that the actual fluid moment
∥ξ∥v equals the gyro-fluidmoment ∥ζ∥ up to an orderO(ρ20k

2
⊥)

correction. For example the density transforms as

n= N+∆⊥

(
mP⊥

2q2B2

)
+∇ ·

(
mN
qB2

∇⊥ϕ

)
(50)

The right hand side terms appear exactly in the polarization
equation (45), which we obtained from the variational prin-
ciple. This shows that equation (45) is the gyrofluid version of
quasineutrality

∑
s qn= 0.

It is possible to invert the relation between gyro-fluid and
fluid quantities. We follow [39, 40] and explicitly express the
first two gyro-fluid quantities N and U∥ in terms of the true
fluid quantities n and u∥ in the long-wavelength limit up to
order (ρ0k⊥)2.

N= n−∆⊥

(
mnt⊥
2q2B2

)
−∇ ·

(
mn
qB2

∇⊥ϕ

)
(51)

NU∥ = nu∥ −∆⊥

(
m(q∥ + u∥p⊥)

2q2B2

)
(52)

Note that we neglect the potential part in equation (52) since
we miss the corresponding term in the Hamiltonian.

The moments of S transform back to particle phase space
analogous to equation (49). This is because the coordinate
transformation works for any phase-space function, not just
the distribution function F. For example, we have

Sn = SN+∆⊥

(
mSP
2q2B2

)
+∇ ·

(
mSN
qB2

∇⊥ϕ

)
(53)

where Sn is the true fluid particle source term.We are now able
to formulate the only constraint we have for the source term
namely that it should conserve the total electric charge via

∑
s

qSn =
∑
s

qSN−∇ ·SP = 0 (54)

where we define the polarization source

8
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SP =−
∑
s

[
∇⊥

(
mSP⊥

2qB2

)
+
mSN∇⊥ϕ

B2

]
(55)

Note that equation (54) is completely analogous to equa-
tion (45).

4. The poloidal, toroidal and parallel momentum
balance

4.1. Poloidal and toroidal E×B momentum

With the model developed in Sections 2 and 3 we are now
ready to start the derivation of the balance equations for the
angular momentum density. Keep in mind that we do not
assume a toroidal symmetry here. This prohibits us from using
Noether’s theorem to derive an exact angular momentum bal-
ance from the action equation (23)[1, 2]. Instead, we begin by
computing the time derivative of qAφ = qψp, which is the first
part of the toroidal angular momentum (12)

q
dψp
dt

= qẊ ·∇ψp

=

(
µB

b̂×∇ lnB
B

+mv2∥
b̂×κ

B

)
·∇ψp

+ qA1,∥v∥Kκ ·∇ψp−
b̂×∇ψp

B
·∇Hf (56)

where we separated the field Hamiltonian Hf . Now, to
simplify the right hand side of equation (56) we need to
relate the variational derivative to ordinary derivatives. Con-
sider a generic Hamiltonian dependenceH(ζ,∇⊥ζ,∆⊥ζ) and
η := b̂×∇ψp/B

η ·∇H=
∑

ζ∈{ϕ,A1,∥}

{
∂H
∂ζ

η ·∇ζ +
∂H

∂∇⊥ζ
·η ·∇∇⊥ζ

+
∂H
∂∆⊥ζ

η ·∇∆⊥ζ

}
In order to proceed we need to commute η ·∇ with ∇⊥ and
∆⊥. To avoid tedious geometrical correction terms we now
introduce a drift ordering [20, 41], where we order

(a) the frequency of turbulent fluctuations compared to the
ion gyro-frequency as small ω/Ωi ∼ δ2 ≪ 1, where Ωi =
eB/mi

(b) the derivatives∇k of the dynamical fields as ρi|∇k lnF| ∼
ρi|∇k lnϕ| ∼ ρi|∇k lnA1,∥| ∼ ρik⊥ ∼ δ with ion thermal
gyro-radius ρi =

√
miTi/qiB. This in particular orders the

E×B velocity compared to the ion thermal velocity as
uE/cs,i ∼ δ where cs,i =

√
Ti/mi

(c) all derivatives on the magnetic field (vectors) as L−1
B ∼

|∇ lnB| ∼ 1/R, where R is the major radius and take
ρi/LB ∼ δ3.

(d) ρi|∇∥ lnϕ| ∼ ρi|∇∥ lnA1,∥| ∼ ρi|∇∥ lnF| ∼ ρik∥ ∼ δ3 that
is parallel derivatives on the magnetic field variation scale.
This implies k∥/k⊥ ∼ δ2

Note that Reference [29] orders ρi/LB ∼ δ4. However, this
would completely neglect all curvature terms in our scheme.
In our ordering the Hamiltonian Hf (18) appears to be second
order.

We now neglect all terms of order δ4 on the right hand
side of Equation (56). With the above orderings we dir-
ectly have that ηi∇ihkl ∼ δ3 and hkl∇lη

i ∼ δ3. With this and
∂H/∂∇⊥ϕ= m∇⊥ϕ/B2 we can orderm∇⊥ϕ · ηi∇i∇⊥ϕ=
m∇⊥ϕ ·∇⊥(η

i∇iϕ)+O(δ5). With similar arguments
we can order ηi∇i∆⊥ϕ=∆⊥(η

i∇iϕ)+O(δ5). Then we
have [1]

Fη ·∇H=
∑
ζ

{
δ

δζ(x)

(ˆ
R3

d3x′FH

)
η ·∇ζ

+∇ ·
[
F

∂H
∂∇⊥ζ

η ·∇ζ +∇⊥

(
η ·∇ζF

∂H
∂∆⊥ζ

)
−2∇⊥

(
F

∂H
∂∆⊥ζ

)
η ·∇ζ

]}
(57)

This equation is a useful identity and in fact holds for any vec-
tor field that commutes with ∇⊥ and ∆⊥. It links the ordin-
ary derivative on H to the variational derivative and correction
terms that appear as exact divergences.

Summing over all species, integrating over velocity space
and inserting our Hamiltonian from equation (18) we get

∑
s

∥η ·∇H∥= 1
µ0

∆⊥A1,∥η ·∇A1,∥

+
∑
s

∇ ·
[
−mN∇⊥ϕ

B2
η ·∇ϕ+∇⊥

(
m∥µB∥
2qB2

η ·∇ϕ

)
−∇⊥

(
m∥µB∥
qB2

)
η ·∇ϕ−∇⊥

(
m∥µBv∥∥
2qB2

η ·∇A1,∥

)
+∇⊥

(
m∥µBv∥∥
qB2

)
η ·∇A1,∥

]
(58)

Now, we focus on the term qψ̇p = qẊ ·∇ψp on the left
hand side of equation (56). First we insert q into the
velocity space moment equation (41). We find ∂t∥q∥+
∇ · ∥qẊ∥= ∥q∥S. Under species summation we see that
we can identify the polarization equation (45)

∑
s qN=

∇ ·Pgy and analogously the quasineutrality for the sources
equation (54)

∑
s qSN =∇ ·SP. The next step is to

apply the flux-surface average equation (7) to obtain

∂v

{
∂t ⟨Pgy ·∇v⟩+

∑
s

〈
∥qẊ ·∇v∥

〉
−⟨SP ·∇v⟩

}
= 0. After

volume integration
´ v
0 dv (the inner integration boundary van-

ishes) and multiplying with dψp/dv we obtain

∑
s

〈
∥qψ̇p∥

〉
=− ∂

∂t
⟨Pgy ·∇ψp⟩+ ⟨SP ·∇ψp⟩ (59)

9
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which recovers the radial part of the polarization current
jpol ≡ ∂Pgy/∂t. We stress that equation (59) is an important
identity [1]. It links the derivative of the poloidal flux or in fact
the first part of the toroidal angular momentum of particles to
the polarization current and sources.

Now, we further investigate the terms appear-
ing from equation (59) by explicitly inserting
our polarization density (47) − ∂

∂t ⟨Pgy ·∇ψp⟩=∑
s
∂
∂t

[
mN∇⊥ϕ · ∇ψp/B2 + m∇⊥(∥µB∥/2qB2) ·∇ψp

]
.

The second term can be simplified using the dynamical pres-
sure equation d(µB)/dt= µBẊ ·∇ lnB in equation (41) yield-
ing ∂

∂t∥µB∥=−∇ · ∥µBẊ∥+ ∥µBẊ ·∇ lnB∥+ ∥µB∥S. We
get the useful identity

∂

∂t

〈
∇⊥

(
m∥µB∥
2qB2

)
·∇ψp

〉
−
〈
∇⊥

(
m∥µB∥S
2qB2

)
·∇ψp

〉
=

∂

∂v

〈
∇v ·∇

(
m∥µB∥
2qB2

η ·∇ϕ−
m∥µBv∥∥
2qB2

η ·∇A1,∥

)〉
(60)

One key ingredient for equation (60) is to use (a ·∇)b=∇(a ·
b)− a× (∇× b)− b× (∇× a)− (b ·∇)a to show ⟨∇ ·
(∇ψp ·∇(λu⊥))⟩ = ∂v⟨∇v ·∇ (λu⊥ ·∇ψp)⟩+O(δ4) in
our ordering. Now, we add the terms equation (58) and (60)
and use our ordering to eliminate themagnetic field derivatives
to get

∂

∂t

〈
∇⊥

(
m∥µB∥
2qB2

)
·∇ψp

〉
+ ⟨∥∇ηH∥⟩

−
〈
∇⊥

(
mSP⊥

2qB2

)
·∇ψp

〉
=
∂

∂v

〈∇vA1,∥∇ηA1,∥

µ0
− mN∇vϕ∇ηϕ

B2

〉
+
∂

∂v

〈
m∇vA1,∥∇η∥µBv∥∥

qB2
− m∇vϕ∇η∥µB∥

qB2

〉
where we use the abbreviation ∇v =∇v ·∇ and ∇η = η ·∇
and imply species summation to present this intermediate res-
ult. We also used that η commutes with ∇⊥ in our ordering
and that the flux-surface average of∇ · (ηh) vanishes exactly.

Furthermore, we replace the gyro-centre quantities by their
particle analogons, which is possible in our ordering since
the correction terms are of higher order (see equations (51)).
Finally, the term ∥A1,∥v∥∥Kκ ·∇ψp in equation (56) van-
ishes under species summation and the parallel Ampère law
to lowest order. With the help of equation (4) we then finally
arrive at

∂

∂t

∑
s

⟨mnuE,φ⟩+
∂

∂v

∑
s

⟨mnuE,φ (uvE+ uvD)⟩

− ∂

∂v

〈
B1,⊥,φ

(
1
µ0
Bv1,⊥ −Mem

⊥
,v
)〉

=−
〈(
jf×B

)
φ

〉
+
∑
s

⟨mSnuE,φ⟩ (61)

Here, we define the E×B drift uE, the grad-B drift u∇B, the
diamagnetic drift uD, the curvature drift uκ, the first order

magnetic fluctuations B1,⊥ and the electromagnetic magnet-
ization densityMem

⊥ (different fromMgy by a factor 2 and fluid
instead of gyro-fluid quantities)

uE :=
b̂×∇ϕ

B
u∇B := t⊥

b̂×∇ lnB
qB

(62)

uD :=
b̂×∇p⊥
qnB

uκ := (t∥ +mu2∥)
b̂×κ

qB
(63)

B1,⊥ :=∇A1,∥ × b̂ Mem
⊥ :=

∑
s

mb̂×∇(q∥ + p⊥u∥)

qB2

(64)
and b1,⊥ := B1,⊥/B. Equation (61) describes the evolution
of the toroidal E×B angular momentum density and is the
first result of this paper. The second term on the left side is
the average over the convective acceleration term with radial
velocity uvE+ uvD, the sum of E×B and diamagnetic velo-
city. In section 5 we will show that this term can be split
into an advective part and components of the turbulent stress
tensor. Note that the appearance of the diamagnetic velocity
in the gyro-kinetic momentum balance is a consequence of
the pressure gradient in the polarization density (47) and thus
ultimately a gyro-averaging effect. This contrasts to a drift-
fluid model where diamagnetic velocity appears as a fluid-
drift. The remaining terms on the left hand side are two stress
terms stemming frommagnetic fluctuations. On the right hand
side the Lorentz force originating from the ''free'' current
jf :=

∑
s qn(uκ+u∇B) appears and we obtain a momentum

source term proportional to the E×B velocity and the density
source Sn.

Another point we note is that the poloidal analogue of equa-
tion (61) follows immediately. Recall equation (5) together
with ι∇ψt =∇ψp in flux coordinates. This yields uE,ϑ =
∇ϕ ·∇ψt/B2 = ι−1uE,φ and thus from equation (61) dir-
ectly follows the equation for the poloidal E×B angular
momentum density

∂

∂t

∑
s

⟨mnuE,ϑ⟩+
∂

∂v
⟨mnuE,ϑ (uvE+ uvD)⟩

− ∂

∂v

〈
B1,⊥,ϑ

(
1
µ0
Bv1,⊥ −Mem

⊥
,v
)〉

+

[∑
s

⟨mnuE,ϑ (uvE+ uvD)⟩

−
〈
B1,⊥,ϑ

(
1
µ0
Bv1,⊥ −Mem

⊥
,v
)〉]

∂

∂v
ln ι

=−
〈(
jf×B

)
ϑ

〉
+
∑
s

⟨mSnuE,ϑ⟩ (65)

Equation (65) exhibits a similar structure as equation (61)
with the additional appearance of the magnetic shear σ :=
∂v ln ι [22]. Depending on its sign the shear term can both

10
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dampen and generate poloidal E×B angular momentum.
However, we emphasize that the shear appears as a purely geo-
metrical correction to the poloidal momentum balance. Phys-
ically, equations (65) and (61) contain the same information
since the two components of the E×B drift are related.

Before we continue with the identification of the vari-
ous stress terms in section 5 and a more detailed inter-
pretation of our results, we first derive the equations for
the remaining angular momentum components, namely the
poloidal and toroidal angular momentum components stem-
ming from u∥. As it turns out we will get the full parallel
momentum balance as a by-product. Finally, recall that both
uE,φ =∇ϕ ·∇ψp/B2 and uE,ϑ =∇ϕ ·∇ψt/B2 are related to
the radial electric field, a fact that will lead to the identifica-
tion of the electromagnetic field angular momentum density in
section 7.2.

4.2. Parallel (angular) momentum

We now turn to the parallel terms in the toroidal canonical
momentum γφ = qψp+mw∥bφ as well as the poloidal canon-
ical momentum γϑ = qψt+mw∥bϑ. Repeating the ordering
scheme from the previous section one could assume that
∂u∥/∂t∼ δ2 and argue that therefore onlyO(δ2) terms should
be kept in our ordering. However, we note that the ions accel-
erate very slowly. This is because nu̇∥,i ∼∇∥pi ∼ δ3. Note
that this requires ∇⊥u∥,i to be small as well. In contrast, the
electron velocity is mainly determined by parallel Ohm’s law
nu∥,e ∼ η−1

∥ (∇∥pe+∇∥ϕ)∼O(1) with η∥ being the parallel
resistivity. In order to reflect these considerations we order (in
line with reference [41])

∂tu∥,i/Ωc,ics ∼ δ3 (66)

This orderingmandates that the terms ∂tmiu∥,i ∼ ∂tmiuE,φ ∼ δ3

are similar in size. The parallel ion velocity itself is larger than
the E×B velocity but we order its time derivative smaller by
the same factor. In total, we again do not assume toroidal
symmetry but we do use the drift ordering and keep terms up
to O(δ3).

We start with (for η ∈ {φ,ϑ})

m
d
dt
(w∥bη) = mw∥Ẋ ·∇bη +mẇ∥bη (67)

With the vector triple product rule applied to (b̂×∇H)×B∗

we see mẇ∥b̂= q(Ẋ×B)+mw∥Ẋ× (∇× b̂)−µB∇ lnB−
∇Hf. Next, we note Ẋ ·∇bη =−(Ẋ× (∇× b̂))η + Ẋi∂ηbi
(Notice that we do not use the covariant derivative here
since bη ≡ b̂ · êη is a scalar quantity and (a ·∇b)η ̸= a ·
∇bη; the first is the component of a covariant derivat-
ive while the second is the directional derivative of bη).
Finally, we have q(Ẋ×B) = mv∥w∥Kκ×B+µBK∇B×B+

(b̂×∇Hf)×B/B. We thus have

m
d
dt
(w∥bη) = mv∥w∥(Kκ×B)η +µB(K∇B×B)η

−bη∇∥Hf−µB∂η(lnB)+mw∥Ẋ
i∂ηbi (68)

m
d
dt
w∥ =−µB∇∥ lnB−∇∥Hf−

m
q
w∥Kκ ·∇H (69)

The second identity follows immediately from the equations
of motion (32). In the drift ordering (and under species sum-
mation to make qv∥A1,∥ vanish) we can write mw∥Ẋi∂ηbi =
mv2∥b

i∂ηbi+O(δ4), which we interpret as a generalized
curvature contribution. With similar arguments as in the pre-
vious section we can recover the variational derivatives in∑

s ∥bη∇∥Hf∥ using equation (57). However, the remaining
terms are all O(δ5) and can be safely neglected in our order-
ing. Taking the velocity space moment we arrive at

m
∂

∂t
∥w∥∥bη +m∇ · (∥w∥Ẋ∥bη)+ ∥µB∥∂η lnB

= ∥mv2∥(Kκ×B)η +µB(K∇B×B)η∥

+ ∥mv2∥∥B
i∂ηbi/B+m∥w∥∥Sbη (70)

m
∂

∂t
∥w∥∥+m∇ · (∥Ẋw∥∥)+ ∥µB∥∇∥ lnB= m∥w∥∥S (71)

We note that m ∂
∂t∥w∥∥= m ∂

∂t∥v∥∥+ q ∂∂t∥A1,∥∥ and

∥(mw∥ − qA1,∥)Ẋ∥−m∥v∥∥S

=∥mv2∥∥

(
b̂+

∇×A1,∥b̂

B

)
+mNU∥

b̂×∇ψ

B

+
m∥mv3∥∥

q
∇× b̂
B

+
m∥µBv∥∥

q
b̂×∇ lnB

B

Note here that the curvature terms vanish under the divergence
in our ordering. As a final step we again apply the flux-surface
average and note that with implied species summation the term
∂∥qA1,∥∥/∂t vanishes using the polarization equation. Then
we have

for η ∈ {φ,ϑ}
∂

∂t

∑
s

〈
mnu∥bη

〉
+
∑
s

∂

∂v

〈
mnu∥bηu

v
E+(p∥ +mnu2∥)bηb

v
1,⊥

〉
=
∑
s

−
〈
p⊥
∂ lnB
∂η

+(p∥ +mnu2∥)b
i ∂bi
∂η

〉
+
〈
(jf×B)η

〉
+
∑
s

m
〈
Snu∥bη

〉
(72)

while the average parallel momentum reads
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∑
s

{
∂

∂t

〈
mnu∥

〉
+
∂

∂v

〈
mnu∥u

v
E+(p∥ +mnu2∥)b

v
1,⊥

〉}
=
∑
s

{〈
−p⊥∇∥ lnB

〉
+m

〈
Snu∥

〉}
(73)

The two components of equation (72) complement the pre-
viously derived E×B velocity components in equations (65)
and (61).

In total, Eqs (61), (65), (72) and (73) form the basis of our
discussion for the remainder of the manuscript.

5. Favre averaged momentum equations

In order to discuss the effect of turbulent fluctuations on flux-
surface averaged quantities a Reynolds decomposition is tradi-
tionally used to rewrite nonlinearities in the averaged evolution
equations. For any function h(x) we have

h≡ ⟨h⟩+ h̃ (74)

Unfortunately, as we point out in [16], the Reynolds decom-
position technique does not lead to well-behaved terms when
the absolute density n appears in the non-linear terms in the
sense that (i) absolute density fluctuations ñ appear instead
of relative density fluctuations ñ/⟨n⟩, (ii) the radial advective
part is not correctly recovered and (iii) effects from the density
gradient ∂v ln⟨n⟩ are not evident. We will thus follow [16] and
introduce the so-called Favre decomposition.

Consider a term of the form ⟨nh⟩. If we multiply and divide
by ⟨n⟩, we can write ⟨nh⟩ ≡ ⟨n⟩JhK. Here, we introduce the
so-called Favre average

JhK := ⟨nh⟩
⟨n⟩

(75)

which can be understood as a density weighted Reynolds aver-
age. We note that this definition is species dependent through
the dependence on the species density n. The Favre average
then allows the definition of the Favre decomposition

h≡ JhK+ ĥ (76)

The Favre average reduces to the Reynolds average for small
fluctuation amplitudes or if the density is a flux-function JhK =
⟨h⟩+

〈
ñh̃
〉
/⟨n⟩ ≈ ⟨h⟩. Reference [16] also reported JuϑK ≈

⟨uϑ⟩ within a few percent since JũϑK ≈ 0 in gyro-fluid simu-
lations. We emphasize that the Favre average is a technique
to present an equation in a way that can be easily interpreted
physically. While it changes the appearance of an equation it
does not change its content.

5.1. Favre averaged covariant E×B velocity

We first apply the Favre average technique to the continuity
equation ∂tn+∇ · (nu) = Sn to get

∂

∂t
⟨n⟩+ ∂

∂v
(⟨n⟩U v) = ⟨Sn⟩ (77)

where we define the average radial velocity

U v :=
q
uvE+ u∥b

v
1,⊥

y
(78)

and we use uv = uvE+ u∥bv1,⊥ +O(δ3). If we now replace all
terms of the form ⟨nh⟩with ⟨n⟩JhK in equation (61), then insert
the continuity equation (77) and use JghK = JgKJhK+r

ĝĥ
z

(equation (A10)) and JuvDK =O(δ3), we get

∑
s

{
m⟨n⟩

(
∂

∂t
+U v ∂

∂v

)JuE,φK}
=− ∂

∂v
T v
⊥,φ−

〈(
jf×B

)
φ

〉
+
∑
s

mSuE,φ (79)

and similarly in equation (65) we get

∑
s

{
m⟨n⟩

(
∂

∂t
+U v ∂

∂v

)JuE,ϑK}
=− ∂

∂v
T v
⊥,ϑ−

〈(
jf×B

)
ϑ

〉
+
∑
s

mSuE,ϑ

−

(∑
s

m⟨n⟩JuE,ϑKU v+Θv
ϑ

)
∂

∂v
ln ι (80)

wherewe identifywith
〈
Bv1,⊥

〉
=O(δ3) and ⟨Mem

⊥
,v⟩=O(δ3)

in the drift ordering

forη ∈ {φ,ϑ}
T v
⊥,η :=

∑
s
m⟨n⟩F v

⊥,ϑ+Mv
ϑ

(81)

F v
⊥,η :=

r
ûE,ηûvE

z
︸ ︷︷ ︸

F v
E,η

+
r
ûE,ηûvD

z
︸ ︷︷ ︸

F v
D,η

−JuE,ηKq
u∥b

v
1,⊥

y︸ ︷︷ ︸
F v
F,η

(82)

Mv
η :=− 1

µ0

〈
B̃1,⊥,ηB̃v1,⊥

〉
︸ ︷︷ ︸

Mv
B,η

+
〈
B̃1,⊥,η M̃em

⊥
,v
〉

︸ ︷︷ ︸
Mv

M,η

(83)

SuE,η :=
〈
S̃nũE,η

〉
+ ⟨Sn⟩(⟨uE,η⟩− JuE,ηK) (84)

Note that the density ⟨n⟩ is species dependent and therefore we
cannot divide equations (79) and (80) by ⟨n⟩. What is usually
possible is to neglect the electron mass, which reduces the sum
equations (79) and (80) to a sum over all ion species.
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Equations (79) and (80) describe the evolution of the Favre
averaged covariant components of the E×B velocity in gen-
eral, not necessarily axisymmetric magnetic field geometry up
to third order in the drift ordering. On the left hand side we
find a radial advection term proportional to U v [16]. The first
term on the right hand side is the total perpendicular stress
T v
⊥,η, which consists of the perpendicular Favre stress F v

⊥,η
and the Maxwell stress Mv

η. We note here that we define the
Favre stress as a kinematic stress ( ''stress divided by mass
density'') with units m2/s2 as opposed to the Maxwell stress
which has units of stress N/m2.

The kinematic Favre stress F v
⊥,η contains the E×B Favre

stress F v
E,η. As Reference [16] points out the E×B Favre

stress F v
E,η can be written as

F v
E,η =Rv

E,η − JũE,ηKr
ũvE

z
+
〈
ñũE,ηũvE

〉
/⟨n⟩ (85)

where theE×BReynolds stress isRv
E,η :=

〈
ũE,ηũvE

〉
[42] and

the often neglected [5] triple term appears on the right-hand
side of equation (85). An advantage of the Favre decomposi-
tion is that the density fluctuations are automatically contained
as relative fluctuation levels as is evident in the triple term in
equation (85). An analogous identity to equation (85) holds for
the diamagnetic Favre stress F v

D,η

F v
D,η =Rv

D,η − JũE,ηKr
ũvD

z
+
〈
ñũE,ηũvD

〉
/⟨n⟩ , (86)

which encompasses the diamagnetic Reynolds stress Rv
D,η =〈

ũE,ηũvD

〉
[20]. Note that the diamagnetic Favre stress is

asymmetric in contrast to E×B Favre stress. In this form
the diamagnetic stress consist of the radial component of the
diamagnetic velocity together with the η component of the
E×B velocity. This is a consequence of using the pressure
equation to evaluate the time-derivative of the diamagnetic
velocity [20], which we have done using equation (60). Oth-
erwise the transpose of the diamagnetic stress consisting of
the radial E×B component and the η component of the dia-
magnetic velocity appears [43]. We elaborate further on differ-
ent interpretations of the E×B angular momentum density in
section 7.2. In addition to F v

E,η and F v
D,η we find the stress

term F v
F,η that appears for fluctuating magnetic field b̃v1,⊥.

This term is in fact a remainder of the actual magnetic flutter

Favre stress term m
r
ûE,ηû∥bv1,⊥

z
that would appear, had we

not neglected the A1,∥ nonlinearities in the Hamiltonian (18)
(through the variaton in equation (57)). We expectF v

F,η to van-
ish for small relative density fluctuations and to only play a
role for O(ñ/⟨n⟩)∼ 1 fluctuation amplitudes, due to the sim-
ilar dependence as the second term in the Favre stresses [16].

The Maxwell stressMv
η consists of the symmetric vacuum

field contribution Mv
B,η and the asymmetric magnetization

stress term Mv
M,η. The role of the vacuum Maxwell stress

Mv
B,η on the generation of sheared E×B flows was high-

lighted previously in for example [44, 45]. The novel asym-
metric magnetization stress Mv

M,η appears in its present form
analogously to the diamagnetic stress as a consequence of
using the pressure equation (60). In section 7.2 we will
encounter its transpose in the full electromagnetic field stress
tensor. It notably contains a contribution from the parallel heat
flux q∥ + p⊥u∥ and physically originates in the magnetization
term in parallel Ampère’s law equation (46).

As was highlighted in [16] the density gradient ∂v ln⟨n⟩
contributes to the evolution of E×B shear flow. Consider

∂

∂v
T v
⊥,η =

∑
s

{
m⟨n⟩

(
∂

∂v
F v

⊥,η +F v
⊥η

∂

∂v
ln⟨n⟩

)}
+
∂

∂v
Mv

η

(87)

We emphasize that both E×B and diamagnetic Favre stresses
appear in the density gradient drive term m⟨n⟩F v

⊥,η∂v ln⟨n⟩
and that this term is non-zero even if ∂vF v

⊥η vanishes. This
is particularly interesting for the steep density gradient that
develops during the transition to H-mode.

Contrary to the toroidal angular momentum density, the
poloidal E×B angular momentum density in equation (80)
is influenced by a gradient in the rotational transform profile
or magnetic shear σ = ∂v ln ι. The magnetic shear is known
to influence the E×B shear flow evolution [46, 47]. In par-
ticular the shear dampens drift-wave turbulence and leads to
narrow zonal flows [47]. Furthermore, it dampens the Kelvin–
Helmholtz instability, which would otherwise be driven by
the E×B velocity shear [46]. In equation (80), we explicitly
identify two magnetic shear contributions. The first shear term
m⟨n⟩U v JuE,ϑKσ corresponds to roughly exponential growth
or damping of poloidal flows, assuming that the average radial
velocity is constant (which is a good estimate since it is
approximately theE×B radial particle transport). The second
shear term appears analogous to the density gradient ∂v lnn
term and contributes even if ⟨n⟩F v

⊥,ϑ andMv
ϑ are ''radially''

homogeneous (no volume derivative).
On the right hand side of equation (79) and (80) we fur-

ther find the components of the Lorentz force originating from
the radial curvature drift current jf defined in equation (A21).
The grad-B induced current part of this term is the Stringer-
Winsor spin-up term [48–50]. In order to see this recall that
(jf×B)φ = jf ·∇ψp ∼ p⊥K(ψp) that is the radial component
of the free current (see A1 for the definition of the curvature
operator K). The same term was found in δF drift-fluid mod-
els [18, 19, 45] and was there called the geodesic transfer
term. In any case the term is known to excite geodesic acoustic
modes and to both dampen or drive zonal flows depending on
the parameter regime [18, 50]. We further discuss this term in
relation to the ion orbit loss mechanism in section 7.4.

Finally, on the right side of equation (79) and (80) we
find source related terms contained in SuE,η defined in equa-

tion (84). The term
〈
S̃nũE,ϑ

〉
in equation (80) describes

the poloidal spin-up mechanism for poloidally asymmetric
particle sources described in [49]. In equation (79) we find
an equivalent term also for the toroidal E×B velocity. A pol-
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oidally (or toroidally) asymmetric particle source can generate
or dampen toroidal E×B velocity. This should be contrasted
with Reference [51], which finds angular momentum gener-
ation susceptible to the poloidal location of neutrals through
viscosity and heat flux effects. In this contribution collisional
effects are treated only indirectly subsuming the collision
operator into the kinetic ''source'' term S in the Vlasov equa-
tion (21). The second source term is proportional to the dif-
ference between Reynolds and Favre averaged E×B velocity
⟨uE,η⟩− JuE,ηK. For small density fluctuations we thus expect
this term to vanish and only contribute for large fluctuation
amplitudes.

5.2. Favre averaged parallel velocity

For the parallel angular momentum components (72) we have

for η ∈ {φ,ϑ}∑
s

{
m⟨n⟩

(
∂

∂t

q
u∥bη

y
+U v ∂

∂v

q
u∥bη

y)}
=− ∂

∂v
T v
∥,η +

∑
s

〈
−p⊥

∂ lnB
∂η

− (p∥ +mnu2∥)b
i ∂bi
∂η

〉
+
〈
(jf×B)η

〉
+
∑
s

mSu∥bη (88)

where U v is given in equation (78) and we identWithify

T v
∥,η :=

∑
s

{
m⟨n⟩F v

∥,η +Kv
∥,η

}
(89)

Kv
∥,η :=

〈
p̃∥bη b̃v1,⊥

〉
(90)

F v
∥,η :=

r
û∥bη ûvE

z
︸ ︷︷ ︸

F v
E,∥,η

+
r
û∥bη û∥bv1,⊥

z
︸ ︷︷ ︸

F v
F,∥,η

(91)

Su∥bη :=
〈
Snu∥bη

〉
−⟨Sn⟩

q
u∥bη

y
(92)

the Favre average we re-write equation (73) into

∑
s

{
m⟨n⟩

(
∂

∂t

q
u∥

y
+U v ∂

∂v

q
u∥

y)}
=− ∂

∂v
T v
∥ +

∑
s

{
mSu∥ −

〈
p⊥∇∥ lnB

〉}
(93)

where U v is given in equation (78) and we identify

T v
∥ :=

∑
s

{
m⟨n⟩F v

∥ +Kv
∥

}
(94)

Kv
∥ :=

〈
p̃∥ b̃v1,⊥

〉
(95)

F v
∥ :=

r
û∥ ûvE

z
︸ ︷︷ ︸

F v
E,∥

+
r
û∥ û∥bv1,⊥

z
︸ ︷︷ ︸

F v
F,∥

(96)

Su∥ :=
〈
Snu∥

〉
−⟨Sn⟩

q
u∥

y
(97)

Analogous to equation (79) in equations (93) and (88) we find
a radial advection term of momentum by U v followed by vari-
ous stress terms contained in T v

∥ respectively T v
∥,η. Again, we

define the Favre stress as a kinematic stress and analogous
relations to equation (85) hold for the parallel Favre stress
components. The parallel E×B Favre stressF v

E,∥ respectively
F v
E,∥,η now depends on fluctuations in the parallel velocity

instead of E×B velocity. The Reynolds stress analogue of
F v
E,∥ is well-known in the literature on intrinsic toroidal rota-

tion (see e.g. [5]), however we point out here that F v
E,∥,η is

the actual component that drives angular momentum
q
u∥bη

y
instead of just parallel momentum

q
u∥

y
. The parallel mag-

netic flutter Favre stress term F v
F,∥ respectively F v

F,∥,η is a
transfer term appearing for magnetic fluctuations b1,⊥. The
kinetic stress term Kv

∥ respectively Kv
∥,η is related to the kin-

etic dynamo mechanism as for example discussed for the
reversed field pinch in Reference [52, 53]. On the right hand
side we find the mirror force term −

〈
p⊥∇∥ lnB

〉
respect-

ively −
〈
bηp⊥∇∥ lnB

〉
. In the equation for the parallel angu-

lar momentum equation (88) we find an additional geometrical
correction to the mirror force. Finally, the momentum source
term Su∥ respectively Su∥bη represents angular momentum
generation by external sources. Note that with the definition
of a velocity source Su∥ via Snu∥ := nSu∥ + u∥Sn we can write

Su∥ = ⟨n⟩
q
Su∥

y
+
〈
ũ∥S̃n

〉
+ ⟨Sn⟩

(〈
u∥
〉
−

q
u∥

y)
(98)

and analogous for Su∥bη . Equation (98) now consists of the
Favre averaged velocity source plus a contribution from a pol-
oidally asymmetric source term analogous to equation (84).

We comment here on the appearance of the Lorentz force in
the equation for the parallel angular momentum equation (88).
The Lorentz force acts perpendicularly to the magnetic field
line and should not contribute to the parallel momentum at all.
Indeed, we can further simplify the right hand side of equa-
tion (88) to∑

s

〈
−p⊥

∂ lnB
∂η

− (p∥ +mnu2∥)b
i ∂bi
∂η

〉
+
〈
(jf×B)η

〉
=−

∑
s

〈
p⊥bη∇∥ lnB+(p∥ +mnu2∥)κ̃η

〉
(99)

where we define κ̃η := eη ·κ− bi∂ηbi with the curvature
κ := b̂ ·∇b̂. Now, only the component of the mirror force
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−p⊥bη∇∥ lnB and a geometric correction term appear.
To see the mirror force recall the sign of the magnetic
moment vector µ=−µb̂ and the guiding centre paral-
lel magnetization density [27, 30] Mgy

∥ = ∥µ∥=−∥µ∥b̂=
−P⊥b̂/B. The force acting on magnetic dipoles is [54]
fd =∇(µ ·B) =−µ∇B. Taking the velocity space moment
we get Fd = ∥fd∥=M∥∇B=−P⊥∇ lnB=−P⊥b̂∇∥ lnB−
P⊥∇⊥ lnB. The parallel part readsFd,∥ =−P⊥∇∥ lnB, which
is what appears in equation (73), while Fd,η =−P⊥∂η lnB
appears in (72). The perpendicular part gives rise to the ∇B
drift. Last, notice that ∇∥ lnB=−∇ · b̂ such that

−
〈
p⊥∇∥ lnB

〉
=
〈
∇∥p̃⊥

〉
(100)

−
〈
bηp⊥∇∥ lnB

〉
=
〈
∇∥(b̃ηp⊥)

〉
(101)

Pressure fluctuations are required to affect the the angular
momentum generation via the mirror force.

5.3. Total angular momentum density

The velocity equations (79)/(80) and (88) can be easily cast
back into conservative form using the continuity equation (77)
and ⟨n⟩JhK = ⟨nh⟩ for any h. Summing up the results, we
finally find the evolution of the total average poloidal and tor-
oidal angular momentum density

for η ∈ {φ,ϑ}∑
s

{
∂

∂t
m
〈
n(u∥bη + uE,η)

〉
+

∂

∂v
m
〈
n(u∥bη + uE,η)

〉
U v

}
+
∂

∂v

(
T v
⊥,η + T v

∥,η

)
=− δηϑ

(∑
s

m⟨nuE,ϑ⟩U v+ T v
⊥,ϑ+ T v

∥,ϑ

)
∂

∂v
ln ι

−
∑
s

〈
p⊥
∂ lnB
∂η

+(p∥ +mnu2∥)b
i ∂bi
∂η

−m
(
Snu∥bη + SnuE,η

)〉
(102)

where δ is the Kronecker delta. The magnetic shear term only
contributes to the poloidal angular momentum. The convect-
ive term proportional to U v vanishes under volume integration
up to a surface contribution as does the total stress term T v

⊥,η +
T v
∥η. In equation (102) we further find that the momentum

transfer to the background magnetic field is mediated by the
mirror force and the generalized curvature force term on the
right hand side. Clearly, the Lorentz force term cancels in
the total angular momentum density evolution. Finally, we
recover the external source terms on the right hand side.

We see that the total angular momentum in equation (102)
is given by the covariant components of the E×B and par-
allel velocities. Comparing this to the total advection velo-
city u := ∥Ẋ∥= uE+uκ+u∇B+ u∥b̂+ u∥b1,⊥ that appears
in the continuity equation ∂tn+∇ · (nu) = Sn we see that the

curvature, grad-B and magnetic flutter velocities do not appear
in the angular momentum (102) even though we at least expec-
ted the magnetic flutter term as an order O(δ) term. At this
point recall equation (59), which identifies the radial polariz-
ation current with the macroscopic expression for the angu-
lar momentum density (except u∥bη). The polarization dens-
ity Pgy is directly connected to the definition of the Hamilto-
nian (18) through the variational principle. Since we neglected
the second order guiding center corrections we accordingly
miss the guiding center polarization density [2, 30] and thus
the corresponding curvature terms in our angular momentum
density. On the other hand we also neglected the non-linear
terms in A1,∥ in the Hamiltonian, which accounts for the miss-
ing magnetic flutter velocity mv∥b1,⊥ in the polarization [27]
and thus angular momentum density (102).

6. The rotational energy

6.1. Angular momentum and angular velocity

In section 5 we have derived equations for the covariant com-
ponents of the E×B and parallel velocity, which add up to
the total angular momentum density in equation (102). We
now focus on the angular momentum as a vector quantity. We
define

uL := uE+ u∥b̂= uL,φ∇φ+ uL,ϑ∇ϑ+ uL,v∇v (103)

We are now interested only in the part of the flow that stays
within a given flux-surface, because this flow can be construc-
ted from the covariant φ and ϑ components of uL that we have
available. To see this, we formulate the projection tensor onto
the flux surfaces

hS := 1− ρ̂ρ̂ (104)

with the contravariant radial unit vector ρ̂ :=∇v/|∇v|. With
this we can split the flow velocity according to uL = uL|ψp +

uρ̂L ρ̂ where we define the surface or rotational velocity

L≡ uL|ψp := hS ·uL =uL,ϑ∇Sϑ+ uL,φ∇Sφ

=uϑL eϑ + uφL eφ (105)

where we follow [25] and introduce the surface operator
∇S := hS ·∇. We thus have Li = uE,i+ u∥bi for i∈ {φ,ϑ, ρ}.
As expected we do not need the radial component of uL to con-
struct the surface flow in equation (105).

It is now important to see that∇Sφ and∇Sϑ form the con-
travariant basis of the flux surface as a stand-alone manifold
and analogous eφ and eϑ are its covariant basis vectors In fact,
explicitly writing hS into components we realize that all com-
ponents hS,ρk vanish for k∈ {φ,ϑ, ρ}. We thus define I as the
two-dimensional tensor consisting of the non-zero compon-
ents of hS, that is

I :=

(
gϑϑ gϑφ
gφϑ gφφ

)
(106)
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The interested reader will recognize I as the the first fun-
damental form of flux surfaces parameterized with ϑ and φ.
The first fundamental form I can be interpreted as the two-
dimensional metric tensor of the flux-surface thought as a
standalone structure and is thus an intrinsic structure of the
magnetic flux surfaces (and in particular has a well-defined
expression in every coordinate system). Unfortunately, the
flux-surface average is not an intrinsic surface operation since
it requires the knowledge of the volume form

√
g to compute.

Also, note that the components of I and its inverse are given
by Iφφ = eφ · eφ, Iϑφ = eϑ · eφ, Iϑϑ = eϑ · eϑ and Iφφ =
∇Sφ ·∇Sφ, Iϑφ =∇Sϑ ·∇Sφ, Iϑϑ =∇Sϑ ·∇Sϑ respect-
ively.

Now, the fundamental form I has another interpretation,
namely as the inertia tensor of rotations in ϑ and φ. To see this
recall that the contravariant components of the surface velo-
city L, Lφ and Lϑ are actually the angular velocitieswith units
s−1, because the particle trajectory is given by φ̇= Lφ and
ϑ̇= Lϑ. In contrast, the covariant components Li = IijLj for
i, j∈ {ϑ,φ} form the angular momentum as it results in equa-
tion (102) that is mLi has units kg m2s−1. This leaves mI as
the (kinematic) inertia tensor that connects the angular velo-
city and angular momentum of a fluid element rotating on a
flux-surface.

6.2. Mean and fluctuating angular momentum

Consider now the mean surface velocity field generated by
Favre averaged covariant φ and ϑ velocity components

Lm := JLϑK∇Sϑ+ JLφK∇Sφ (107)

The time evolution of m⟨n⟩Lm is directly given by equa-
tion (102). First, we emphasize that the corresponding angular
velocity components of Lm, Li = I ij JLiK are not flux functions
since the inertia tensor does not commute with the flux-surface
average and thus Lm ̸=

q
Lϑ

y
eϑ+ JLφKeφ or in other words,

if angular momentum is a flux-function then angular velocity
cannot be at the same time. In fact, we perform the splitting
Li = JLiK+ L̂i expecting that the relative fluctuations L̂i are
small and that ui is well-described by its Favre average JLiK.
A priori, these arguments of course also hold the other way, if
angular velocity were a flux-function then angular momentum
cannot be at the same time and we should split the angular
velocities.

At this point recall the discussion in the introduction.When
angular momentum is conserved, a particle moves faster closer
to the axis (for example on the high field side in figure 1). We
take this as an indication that angular velocities are not well-
described by flux-surface averages, while angular momenta
are. Furthermore, in the equations in section 5 (for example
equation (79)) we see that the average angular momentum is
fed by turbulent fluctuations through the stress tensor, which
we interpret as an indication that fluctuations L̂i and not L̂i

become small.

6.3. Total energy evolution

Before we construct a zonal or mean flow rotational energy
we first focus on the total energy evolution of our system. We
follow Reference [39] and derive the pressure Equations (the
thermal energy) for p⊥ and p∥ directly from the moment evol-
ution equation (41). We point out that we need to keep terms
one order higher in the energy conservation law than in the
momentum conservation law, that is O(δ4) in our ordering.
This is due to the fundamental property of the gyro-kinetic
system [27] that a higher order Hamiltonian needs to be kept
in the system to obtain polarization effects and an exact energy
invariant. If we thus neglect all terms of order O(δ5), use par-
allel Ampère’s law (46) and apply the species summation we
get

∂

∂t

〈∑
s

{
p⊥ +

1
2
p∥ +

1
2
mnu2∥

}
+

(∇⊥A1∥)
2

2µ0

〉

+
∂

∂v

〈
jvE,p
〉
=
〈
jf ·E⊥ + j∥E∥

〉
+
∑
s

〈
Sp⊥ +

1
2
Sp∥+mnu2∥

〉
(108)

whereE⊥ =−∇⊥ϕ andE∥ =−(∇∥ϕ+ b1,⊥ ·∇ϕ) and j∥ :=∑
s qnu∥. We formally summarize all total divergences into

the term jvE,p. An interesting side-remark here is to view
the energy conservation equation (108) to lowest order,

which leaves Bernoulli’s identity
〈
p⊥ + p∥/2+mu2∥/2

〉
=

const along fluid trajectories. On the right side of equa-
tion (108) appears the energy exchange term

〈
jf ·E⊥ + j∥E∥

〉
as well as the pressure source terms (heating).

On the other side using the definition ofΨ in equation (20)
and the polarization equation (45) we find

∑
s

∥qΨ∥=
∑
s

∇ ·
(
m∥µB∥
2qB2

∇⊥ϕ−ϕ∇⊥
m∥µB∥
2qB2

)
−∇

(
ϕ
mN∇⊥ϕ

B2

)
+

1
2
mN

(∇⊥ϕ)
2

B2
(109)

which recovers the E×B kinetic energy density in the last
term on the right hand side. Interestingly, a completely analog-
ous relation holds for the term ∥qΨ∥S (by replacing ∥µB∥with
∥µB∥S and N with SN in equation (109)) since we require the
sources to preserve quasineutrality in equation (54). Apply-
ing equation (41) to qΨ̇ = q∂tΨ+ qẊ ·∇Ψ and using (109)
and (58) for Ψ under species summation and neglecting again
terms of order O(δ5) the result is given by

∂

∂t

〈
1
2
ρMu

2
E

〉
+
∂

∂v

〈
jvE,ψ

〉
=−

〈
jf ·E⊥ + j∥E∥

〉
+
∑
s

1
2
m
〈
Snu

2
E

〉
(110)

where we identify the total mass density ρM :=
∑

smn
since the E×B velocity is species independent and again
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summarize all divergences into the formal jvE,ψ term. The
density source Sn either generates or destroys kinetic E×B
energy depending on its sign. The term appears analogous
to the momentum source in equation (61). The sum of equa-
tions (108) and (110) recovers the conservation of the flux-
surface averaged total energy of our model since the energy
exchange term

〈
jf ·E⊥ + j∥E∥

〉
cancels.

6.4. Mean rotational energy evolution

The direct approach to a rotational energy density is the kinetic
energy of the surface flow velocity L

Erot :=
∑
s

1
2
m⟨nL · IL⟩=

〈
1
2
ρMu2E|ψp

〉
+
∑
s

〈
1
2
mnu2∥

〉
(111)

This energy is equivalent to subtracting the radial E×B
energy ⟨ρMuE,vuvE/2⟩ from the total kinetic energy density∑

s

〈
mn(u2E+ u2∥)/2

〉
. It is now important to realize that

contrary to the parallel kinetic energy the E×B rotational
energy density can be related to the (species summed) angular
momentum evolution. This is because the E×B drift velocity
is equal for all species. We can write

1
2

〈
ρMuE|2ψp

〉
= Ezonal +Efluc (112)

where we define

Ezonal :=
1
2
⟨ρM⟩

q
I ij

y
M

JuE,iKM JuE,jKM (113)

Efluc :=⟨ρM⟩
q
I ij JuE,iKM ûE,jyM

+
1
2
⟨ρM⟩

q
I ij

y
M

JûE,iKM ûE,j (114)

and here introduce the total mass density in the Favre averages

JhKM := ⟨ρM⟩−1
∑
s

m⟨nh⟩ (115)

for any (possibly species dependent) function h. If h is species
independent equation (115) simplifies to JhKM = ⟨ρMh⟩/⟨ρM⟩.
With uE,ϑ = ι−1uE,φ we can simplify further

Ezonal =
1
2
⟨ρM⟩

q
ι−2Iϑϑ+ 2ι−1Iϑφ+ Iφφ

y
M

JuE,φK2M
≡ 1

2
⟨ρM⟩JuE,φK2M JI0KM (116)

Here, we introduce the inertia factor I0 := (ι−1,1)I−1(ι−1,1)T.
For a purely toroidal magnetic field we have I0 = R−2

as expected. For symmetry flux coordinates we have
gϑϑ = R2(∇ψp)

2/I2ι2, gφϑ = 0 and gφφ = R2 and thus
I0 = R−2(1+ I2/|∇ψp|2) = B2/|∇ψp|2. The inertia factor
vanishes for a slab magnetic field. In this case our zonal flow

energy agrees with [16] and in the case of small density fluc-
tuations also with its δF analogue [19, 45]. Since I0 is time-
independent we can use the evolution equations for the density
equation (77) and angular momentum (79) to get

∂

∂t
Ezonal +

∂

∂v
(Ezonal JuvKM)

=− JI0KM JuE,φKM( ∂

∂v
T v
⊥,φ+

〈
(jf×B)φ

〉)
− 1

2
JuE,φK2M ∂

∂v

(
⟨ρM⟩

r
Î0ûv

z
M

)
+Szonal (117)

where we neglected the term ⟨nu ·∇I0⟩ in the continuity
equation as small in our ordering and we have

Szonal :=JI0KM JuE,φKMSuE,φ +
1
2

JuE,φK2M∑
s

⟨mSnI0⟩

(118)

In equation (117) we find the term JuvKM as the convect-
ive velocity for the zonal flow energy. On the right side the
derivative of the total perpendicular stress T v

⊥,φ given by equa-
tion (87) appears. Thus, the Favre and Maxwell stress given
by fluctuating velocities and the fluctuating magnetic field in
equations (82) and (83) respectively together with a gradient
in the density ∂v ln⟨n⟩ can appear as sources for zonal flow
energy. The E×B Favre stress F v

E,φ was already identified as
a source for zonal flow energy in a slab geometry in [16]. The
vacuum field Maxwell stress Mv

B,φ and the E×B Reynolds
stressRv

E,φ (contained in ourF v
⊥,φ according to equation (85))

appear in similar form in δF models [19, 45]. Compared to
these previous findings we find the additional appearance of
the diamagnetic Favre stress F v

D,φ contained in F v
⊥,η and the

magnetization stressMv
M,φ contained inMv

φ. In addition, we
find the inertia correction factor JI0KM that vanishes only in the
simple slab geometry. On the right hand side of equation (117)
we further find the Lorentz force term, which includes the
geodesic transfer term. This term represents an energy trans-
fer to the internal energy density equation (108) since we know
the Lorentz force to transfer angular momentum to the parallel
angular momentum density. Disregarding the inertia correc-
tion factor I0 this term was also identified earlier to transfer
energy to the zonal flow [19, 45, 50].

The second term on the right hand side is a novel term that
appears for fluctuating radial velocity ûv and the inertia factor
Î0. In order to estimate the importance of the inertia factor
we plot I0 for an exemplary tokamak equilibrium in figure 2.
We immediately see that the inertia factor is not a flux function
and is much smaller on the low-field side than on the high-field
side. Furthermore, it diverges at the X-point and the O-point.
At the same time the toroidal component of the E×B velocity
uE,φ is zero at these points since the magnetic field is purely
toroidal (and thus the zonal flow energy remains finite). Fur-
ther, the divergence at the X-point is an integrable singularity
as shown in figure 3, where we plot the flux-surface average
⟨I0⟩. Here, we mainly see that there appear gradients close to
the separatrix and in the core of the domain.
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Figure 2. The I0 factor on an example tokamak equilibrium. Note
the logarithmic colour scale, which is cut at the top at 1000 due to
the divergence at the X-point and the O-point. The contour lines are
given at ρt = 0.2, 0.4, 0.6, 0.8, 1.0 with the toroidal flux label
ρt :=

√
ψt/ψt,sep.

Finally, on the right hand side of equation (116) we find
the source term Szonal. This term contains a contribution from
the density source Sn proportional to the inertia factor and the
square toroidal E×B velocity. The sign of this contribution
depends only on the sign of Sn. Comparing to figure 2 we see
that the inertia factor is almost 2 orders of magnitude higher on
the high field side than on the low field side. A particle source
on the tokamak high field side is a far more effective source
for zonal flow energy than on the low field side. This supports
experimental evidence that H-mode access is favored by fuel-
ing plasma on the inboard side of a tokamak (for example in
MAST [55]). A second contributor is the angular momentum
source defined in equation (84), which we already discussed
to be pronounced for poloidally asymmetric particle sources.

7. Discussion

7.1. Simplified magnetic field geometries

It is common in the existing literature to reduce the full three-
dimensional magnetic field geometry to simplify expressions.
The general magnetic field in equation (3) with both toroidal
and poloidal components reduces to a purely toroidal magnetic
field for ψp= 0 and the purely poloidal field for ψt= 0. All
our results so far hold for the general magnetic field without

Figure 3. The ⟨I0⟩ factor on an example tokamak equilibrium as a
function of the toroidal flux label ρt :=

√
ψt/ψt,sep. Note the

logarithmic scale of the y-axis.

axisymmetry. We thus first discuss the poloidal and toroidal
fields without assuming axisymmetry. A glance at the gyro-
kinetic 1-form equation (11) convinces us that in each of these
cases both the poloidal and toroidal angular momentum have
a single component. In a poloidal field the poloidal angular
momentum contains only the parallel velocity u∥bϑ while the
toroidal angular momentum consists only of the E×B flow
uE,φ and vice versa for the purely toroidal magnetic field geo-
metry.

For the poloidal field the resulting evolution equations are
actually already available and we do not need to compute any-
thing further. The relevant equations are equation (79) and the
ϑ component of (72). For the purely toroidal magnetic field
the parallel momentum balance is given by the φ component
of (72), however theE×Bmomentum is problematic since ι is
zero and thus equation (80) does not hold. Furthermore, since
ψp vanishes the flux-surface average needs to be redefinedwith
the help of ψt.

In the following we will discuss the axisymmetric case for
the general, the purely toroidal and the purely poloidal mag-
netic fields, which allows further simplifications.

7.1.1. General axisymmetric magnetic field. An axisymmet-
ric magnetic field can be written as in equation (6) and is a
general feature of the tokamak configuration. It is well known
that in this case the toroidal angular momentum density is a
conserved quantity [1, 2]. In our derivation axisymmetry leads
to the full toroidal angular momentum conservation (up to
external sources) in the φ component of equation (102). The
φ derivatives in the first two terms on the right hand side van-
ish and themagnetic shear does not contribute. Comparing this
result obtained in the drift ordering to the exact result obtained
using Noether’s theorem [1] we find a difference of half of the
diamagnetic drift. The factor one half is difficult to interpret
physically. In our derivation we used the pressure equation to
evaluate this term and obtain the full diamagnetic drift. At the
same time there is a freedom in how this term is treated in that
we could equally cast the diamagnetic drift completely under
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the time derivative instead of the right hand side. We comment
more on this feature in section 7.2.

7.1.2. Purely toroidal, axisymmetric magnetic field. In the
axisymmetric case we discuss here we can write (with cyl-
indrical coordinates R, Z and toroidal angle φ).

ψt =

ˆ R

B0(R
′)dR′, ψp = 0 (119)

B(R) = B0
R0

R
êφ (120)

⟨h⟩Z :=
1

2πLZ

¨
h(R,Z,φ)dZdφ (121)

The gyro-kinetic 1-form equation (11) becomes γ = (qψtdZ+
mw∥bφdφ+mµdθ/q and now has symmetry in both the R
and Z-direction, which makes both qψt(R) and mw∥R con-
served quantities separately. This is in fact an important point
to emphasize. The purely toroidal magnetic field has two sym-
metries and thus two exactly conserved quantities instead of
just one in the general axisymmetric geometry. In the deriv-
ation of the poloidal E×B momentum in section 4, all we
have to do is replace ∇ψp with ∇ψt(R) = B(R)̂eR, which
defines η := êφ×∇ψt/B(R)≡ êZ. Equation (80) thus reads
(with zero magnetic shear)

∑
s

{
m⟨n⟩Z

(
∂

∂t
+UR ∂

∂R

)JuE,ZKZ}+
∂

∂R
M R

Z

=
∑
s

{
−m⟨n⟩Z

(
∂

∂R
F R

⊥,Z+F R
⊥,Z

∂

∂R
ln⟨n⟩

)
+mSuE,Z

}
(122)

In the limit B0(R) = B0 and without A1,∥ and finite Larmor
radius effects this equation agreeswith [16]. The parallel angu-
lar momentum balance equation (88) now reduces to

∑
s

{
m⟨n⟩Z

(
∂

∂t
+UR ∂

∂R

)q
u∥R

y
Z
+

∂

∂R
K R

∥,Z

}
=
∑
s

{
−m⟨n⟩Z

(
∂

∂R
F R

∥,Z+F R
∥,Z

∂

∂R
ln⟨n⟩Z

)
+mSu∥R

(123)

Due to the symmetry in R and Z neither the Lorentz force, nor
the mirror force appears in equations (122) and (123). Fur-
ther note that the continuity equation ∂t ⟨n⟩Z+ ∂R(UR ⟨n⟩Z) =
⟨Sn⟩Z can be used to cast these equations into conservative
form.

7.1.3. Purely poloidal, axisymmetric magnetic field. The pol-
oidal field approximation with ψt= 0 is potentially interest-
ing for the field-reversed configuration [56], provided that our
orderings in section 3 and 4 hold. We will here investigate
the axisymmetric case since, as discussed before, the non-
axisymmetric case is already covered. The Poincaré 1-form
equation (11) reads γ = qψpdφ+mw∥

√
gϑϑ

−1dϑ+ m
q µdθ.

This results in B∗
∥ = B∗ · êϑ = B · êϑ ≡ Bp with êϑ := eϑ/|eϑ|.

The approximation clearly breaks at the X-point where Bp= 0,
however this point might be redundant since flux coordinates
themselves do not exist on the last closed flux-surface where
ι−1 diverges as we discussed in section 2.

It is interesting to note that toroidal symmetry now leads
to the exact conservation of γφ = qAφ = qψp since êϑ has no
component in dφ in a symmetric situation. The toroidal angu-
lar momentum conservation in the poloidal field approxima-
tion thus contains only the toroidal component of the E×B
motion. In this case we can write (note that equation (4)
still holds) η := êϑ×∇ψp/Bp = eφ which is possible with
equation (4), B= Bpêϑ and eϑ · eφ = gϑφ = 0. The vector η
thus points in the actual toroidal direction and does not have
a poloidal component. We further have uvE =− dv

dψp

∂ϕ
∂φ/Bp In

comparison, we have that uE,ϑ = 0, that is in the poloidal field
approximation uE = êϑ×∇ϕ/Bp has no poloidal component.
The non-zero part of the momentum fluxes is thus

∑
s

{
m⟨n⟩

(
∂

∂t
+U v ∂

∂v

)JuE,φK}+
∂

∂v
Mv

φ

=
∑
s

{
−m⟨n⟩

(
∂

∂v
F v

⊥,φ+F v
⊥,φ

∂

∂v
ln⟨n⟩

)
+mSuE,φ

}
(124)

where we used that the φ component of jf×B vanishes
with ((̂eϑ×∇ lnBp)× êϑ)φ = ((̂eϑ×κ)× êϑ)φ = 0 due to
the symmetry. This means that in the poloidal field approx-
imation there is no transfer term between E×B motion and
parallel momentum just as in the purely toroidal magnetic field
in equation (122).

In contrast the equation for the parallel momentum
in toroidally symmetric cases becomes (with bφ = 0 and
bϑ =

√
gϑϑ)

∑
s

{
m⟨n⟩

(
∂

∂t
+U v ∂

∂v

)q
u∥bϑ

y
+
∂

∂v
Kv

∥,ϑ

}
=
∑
s

{
−m⟨n⟩

(
∂

∂v
F v

∥,ϑ+F v
∥,ϑ

∂

∂v
ln⟨n⟩

)
+mSu∥bϑ

−
〈
p⊥
∂ lnB
∂ϑ

+(p∥ +mnu2∥)b
ϑ ∂bϑ
∂ϑ

〉}
(125)

In contrast to the purely toroidal magnetic field here we find
the mirror force and the geometric correction in the pol-
oidal direction on the right hand side. This means that the
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background magnetic field acts as a source/sink of parallel
momentum.

Again, we note that the continuity equation ∂t ⟨n⟩+
∂v(U v ⟨n⟩) = ⟨Sn⟩ can be used to cast equations (124) and
(125) into conservative form.

7.2. The momentum of electromagnetic fields in matter

We now note that we have the possibility to rewrite Equa-
tion (61) using identity equation (60) to cast the diamag-
netic drift under the time derivative (using uvE =−∇⊥ϕ ·
eφdv/dψp)

∂

∂t

〈
(Pem ×B)φ

〉
− ∂

∂v

〈
EφP

v
em +

(
1
µ0
B1,⊥,φ−Mem

⊥,φ

)
Bv1,⊥

〉
=−

〈
(jf×B)φ

〉
+ Sem,φ (126)

with

E :=−∇⊥ϕ (127)

Pem :=−
∑
s

mn

(
∇⊥ϕ

B2
+

∇⊥p⊥
qnB2

)
(128)

Mem
⊥ :=

∑
s

m
b̂×∇(q∥ + u∥p⊥)

qB2
(129)

Sem :=
∑
s

mSn
b̂×∇ϕ

B
+
mb̂×∇Sp⊥

qB
(130)

Equation (126) is the evolution equation for the electro-
magnetic momentum flux g := D×B. The electric part in the
displacement field D := ϵ0E+Pem vanishes because we neg-
lected the corresponding field part of the action (23) and have
quasineutrality. The momentum tensor has the form Tvφ :=
−EφDv−HφBv1,⊥ with themagnetizing fieldH := B1,⊥/µ0 −
Mem

⊥ . The momentum flux g and tensor T correspond to the
ones given in Reference [57]. With the identification of the
Lorentz force density fL = jf×B on the right hand side we can
write equation (126) as

∂

∂t
⟨gφ⟩+

∂

∂v

〈
Tvφ
〉
=−⟨fL,φ⟩+ ⟨Sem,φ⟩ (131)

Notice the minus in the Lorentz force, which is a signature
that gφ is indeed the momentum flux for the electromagnetic
field rather than for the plasma itself. Furthermore, the form
of the Lorentz force motivates the identification of jf as the
free current as opposed to the bound polarization current. The
ϑ component of the momentum flux follows by multiplying
equation (131) with ι−1

∂

∂t
⟨gϑ⟩+

∂

∂v
⟨Tvϑ⟩=−⟨fL,ϑ⟩− ⟨Tvϑ⟩

∂

∂v
ln ι+ ⟨Sem,ϑ⟩

(132)

Here, notably a contribution from the magnetic shear appears
on the right hand side as a coupling term to the external mag-
netic field.

In equation (128) we define the electromagnetic polariz-
ation charge Pem analogous to the magnetization Mem

⊥ (129)
(which we repeat here for convenience) and different from the
gyro-centre polarization charge Pgy by half the diamagnetic
drift. We remark that neither of these quantities is uniquely
defined. The form Pem and Mem

⊥ highlights the physical ori-
gin of polarization and magnetization in gyro-kinetic mod-
els. Here, we can view the plasma as a collection of charged
discs that can be magnetized and polarized. The disc polar-
ization π := mb̂× Ẋ/B stems from the drift velocities and
reflects that due to the drifts the gyro-orbits are no longer
closed [27, 30]. Macroscopically, in our model we have Pem =
mnb̂× (uE+uD)/B. On the other side, the magnetizationMem

⊥
contains the moving electric dipole contribution. An electric
dipoleπ that moves with velocity v∥b̂ along the magnetic field

lines induces a magnetic moment µ= π× v∥b̂. However, we
only find the diamagnetic part to the moving dipole contribu-
tion. We are missing the contribution mnu∥b̂×∇ϕ/B2 since
we neglected the corresponding non-linear coupling terms in
the Hamiltonian (18).

7.3. Comparison to drift-fluid models

We note that equation (126) can also be viewed as
a relation for the radial force density ⟨(Pem ×B)φ⟩=∑

s

〈
m
qB2 (qn∇⊥ϕ+∇⊥p) ·∇ψp

〉
where the force density

−qnE⊥ +∇⊥p appears inside the bracket on the right hand
side. If the right hand side of equation (126) is zero, the radial
pressure gradient and the radial electric field strength balance
each other. Alternatively, we can rewrite equation (126) as

∂

∂t

∑
s

m⟨n(uE,φ+ uD,φ)⟩

+
∂

∂v

[∑
s

m⟨n(uE,φ+ uD,φ)⟩JuvEK
]

+
∂

∂v

[∑
s

m⟨n⟩
(
F v
E,φ+FTv

D,φ

)
+MTv

φ

]
=−

〈
(jf×B)φ

〉
+
∑
s

m

〈
SnuE,φ+

b̂×∇Sp⊥
qB

· eφ

〉
(133)

where the sum of E×B and diamagnetic drift appear under
the time derivative. We point out that equation (133) com-
pares to equation (79) and is distinguished by the appearance
of the transpose of the diamagnetic and Maxwell stresses and
the additional appearance of a pressure source on the right
hand side in a form analogous to a diamagnetic drift term.
This latter term appears through the use of the pressure equa-
tion in bringing the diamagnetic drift under the time derivative.
The ϑ-component of equation (133) is obtained by multiply-
ing with ι−1. Equation (133) is also the form closest to the
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drift-fluid (generalized) vorticity equation [41, 43]. To com-
pare one needs to take the flux-surface average over the gen-
eralized vorticity equation and then integrate over the volume.
This immediately allows the interpretation of equation (133)
as the volume integrated Equation for a divergence free cur-
rent or a closed current loop. The Favre decomposition needs
to be introduced in order to recover our stress terms. Further,
the momentum balance that results from integration of the
ensemble averaged kinetic Vlasov equation also has a sim-
ilar form to equation (133) as seen for example in Refer-
ence [9]. The difference is that we only recover the lower order
E×B and diamagnetic velocities instead of the full plasma
velocity.

We point out that the pressure source (heating) on the
right hand side of equation (133) is not present in the drift-
fluid generalized vorticity equation with plasma-neutral inter-
actions [58]. Further, our source terms disagree with Refer-
ence [41], where a momentum source instead of a density or
pressure source is presented. The cause for these differences
should be clarified in future work. In the present formula-
tion the momentum source term in equation (133) reflects (i)
the presence of a formal kinetic source S on the right hand
side of the gyro-kinetic Valsov equation (21) that is (ii) quasi-
neutral under species summation equation (54) and is (iii)
transformed according to the gyro-centre transformation rules
equation (53). On the other hand the Stringer-Winsor spin-up
term agrees with our results.

Finally, we emphasize that the evolution equation for the
E×B flow equation (61), the evolution for the electromag-
netic field momentum equation (126) and the interpretation
as a radial force density or the sum of E×B and diamag-
netic drifts in equation (133) are completely equivalent views
of the same result. In particular, physical arguments made
with one of the three equations immediately translate into the
other two.

7.4. Relation to the ion orbit loss mechanism

The ion orbit loss mechanism [3, 6, 13–15, 59] refers to the
idea that ion orbits close to the X-point end on the divertor tar-
get or the vessel wall and are thus lost to the confined plasma
region. It is thought that the poloidal magnetic field close to the
X-point is small such that the grad-B curvature drift velocity
dominates over the parallel velocity making ions drift across
the separatrix. This then generates a net flux of positive charge
out of the confined region. In particle phase space the ions that
are on a loss orbit are situated on a ‘loss-cone’ encompassing
ions with small parallel velocity and large perpendicular velo-
city / magnetic moment. It is reported that the perpendicular
kinetic energy of the loss cone reaches down to thermal ener-
gies [14].

The ion orbit loss is often invoked in models explaining
the L-H transition [13–15], where it is thought that the out-
ward current leaves a small region inside the separatrix neg-
atively charged, which generates a strong radial electric field.
This field in turn drives a strong poloidal shear E×B flow that

then forms the transport barrier typical for the high confine-
ment mode. On the other side the same idea is used to explain
intrinsic toroidal rotation [3, 6, 59], the observation that the
plasma rotates toroidally without controlled external sources
like NBI. The main ingredient here is to assume that the rate
bywhich ions enter loss orbits depends on the direction of their
parallel velocity. This then generates an asymmetry between
losses of so-called co- and counter-current ions. Since ions
carry toroidal momentum, the preferential loss in one direc-
tion accelerates the plasma in the other.

Since our derivation of poloidal and toroidal angular
momentum balance makes no assumption on the form of the
distribution function F (in particular it does not assume that
F is Maxwellian) and the particle orbits are retained via equa-
tions (31) the ion orbit loss mechanism must consequentially
be contained in our results. Here, we want to identify the rel-
evant terms for both poloidal and toroidal rotation.

The net surface integrated current
´
ψp
j · dA= ⟨j ·∇v⟩8

flowing through a flux-surface ψp, in particular the separatrix,
by magnetic drifts is given by∑

s

⟨qn(u∇B+uκ) ·∇v⟩=
〈
jf ·∇v

〉
=
∑
s

〈(
∥µB∥K∇B+ ∥mv2∥∥Kκ

)
·∇v

〉
=

dv
dψp

∑
s

〈
(p⊥K∇B+(p∥ +mnu2∥)Kκ) ·∇ψp

〉
(134)

where we inserted the definition of curvature and grad-B
drifts equations (A19) and (A18) and the velocity space
moments to emphasize the origin of jf as particle drifts. At
this point recall again that

〈
jf ·∇v

〉
≡
〈
(jf×B)φ

〉
dv/dψp ≡〈

(jf×B)ϑ
〉
dv/dψt by virtue of equations (4) and (5). The term

described in equation (134) is nothing but the Lorentz force
term that appears in our momentum equations in section 5 and
which we already identified as the Stringer-Winsor spin-up or
geodesic transfer term. The ion orbit loss contribution must be
contained in the first term on the right side of equation (134)
since it was argued that ions with large µ and small v∥ fall on
loss orbits. A signature of ion orbit loss would be if the ion
term in equation (134) is larger than the electron contribution
at or close to the separatrix.

At this point we notice that for favourable curvature
drift direction the curvature vectors counter-align with ∇ψp
(K(ψp)< 0, decelerate) on the top and align (K(ψp)> 0,
accelerate) on the bottom of the tokamak. In order for
the flux-surface average in equation (134) to yield a non-
vanishing result we therefore need an up-down asymmetry
of the pressure in the flux-surface. Furthermore, we notice
that for our example tokamak equilibrium in figure 1 we have
⟨Kκ ·∇ψp⟩= 0. Indeed, more generally we find ∇ ·K∇B =
−∇ ·Kκ =−Kκ ·∇ lnB ∼O(δ6), which results in ∂v ⟨Kκ⟩=
∂v(⟨Kκ ·∇ψp⟩dv/dψp)∼O(δ6) and thus ⟨Kκ ·∇ψp⟩ ≈ 0.

8 Recall the definition of the flux-surface average equation (7) to see that this
is indeed the area integral.
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This means that only the fluctuations in p⊥, p∥ and nu2∥ con-

tribute and we can write9〈
jf ·∇ψp

〉
=
∑
s

〈
(p̃⊥K∇B+(p̃∥ +mñu2∥)Kκ) ·∇ψp

〉
(135)

7.4.1. Poloidal E×B flow. Even though, as argued in equa-
tion (102) in section 5, the Lorentz force does not generate
net poloidal momentum, it does generate E×B momentum,
respectively a radial electric field uE,ϑ ∼∇ϕ ·∇ψt. We thus
conclude that the ion-orbit loss mechanism may indeed con-
tribute to the radial electric field through the Lorentz force.

On the other hand, we emphasize that the Lorentz force is
not the only candidate that contributes to the poloidal E×B
flow generation. Any other term in equation (80) could be
equally important. Besides the E×B Favre stress we identi-
fied for example the diamagnetic stress F v

D,η or the density
gradient and magnetic shear related terms as additional can-
didates that may be equally relevant for the L-H transition.

7.4.2. Intrinsic toroidal rotation. The ion loss mechanism is
through the Lorentz force indeed contained in the toroidal
angular momentum conservation for E×B (79) and parallel
(88) angular momentum. However, as we discussed in equa-
tion (102) in section 5 the Lorentz force does not actually gen-
erate net angular momentum, neither poloidal nor toroidal. A
loss of ions through the separatrix does thus not generate tor-
oidal angular momentum. As is shown in equation (102) for an
axisymmetric equilibrium the only sources for toroidal angu-
lar momentum are the actual source terms Snu∥ and Sn on the
right hand side. In order to explain an intrinsic rotation pro-
file in this case we thus need to focus on the radial advec-
tion and stress terms, which describe the radial in-/outflow of
momentum through the boundary flux-surface. This requires
a description of the turbulent fluctuations entering the stress
terms, which is difficult to acquire short of a full-scale simula-
tion of the model equations. The literature thus often invokes
phenomenological models, for example the asymmetric turbu-
lent diffusion [3] where a preferential loss of co- or counter-
current ions through the separatrix generates a net momentum
gain for the remaining plasma inside the separatrix.

7.5. Comparison to parallel acceleration

The argument was made [60–63] that in experimental meas-
urements the parallel velocity u∥ is measured and not the par-
allel momentum density nu∥. It was concluded that therefore
u∥ respectively

〈
u∥
〉
should be the quantity that theoretical

work should focus on when discussing intrinsic rotation. In

9 If we assume p∥ = p⊥ = p, we can further simplify
〈
jf ·∇ψp

〉
=∑

s

〈
b̂×∇p̃

B
·∇ψp

〉
+

〈
mñu2∥Kκ ·∇ψp

〉
where we use that K∇B +Kκ =

K and∇ ·K= 0 (see A1). Then we find the radial component of the diamag-
netic drift ⟨uvD⟩dψp/dv in the first term on the right hand side.

our view, neither premise nor conclusion of this hypothesis
holds. First, the velocity can be measured at the same posi-
tion and time as the density with for example velocity space
tomography [64] (and it should be noted that it is the velocity
with respect to the line of sight rather than the parallel velo-
city that is actually measured in charge exchange diagnostics).
Second, u∥ is not the angular momentum; u∥bφ ≈ u∥R is and
only part of it at that. Also, recall that even though it is not tech-
nically wrong to compute

〈
u∥
〉
the flux-surface average (7)

is a volume average and should be taken over density like
quantities (like nu∥). Finally, what comes out of a gyro-kinetic
moment expansion (as performed in [60–63]) is the gyro-fluid
parallel velocity U∥, not the actually measured fluid velocity
u∥. As we discuss in section 3.3 care must be taken when
comparing gyro-fluid quantities like U∥ to the actually phys-
ically measured fluid quantity u∥ due to the involved coordin-
ate transformation of equation (49), which for U∥ is given in
equation (52). The time evolution equation for u∥ reads in our
ordering (keeping terms up to O(δ3))

∂u∥
∂t

+(b̂+ b̃⊥) ·∇u2∥/2+uE ·∇u∥

+
1
mn

∇ ·
(
(b̂+ b̃⊥)p∥

)
+

1
m
t⊥∇∥ lnB

+
q
m
∂tA1,∥ +

q
m
(b̂+ b̃⊥) ·∇ϕ= Su∥ (136)

The terms that appear beside the time derivative are in order
the parallel advection term, the E×B advection term, the par-
allel pressure gradient term, the mirror force term and the last
two terms form the parallel electric field. In equation (136)
we see the local parallel acceleration of a single (ion) species.
However, workingwith accelerations instead of force densities
as in equation (93) does not reveal that after species summation
and flux-surface averaging all net internal forces vanish and
only external forces remain. As collectively generated, internal
forces neither the pressure gradient nor the electric field can
be the source of an intrinsic rotation profile. We point out here
that the only external force that is able to make a contribution,
the mirror force term

〈
p⊥∇∥ lnB

〉
, was neglected in [60–63].

8. Conclusions

Our main results are the Favre averaged covariant poloidal
and toroidal velocity evolution equations (79), (80), and (88)
applicable in arbitrarymagnetic field geometry including toka-
maks, the reversed field pinch, the field-reversed configura-
tion and stellarators. The E×B equations (79), (80) and the
parallel components in equation (88) sum to the total angular
momentum in equation (102).

The usefulness of the Favre-average formalism mainly
stems from the identification of the Favre stress as the medi-
ator between turbulent fluctuations and flux-surface averaged
profiles. In our full-F gyro-kinetic formulation the perpen-
dicular Favre stress F v

⊥,η appears in the E×B part of the
angular momentum as a natural extension of the Reynolds
stress through the density weighted flux-surface average - the
Favre average [16]. The perpendicular Favre stress consists
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of the previously found E×B contribution F v
E,η, but also of

the novel diamagnetic F v
D,η and magnetic flutter F v

F,η con-
tributions defined in equation (82). Besides the Favre stress,
the vacuum Maxwell stress Mv

B,η and magnetization stresses
Mv

M,η defined in equation (83) appear. We highlight the rela-
tion to the general density gradient drive term in equation (87).
Furthermore, the Lorentz force originating from the curvature
and grad-B drift induced currents represents a source forE×B
angular momentum density. Finally, poloidally asymmetric
density sources equation (84) contribute to angular momentum
generation.

Analogous to the E×B part, the parallel component of the
angular momentum density equation (88) is generated by the
parallel Favre stress F v

∥,η in equation (91) as well as the kin-
etic stressKv

∥,η equation (90) stemming from magnetic fluctu-
ations. The Lorentz force appears with an opposite sign as in
theE×B equation thus vanishing in the summed total angular
momentum density in equation (102), both toroidally as well
as poloidally. In addition, in equation (88) the mirror force
appears as a source of parallel momentum density.

We construct the inertia tensor from the first fundamental
form in equation (106). The relevant discussion is based on
the mean flow generated by the covariant, Favre averaged
velocity components that we investigate in the first part of
the paper. From there we construct the rotational energy in
equation (111). The E×B part of this energy can be split
into a mean ‘zonal’ and fluctuating part and we present the
evolution of the mean in equation (117) using the previously
derived evolution equations for angular momentum. The main
finding compared to a simplified geometry is the appear-
ance of a correction factor due to the inertia tensor, which
in particular modifies the effect of the density source on the
right hand side. A density source on the high field side is a
more effective source of zonal flow energy than on the low
field side.

We show that we recover previous results obtained in sim-
plified geometries. Interestingly, the purely toroidal magnetic
field leads to the exact conservation of both the poloidal E×B
velocity as well as the parallel angular momentum density.
This is because an additional symmetry is introduced by this
geometry. We also point out that the ion orbit loss mechan-
ism as outlined in the literature is identical to the ‘geodesic
transfer term’ and the ‘Stringer-Winsor spin-up mechanism’
and is contained in our results in the Lorentz force term on
the right hand side of the poloidal E×B angular momentum
equation (80). Finally, we clarify several misconceptions in
connection with ‘parallel acceleration’ relating previous find-
ings to our results.

The main drawback of our derivation is the long-
wavelength limit in the gyro-kinetic action equation (23),
which effectively reduces our model to a drift-kinetic model
and misses higher order finite Larmor radius and polariza-
tion effects that could play a role for the L-H transition. We
mainly perform this limit in order to avoid an infinite sum in
the relation between the ordinary and the variational deriv-
ative equation (57) and to avoid the introduction of a fluid

closure of the infinite expansions in the polarization and gyro-
averages [31]. The drift ordering in section 4 avoids geomet-
rical correction factors stemming from for example perpendic-
ular derivatives on the magnetic field unit vector in section 4
and allows to recover fluid (as opposed to gyro-fluid) moments
in our equations and to compare to existing drift-fluid models
via equation (133). However, our momentum balance equa-
tions are only valid up to order three and the energy balance
equations up to order four within this ordering. Future work
could address the above issues.

Our results can be used to verify simulation results. The
application of these results within full-F gyro-fluid models is
subject of ongoing research. However, as previously stated,
the available equations in this work are by no means restric-
ted to gyro-fluid models since the derivation contains no
assumption on the form of the distribution function. Thus the
presented results are relevant also for other frameworks bey-
ond gyro-fluid models like for example gyro-kinetic or drift-
fluid models.

The experimental validation of our results may be chal-
lenging due to the number of terms that appear in the evol-
ution equations (79), (80), and (88) that in particular require
the measurement of plasma potential, parallel velocity, dens-
ity, pressure and possibly magnetic field fluctuations at the
same time and positions. Further, a problematic operation is
the flux-surface average. The argument that a time average
over the measurement interval equates the flux-surface aver-
age only holds if the measured quantity is a flux-function in
the first place. On the other hand we provide the theoretical
foundation for a discussion of the dominant physical mech-
anisms that generate poloidal and toroidal angular momentum
density and rotational energy in any toroidal magnetic field
configuration.
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Appendix A. Formulary
A.1. Flux surface and Favre average

The flux-surface average (see for example [22]) is an average
over a small volume - a differential shell centered around the
flux-surface. We define
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Table A1. Definitions of geometric operators with bi the contra-variant components of b̂ and gij the contra-variant elements of the metric
tensor. We assume (∇× b̂)∥ = 0.

Name Symbol Definition

Projection tensor h hij := gij− bibj Noteh2 = h
Perpendicular gradient ∇⊥ ∇⊥f := b̂× (∇f× b̂)≡ h ·∇f
Perpendicular divergence ∇†

⊥ ∇†
⊥ · v :=−∇ · (h · v) =−∇ · v⊥

Perpendicular laplacian ∆⊥ ∆⊥f :=∇ · (∇⊥f) =∇ · (h ·∇f)≡−∇†
⊥ ·∇⊥

Curl-b curvature operator Kκ Kκ( f) := Kκ ·∇f= 1
B (b̂×κ) ·∇f with κ := b̂ ·∇b̂

Grad-B curvature operator K∇B K∇B( f) := K∇B ·∇f= 1
B (b̂×∇ lnB) ·∇f

Curvature operator K K( f) := K ·∇f=∇ ·
(
b̂×∇f
B

)
=∇× b̂

B ·∇f,

Parallel derivative ∇∥ ∇∥f := B ·∇f/B Notice∇ · b̂=−∇∥ lnB

⟨f⟩(ψp) :=
∂

∂v

ˆ
Ω

dV f=
ˆ
ψp

f(x)
|∇v|

dA (A1)

where we define v(ψp) :=
´ ψp

0 dV as the volume flux label and
for the second identity, recall the co-area formula

ˆ
Ω

f(x)dV =

ˆ ρ

0
dρ′
(ˆ

ρ′=const

f(x)
|∇ρ|

dA

)
(A2)

where ρ(ψp) is any flux label and Ω is the volume enclosed
by the contour ρ= const. In flux coordinates we have dA=√
g|∇ρ|dϑdφ. The co-area formula can be viewed as a change

of variables in the volume integral. The average fulfills the
identities (with scalars λ and µ)

⟨µf+λg⟩= µ⟨f⟩+λ⟨g⟩ (A3)

⟨f(ψp)g(x)⟩= f(ψp)⟨g(x)⟩ (A4)

⟨∇ · j⟩= ∂

∂v
⟨j ·∇v⟩

=

(
dv
dρ

)−1
∂

∂ρ

(
dv
dρ

⟨j ·∇ρ⟩
)

(A5)

Also note that for any divergence free vector field ∇ · j= 0
and a flux function f (ψp) we have

⟨∇ · (jf)⟩= 0 (A6)

which is proven straightforwardly.
We note the Reynolds decomposition for any function h(x)

h≡ ⟨h⟩+ h̃ (A7)

and its generalization, the Favre average and decomposition

JhK := ⟨nh⟩
⟨n⟩

(A8)

h≡ JhK+ ĥ (A9)

Table A2. List of the first few gyro-fluid moments: gyro-fluid
density N, parallel canonical velocityW∥ the perpendicular and
parallel pressure (P⊥ and P∥)/ temperature T⊥ and T∥ as well the
parallel heat flux Q∥.

N ∥1∥ P⊥ ≡ NT⊥ ∥µB∥

NW∥ ∥w∥∥ P∥ ≡ NT∥ ∥m(w∥ −W∥)
2∥

Nϕ ∥ϕ∥ Q∥ ∥µB(w∥ −W∥)∥
NA1,∥ ∥A1,∥∥

where n is the particle density, which makes the Favre average
species dependent. The Favre average fulfills

JghK = JgKJhK+r
ĝĥ

z
(A10)

It is sometimes useful to define the Favre average using the
total mass density ρM :=

∑
smn as

JhKM := ⟨ρM⟩−1
∑
s

m⟨nh⟩ (A11)

for any (possibly species dependent) function h. If h is species
independent this definition simplifies to JhKM = ⟨ρMh⟩/⟨ρM⟩.

A.2. Fluid moments

The velocity space moments equations (39) and (40) read

∥ζ∥ :=
ˆ

dw∥dµm
2BFζ

∥ζ∥S :=
ˆ

dw∥dµdθm
2BSζ

In table (A2) we name the first few velocity space moments
of the gyro-kinetic distribution function F. The moments over
the gyro-kinetic source function S are named analogous as SN ,
SNW∥ , SP⊥ , SP∥ and SQ∥ . We can identify ∥mv∥∥= mNW∥ −
qNAf,∥ ≡ mNU∥ and

∥mv2∥∥= P∥ +mNU2
∥, ∥µBv∥∥= Q∥ +P⊥U∥, (A12)

The relation between gyro-fluid quantities N(X, t),
U∥(X, t), ... given in gyro-centre coordinates X and the phys-
ical fluid quantities, which we denote with lower case letters
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n(x, t) :=
´
d3vf(x,v, t), u∥(x, t) :=

´
d3vv∥f(x,v, t) ..., where

f(x,v, t) is the distribution function in particle phase-space
(and we here overburden the use of v as the velocity instead
of the volume flux-label) is given by equation (49)

∥ξ∥v = ∥ζ∥+∆⊥

(
m∥µBζ∥
2qB2

)
+∇ ·

(
m∥ζ∥∇⊥ϕ

B2

)
(A13)

This relation can be inverted up to order δ2 as for example in
equations (51) and (52)

N= n−∆⊥

(
mnt⊥
2q2B2

)
−∇ ·

(
mn
qB2

∇⊥ϕ

)
(A14)

NU∥ = nu∥ −∆⊥

(
m(q∥ + u∥p⊥)

2q2B2

)
(A15)

Analogous relations hold for the moments of the gyro-kinetic
source function SN and SNU∥ .

A.3. Fluid velocities

We introduce for any vector u

uv := u ·∇v ∇v :=
dv
dψp

∇ψp (A16)

uφ := u · eφ uϑ := u · eϑ u∥ := u · b̂ (A17)

We define the E×B drift uE, the grad-B drift u∇B, the dia-
magnetic drift uD, the curvature drift uκ, the first order mag-
netic fluctuations B1,⊥ and the electromagnetic magnetization
density Mem

⊥

uE :=
b̂×∇ϕ

B
u∇B := t⊥

b̂×∇ lnB
qB

(A18)

uD :=
b̂×∇p⊥
qnB

uκ := (t∥ +mu2∥)
b̂×κ

qB
(A19)

B1,⊥ :=∇A1,∥ × b̂ Mem
⊥ :=

∑
s

mb̂×∇(q∥ + p⊥u∥)

qB2

(A20)

Note that
〈
B̃v1,⊥

〉
=O(δ3) in the drift ordering and b1,⊥ :=

B1,⊥/B. Finally, we have the free current

jf :=
∑
s

qn(uκ+u∇B) (A21)

originating in the particle curvature and grad-B drifts.
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