
PAPER

Machine learning for disruption warnings on Alcator C-Mod, DIII-D, and
EAST
To cite this article: K.J. Montes et al 2019 Nucl. Fusion 59 096015

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is© .

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for
reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 18.219.67.169 on 21/05/2024 at 14:30

https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1741-4326/ab1df4


Machine learning for disruption warning on Alcator

C-Mod, DIII-D, and EAST

K J Montes1, C Rea1, R S Granetz1, R A Tinguely1,

N Eidietis2, O M Meneghini2, D L Chen3, B Shen3, B J Xiao3,

K Erickson4, M D Boyer4

1 Massachusetts Institute of Technology, Plasma Science and Fusion Center,

Cambridge, MA USA
2 General Atomics, San Diego, CA USA
3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
4 Princeton Plasma Physics Laboratory, Princeton, NJ, USA

E-mail: kmontes@mit.edu

January 2019

Abstract. This paper reports on disruption prediction using a shallow machine

learning method known as Random Forests, trained on large databases containing

only plasma parameters that are available in real-time on Alcator C-Mod, DIII-

D, and EAST. The database for each tokamak contains parameters sampled ∼ 106

times throughout ∼ 104 discharges (disruptive and non-disruptive) over the last 4

years of operation. It is found that a number of parameters (e.g. Prad/Pinput, `i,

n/nG, Bn=1/B0) exhibit changes in aggregate as a disruption is approached on one or

more of these tokamaks. However, for each machine, the most useful parameters,

as well as the details of their precursor behaviors, are markedly different. When

the prediction problem is framed using a binary classification scheme to discriminate

between time slices “close to disruption” and “far from disruption”, it is found that the

prediction algorithms differ substantially in performance among the three machines on

a time slice-by-time slice basis, but have similar disruption detection rates (∼80-90%)

on a shot-by-shot basis after appropriate optimisation. This could have important

implications for disruption prediction and avoidance on ITER, for which development

of a training database of disruptions may be infeasible. The algorithm’s output is

interpretable using a method that identifies the most strongly contributing input

signals, which may have implications for avoiding disruptive scenarios. To further

support its real-time capability, successful applications in inter-shot and real-time

environments on EAST and DIII-D are also discussed.
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Disruption prediction on C-Mod, DIII-D, and EAST 2

1. Introduction

Application of artificial intelligence using machine learning (ML) methods for gener-

ating real-time warnings of impending disruptions in tokamaks is currently being de-

veloped [1–4] because approaches based on first-principles plasma physics may be too

complex to be of practical use, particularly in real-time. Prediction algorithms like

neural networks, support vector machines, and manifold learning techniques have been

studied on JET [5–7] ASDEX-U [8, 9], and DIII-D [10] with similar approaches. How-

ever, these algorithms are often trained and tested on limited datasets from a single

tokamak, and few cross-machine comparison studies have been implemented [11, 12].

The methods typically used in previous work have also generally relied on black-box

ML algorithms, which have few methods available to interpret their predictions [13].

In an attempt to address the interpretability shortcoming, the ML work described

in this paper uses a white-box supervised learning approach, which necessarily requires

a large database for training and testing. However, on future high-power fusion reac-

tors, the compilation of a large database of disruptions is problematic. If a universal

ML algorithm that is proven to work on multiple present-day devices can be developed,

it may resolve this conundrum. Hence, a multi-machine investigation as begun in this

paper is needed.

With that in mind, we have developed databases of disruption-relevant parameters

on a number of tokamaks, three of which are featured here, and used these to train sim-

ilar ML prediction algorithms for the three machines. We note that we have restricted

the parameter set to include only those signals which can be available in real-time in

present-day tokamaks. Furthermore, we train and test our prediction algorithms on all

discharges in the databases, without regard to any particular type of disruption.

In Section 2 we will describe the databases in some detail. Note that the

databases contain information on both offline (i.e., minimally post-processed) data

and the respective real-time counterpart (i.e., the data that the plasma control system

has available in real-time). The former is used in Section 3-5 to discuss the offline

developed methodology and presented in this manuscript, while the latter is adopted

for all the real-time applications of the methodology. In particular, in Section 3 we

compare and contrast the behavior of several plasma parameters amongst machines.

Section 4 describes the development and optimisation of the Random Forests (RF)

ML algorithms, and compares their disruption prediction performance on the three

machines. In Section 5, we introduce a method for interpreting the output of our

prediction algorithm as a sum of contributions from the individual input signals. In

Section 6 we describe the implementation of a real-time RF-based predictor in the

DIII-D plasma control system, and the between-shot testing of an RF algorithm on

purposely-triggered VDE’s on EAST. A summary and conclusions follow in Section 7.
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Disruption prediction on C-Mod, DIII-D, and EAST 3

2. The Databases Available on the Three Devices

In order to train and test disruption prediction algorithms on the three tokamaks, we

have created similar disruption warning databases for Alcator C-Mod, DIII-D, and

EAST by compiling values for a number of disruption-relevant parameters sampled

at many times throughout all plasma discharges, disruptive and non-disruptive, from

the 2014-2017 campaigns for DIII-D and EAST, and 2014-2016 campaigns for C-Mod.

These databases are in the form of an SQL table for each machine, and can therefore be

accessed by many commonly used scientific software packages (Matlab, IDL, Python,

etcetera). Each record in the SQL database tables consists of a shot number, a time

value, and the values of 50-60 disruption-relevant plasma parameters measured on the

specified shot at the specified time. Records do not include information from previous

time slices, since quantities reflecting average values or standard deviations over speci-

fied time windows are not used.

The choice of which parameters to include in the databases is guided by our knowl-

edge of the plasma physics inherent in disruption phenomena. Many of the disruption-

relevant parameters are based on the disruption detection study on NSTX-U previ-

ously published by Gerhardt [14], and include diagnostic measurements such as Ip error

[= Ip − Ip(programmed)], radiated power fraction [= Prad/Pinput], the Greenwald den-

sity fraction n/nGreenwald, Zerror [= Z(centroid)− Z(programmed)], as well as a num-

ber of equilibrium parameters derived from EFIT reconstructions (q95, `i, elongation,

etcetera). Although not critical for this investigation, many of these physics parameters

are normalised to machine size or B-field where appropriate in order to facilitate future

multi-machine studies. It is important to note that the set of parameters we have chosen

can, in principle, be available in real-time to a plasma control system (PCS). Therefore

the algorithms we develop are suitable for use in real-time, running on the PCS (an

example is mentioned in Section 6, and complete details are found in [15]). In order to

keep the size of the databases to a manageable level while still capturing the desired

evolution of parameters prior to a disruption, non-uniform time sampling has been used,

with relatively moderate sampling rates throughout all discharges, plus higher sampling

rates for a fixed period of time before each disruption. For Alcator C-Mod, sampling

is done every 20 ms on all shots, which have a typical flattop duration of ∼ 1 s, and

additional sampling is done every 1 ms during the 20 ms period before each disruption.

For DIII-D, all shots (∼ 3 s flattop) are sampled every 25 ms, and additional sampling

is done every 2 ms for the 100 ms period before each disruption. For EAST, all shots

(∼ 6 s flattop) are sampled every 100 ms (some discharges are 100 s long), and addi-

tional sampling is done every 10 ms for the 250 ms period before each disruption. The

choice of sampling rates and pre-disruption periods is based on a general survey of the

disruption precursor timescales in each machine, done with the aim of capturing high

frequency information relevant to the oncoming disruption. Data sampling rates can

easily be adjusted if analysis of the database parameters indicates a need to do so.
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Disruption prediction on C-Mod, DIII-D, and EAST 4

The disruption warning databases for C-Mod, DIII-D, and EAST contain parameter

values for 0.5, 3.0, and 1.2 million time slices from more than 5000, 13000, and 14000

discharges respectively, and addition of parameters to the database is ongoing. Many

of the plasma parameters are derived from EFIT [16] reconstructions. In order to avoid

excessive interpolation we have run our own EFITs on all the discharges at the times

we desire for our databases, using causal smoothing where needed. Avoiding non-causal

filtering is absolutely necessary to ensure credible disruption prediction algorithms for

real-time use.

3. Univariate Feature Analysis on C-Mod, DIII-D, and EAST

In the work described in this paper, we have concentrated on disruption prediction

during the period of the plasma current flattop exclusively. This enables us to study

disruptions that occur during steady-state operation, in a consistent heating and con-

finement regime. This narrow scope is justified by previous works showing differences

in disruptivity during the ramp-down phase, and control room experience reflecting

generally inadequate PCS control near the end of the discharge. Although disruptions

certainly occur during rampup and rampdown, in ITER and future reactors (as well as

many EAST discharges) the rampup and rampdown phases will be a negligible fraction

of the discharge duration.

Through detailed examination of our databases for the three machines, we have

found a number of plasma parameters that exhibit identifiable changes in behavior as

disruptions are approached on one or more of these tokamaks, for a notable fraction

of flattop disruptions. Examples include radiated power fraction (Prad/Pinput), internal

inductance `i (current profile peakedness), Greenwald fraction (n/nG), n = 1 locked

mode indicator, Te profile width, and a number of other commonly measured plasma

parameters. However, each individual parameter behaves markedly different on each

machine. These different behaviors are a reflection of the fact that the different machines

do not have identical operational spaces and therefore do not have the exact same set

of disruption types. Illustrative examples are shown in Figure 1.

In Figure 1(a) the evolution of n equal 1 normalised is shown as a flattop dis-

ruption is approached, for thousands of disruptions on each machine. This parameter

is a proxy for the n = 1 toroidal Fourier harmonic of the perturbed magnetic field of

non-rotating modes, and is then normalised to the machine’s toroidal magnetic field.

Each machine has different hardware configuration for the magnetic sensors; we refer

to [17] for a detailed discussion on how n equal 1 normalised is computed on C-Mod

and DIII-D, given the different sensor hardware available. For what regards EAST,

n equal 1 normalised is calculated from the saddle loop signals, after compensating

for the pickup from resonant magnetic perturbation (RMP) coils.
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Disruption prediction on C-Mod, DIII-D, and EAST 5

(a) (b)

Figure 1: Behavior of the n = 1 locked mode proxy (a) and loop voltage (b) is markedly

different on the three tokamaks. Disruptions time is at t = 0 s on the right edge of each

graph. Note the different time scales and vertical scales for each machine.

The first panel of Figure 1(a) shows that, although n equal 1 normalised tends

to increase on a notable fraction of C-Mod disruptions, it does not do so until just a

few ms before the disruption time, which is too short to be of practical use. On DIII-D,

n equal 1 normalised tends to increase slowly before disruptions, starting roughly a

half-second before the disruption time. And on EAST, n equal 1 normalised does not

show any change of behavior as disruptions are approached.

Another example is given in Figure 1(b), showing the loop voltage on each machine

as flattop disruptions are approached. On EAST, a large fraction of disruptions are

preceded by an increase in loop voltage, starting about 100 ms before the disruption

time. This behavior is less pronounced and there is much less warning time on C-Mod

and DIII-D. Similar contrasting behavior between machines is also seen for the radiated

power fraction, the normalised Ip error, and others. The fact that the same plasma

parameters generally show markedly different evolution leading up to disruptions could

complicate the successful development of a universal disruption predictor.
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Disruption prediction on C-Mod, DIII-D, and EAST 6

Table 1: Input signals used for developing DPRF on each tokamak.

Variable name Signal description

n equal 1 normalized a Perturbed field of nonrotating modes (n = 1 Fourier component),

normalised to toroidal magnetic field Bn=1/Btor

q95 Safety factor at the 95% flux surface

Greenwald fraction Greenwald density fraction n/nG
ip error frac Fractional error between measured and programmed plasma current

li Normalized internal inductance

betap Poloidal beta

Vloop Loop voltage Vloop [V]

Wmhd Stored plasma energy [J]

Te width normalized b Width of quadratic approximation to electron temperature

profile, normalized to plasma minor radius

radiated fraction Total radiated power divided by total input power

aFor the EAST DPRF, the non-normalized n=1 Fourier amplitude is used as an input because the

toroidal B-field measurement is unavailable for a significant number of discharges.
bFor the C-Mod DPRF, the Te profile width is excluded from the list of input features because this

data is missing from a significant number of discharges.

4. DPRF Development and its Performances on the Different Devices

The Machine Learning model we adopted to develop our disruption predictor on the

three different tokamaks is based on the Random Forests algorithm; we will refer to

it using the abbreviation DPRF, Disruption Predictor using Random Forests. The

methodological details of the Random Forests algorithm can be found in the original

paper from Breiman [18] and in previous publications from the authors [17, 19].

RF is a supervised algorithm, meaning that class labels need to be assigned to each

sample in the available datasets, via human supervision. If the assigned class labels are

discrete, then the algorithm is defined as a classifier, whereas if the class labels are con-

tinuous the algorithm is referred to as a regressor. In particular, DPRF is a supervised

classification algorithm, where the class labels are assigned depending on a threshold

in time, specific for each device, chosen on the basis of the univariate analysis on the

aforementioned plasma signals (see Section 3). The assigned class labels are discrete

and binary: the data sample belongs either to a class labeled “close to a disruption”

or to a class labeled “far from a disruption”. This classification implicitly assumes that

it is possible to detect a transition in time from a safe operational regime to a disrup-

tive one and is another instance of incorporating physics knowledge into the AI workflow.

RF are ensemble learners: the algorithm learns by developing a large collection of

independent, de-correlated predictors (i.e., the individual decision trees in the forest).

Each tree is a hierarchical data structure created by recursively partitioning the dataset

available [20]. Ideal partitions are created by probing the input feature space, given

by the plasma signals from Table 1. They are chosen to obtain the largest information
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Disruption prediction on C-Mod, DIII-D, and EAST 7

Table 2: Number of discharges included in the datasets for each machine.

C-Mod DIII-D EAST

Disruptive Non-Disruptive Disruptive Non-Disruptive Disruptive Non-Disruptive

Train 532 2886 867 5074 1689 4738

Test 134 722 217 1269 423 1185

gain by minimizing an impurity measure, i.e. the Gini index [18], that measures the

classification error associated with each pair of (feature, value) tested. Each statistical

test is done using the features’ real values - no feature scaling or normalisation is ac-

tually required. Starting from a root node (the initial decision, i.e. a statistical test

on one randomly chosen input feature), the decision paths are obtained by learning on

training subsets, obtained via a random sampling with replacement from the original

dataset (i.e. bootstrapped samples). The prediction on which class label to assign is

provided individually by each tree for a particular feature vector sample, and the final

forest prediction is obtained via aggregation, using majority voting.

Tree-based models are attractive algorithms due to their accessible interpretability:

using the Gini impurity measure it is possible to obtain an estimate of the relative im-

portance of the predictor variables. For further reading on Random Forests applications,

please refer to [17,19].

Our choice of parameters to include in these applications is based partly on our

own tokamak operational experience and partly on those specified in the relevant litera-

ture [12,14,21,22]. All the signals reported in Table 1 represent relevant physics triggers

to disruption events, such as low-density or high radiated power disruptions or locked

mode-driven ones.

A strong assumption in the development of DPRF is the selection of only the

flattop portion of the discharges to train DPRF; therefore the plasma current flattop

phase represents the validity range for any performance metrics, as well as for the

classifier’s predictions. This also implies that the focus of this predictive algorithm are

disruptions happening during the flattop, regardless of the particular chain of events,

and not rampup or rampdown ones (even though such data are available in the SQL

databases). Still with these restrictions, our dataset is comprised of a large number of

both disruptive and non-disruptive discharges, as shown in Table 2.

4.1. Time slice performances

Before discussing the details of a shot-by-shot analysis, we report DPRF performances

in terms of a confusion matrix for each device (Figure 2) as a benchmark for comparison.
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Disruption prediction on C-Mod, DIII-D, and EAST 8

Figure 2: DPRF performances on a time slice basis are summarised in a confusion

matrix for each tokamak. The positive class refers to a time slice with an assigned

“close to disruption” label, while the negative class refers to a “far from disruption”

time slice.

DPRF was trained using a different threshold for the class label separation, τclass, on

each machine: for DIII-D, disruptive time slices are labelled starting from 350 ms before

the disruption event; on EAST the discrimination threshold is set at 100 ms; while on

C-Mod, a 40 ms threshold is chosen. The class label separation times on DIII-D and

EAST were chosen from observation of signal temporal behavior as described in Sec-

tion 3. In contrast, the threshold time for C-Mod was set at a minimum value that is

practically useful for disruption warning purposes, since a proper threshold choice was

not made clear by a similar univariate analysis.

The performances reported in Figure 2 are obtained using the aforementioned

thresholds to discriminate between the disruptive label (i.e., the positive class) and

the non-disruptive one (i.e., the negative class). The fraction of correctly predicted

disruption samples varies considerably and is far from perfect, ranging from ∼ 60% for

DIII-D, to just ∼ 22% for EAST. It is important to note that these performance metrics

are very different when evaluated on a shot-by-shot basis, as described next.

4.2. Optimised mapping of time slice predictions to shot predictions

Signal measurements invariably have some noise, and ML algorithms are not perfect, so

it is not necessarily wise to declare that a disruption is imminent based solely on the

RF output, or disruptivity value, for a single time slice. In order to provide an accurate

warning of an impending disruption, we desire to evaluate the performance of DPRF on

a shot-by-shot basis, for which the temporal distribution of time-sample predictions is

taken into account. We do this by using a hysteresis threshold system in the following

manner: if the disruptivity remains above a low threshold for a certain time interval

(the alarm window) after having exceeded a high threshold, the warning alarm is trig-
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Disruption prediction on C-Mod, DIII-D, and EAST 9

Figure 3: A disruptive shot on EAST warned by a DPRF algorithm with a 0.6 high

threshold (green), 0.05 low threshold (purple), and 20 ms alarm window (yellow); the

alarm trigger time (red) comes ∼ 30 ms before the first current spike

gered. An example of a successfully warned disruption using this scheme is shown in

Figure 3. Note that the low threshold and alarm window together may act to make the

trigger algorithm robust to a noisy disruptivity signal, which is important for real-time

application.

With a defined alarm trigger method, we can now extend the continuous time slice

predictions to binary shot-by-shot predictions. Disruptive shots (as opposed to time

slices) are true positives (TP) if the alarm is triggered before the disruption time, and

false negatives (FN) otherwise. Non-disruptive shots that trigger the alarm are false

positives (FP), and non-disruptive shots without an alarm trigger are true negatives

(TN). Since the alarm trigger is a function of the operational parameters (i.e. the

chosen disruptivity thresholds, alarm window, and τclass), the number of shots in each

category will vary with the operational point.

An ideal disruption warning algorithm will operate with a high precision [TP/(TP+

FP )] and high recall [TP/(TP + FN)], since it will trigger few false alarms on healthy

plasma discharges and rarely fail to trigger discharges that disrupt. Therefore, the

optimum operational point can be chosen by maximizing a performance metric which

accounts for both precision and recall during the algorithm’s training and validation

process, before its ability to generalise to unseen data is analyzed during the testing
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Disruption prediction on C-Mod, DIII-D, and EAST 10

process. To this end, we have adopted a binary classification metric called the Fγ-score,

given by

Fγ = (1 + γ2)
precision · recall

(γ2 · precision) + recall
(1)

where γ can be chosen based on operational needs. For example, when γ = 1 the pre-

cision and recall are equally weighted, but higher values associate a higher cost with

missed warnings (since Fγ → recall as γ →∞). One note of caution is warranted here:

framing the optimisation this way will reward early triggers on disruptive discharges

that may precede any causal events related to the eventual disruption. Although this

was not addressed in the optimisation workflow, a post hoc analysis is included in Sec-

tion 4.3 to discuss the prevalence of these early warnings in the dataset.

Figure 4: Shematic and pseudocode for the K-fold cross validation procedure used to

optimise the DPRF operational parameters. Training set data X is randomly subdivided

into K=5 subsets, with time samples of the same shot grouped together. Pseudocode

shows serial analog of the parallelised validation routine developed in OMFIT [23]

To calculate the Fγ-optimised operational points robustly, a K-fold cross-validation

procedure was used (see Figure 4). This was most easily done using a parallelised

grid search, since each operational point requires K Random Forests to be trained and

tested. The grid mesh included high and low threshold values from 0.05 to 0.95 in

steps of 0.05, alarm windows from 5 ms to 405 ms in steps of 25 ms, and class values

from 25 ms to 1000 ms in steps of 25 ms. Upon splitting the training set into K = 5

subsets, RF were trained on each combination of K−1 subsets and validated against the

corresponding held out subset for each point in the operational grid. We then calculate

the mean Fγ-score of the K training splits at each operational point and record the τclass,

high threshold, low threshold, and alarm window combination that corresponds to the

maximum Fγ value. These optimised parameters are then used to train a DPRF model

on the entire training set and apply it on the unseen test set.
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Disruption prediction on C-Mod, DIII-D, and EAST 11

Table 3: DPRF operational points optimised on the training set for each tokamak

using the F1 and F2 scores as performance metrics; the corresponding fractions of non-

disruptions (FP) and disruptions (TP) in the test set for which the alarm was triggered

are included for each optimised model.

F1-Optimised F2-Optimised

Tokamak τclass(ms) High Threshold FP(%) TP(%) τclass(ms) High Threshold FP(%) TP(%)

C-Mod 250 0.50 7.2 61.2 325 0.35 19.3 75.4

DIII-D 700 0.60 2.7 79.3 875 0.40 8.5 88.9

EAST 875 0.70 5.1 81.6 950 0.50 13.2 91.3

4.3. Shot-by-shot performance

In order to see how the performance varies with the metric chosen, we implemented the

optimisation procedure described above for γ = 1, 2. The cross-validation results reveal

that smaller alarm windows tend to have higher performance metrics: the Fγ-optimised

point for each machine is found at the smallest window size, below the regular sampling

period in our databases. This indicates that an ideal alarm trigger should be highly

sensitive to increases in disruptivity: soon after the output exceeds the high threshold,

a warning should be given. Similarly, the optimum low disruptivity threshold is found

at the lower extreme of the range (0.05). At this value, the threshold does little to

prevent largely scattered disruptivity signals near the high threshold from triggering an

alarm, but still counteracts false alarms by allowing quick spikes in the disruptivity sig-

nal. The optimised values for both of these parameters are the same for each machine.

Therefore, we only included the optimal τclass and high threshold values for each ma-

chine in Table 3, along with the fraction of disruptions and non-disruptions in the test

set for which an alarm is triggered. Note that the models optimised with the F1 score

have relatively low false alarm rates, yet the F2-optimised models warn a significantly

larger fraction of disruptions. Prioritizing disruption avoidance, we will focus only on

the models optimised using the F2 score from this point forward.

Two other immediate observations may be made from the F2 results in Table 3.

First, note that the optimised τclass values on DIII-D and EAST are much larger than

that on C-Mod. This is consistent with the ordering of the times of the distribution

shifts of parameters like n equal 1 normalised and Vloop (see Figure 1) found via

univariate analysis, which show that the dynamics on C-Mod tend to evolve on a faster

timescale. Secondly, since the disruptivity threshold for the alarm trigger varies for

each alarm algorithm and each tokamak, we also see that the RF output should not be

thought of as an injective mapping to disruption probability. Rather, the model must

be calibrated separately for each machine in order to improve the predictive capability

and assess its optimised performances. This also offers a partial explanation for the
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poor time slice predictive capability in the binary-classification problem of Section 4.1,

where only disruptivity outputs above the default value of 0.5 were considered a posi-

tive class prediction. Performance is also improved when the τclass threshold is moved

further back in time from the values motivated in Section 3 for each machine. This

hints that the RF is detecting input signal behavior correlated with disruptions that is

hidden from the bulk univariate analysis first appealed to in Section 3, which relied only

on global changes in disruption-relevant signals and did not take sequential information

into account as done in the shot-by-shot analysis.
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Figure 5: (a) Average true and false positive rates amongst K-fold validation sets

for varying high disruptivity thresholds (Section 4.2) on each tokamak, with other

3 operational parameters fixed at F2-optimised values; (b) Cumulative warning time

distributions associated with the F2-optimised model performance on the test set for

each tokamak; approximate time needed for mitigation (30 ms) is highlighted with a

gray dashed line.

In addition to analyzing test set performance, one can examine the operational

space from the validation process to study the sensitivity of expected performance to

changes in model parameters. An example is shown in Figure 5(a), generated by varying

the high disruptivity threshold along the grid mesh while keeping the other 3 operational

parameters fixed at their F2-optimised values. The figure shows the fraction of triggered

disruptions and non-disruptions for each threshold, where the threshold increases along

the curve from left to right. Again, the performance gap between C-Mod and the other

machines is pronounced. One can also see from the standard deviation amongst the K

folds that the C-Mod performance varies much more with the random splitting in the

dataset. Ultimately, this information can be used to perform a cost-benefit analysis and

tune the model from the Fγ-optimised operational point to achieve different objectives.
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Disruption prediction on C-Mod, DIII-D, and EAST 13

Since disruption predictions are less useful the later they appear, one also needs

information about the warning time, or the time between the alarm trigger and the

disruption event. A cumulative distribution of warning times for each machine is shown

in Figure 5(b), where the fraction warned at time T represents the fraction of all dis-

ruptions in the test set warned at least time T in advance. Note that the majority of

disruptions on each machine are warned greater than 30 ms in advance, which is on

the order of the time needed for mitigation [24]. However, more disruptions are warned

farther in advance at a much lower cost of false alarms on both EAST and DIII-D when

compared with C-Mod. This is consistent with the univariate analysis in Section 3,

which pointed out the short timescales of disruptive behavior in aggregate on C-Mod

relative to those of similar behavior seen on EAST and DIII-D.

(a) (b)

Figure 6: Warning times and flattop durations for triggered disruptive discharges in

the EAST test set using the DPRF algorithm optimised with the F1 (a) and F2 (b)

scores; each blue marker represents an individual discharge, and each time is measured

in reference to the time of disruption at t = 0. Note that the bulk of the warnings occur

near or below the τclass threshold corresponding to each model (red dashed line).

At the tails of each distribution, one can also see evidence of the early warning

problem alluded to in Section 4.2. Over 30% of disruptions on EAST have a warning

time greater than 1 s, and its distribution tail is the longest of the three machines. The

extent of this problem may be explored by comparing the flattop durations for each

shot with the warning time, as shown in Figure 6. Note that a fraction of the warned

disruptions are triggered immediately after the start of the Ip flattop (discharges near the

black line in Figure 6), a phenomenon also seen in the DIII-D and C-Mod datasets. The

fraction of warnings in this category increases from the F1 to the F2 optimised model,

as avoiding false positives becomes a lesser priority. This may be seen by comparing the
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densities in the right hand quadrants of Figure 6. This phenomenon may be attributed

to a rising disruptivity behavior seen on many shots during the ramp-up phase, shown

for example in Figure ??. This behavior often does not fully subside by the beginning of

the flattop phase, and therefore may trigger early warnings that are not correlated with

the disruption. This may provide motivation to further constrain the algorithm’s region

of validity for training and testing in the flattop phase. One may also see in Figure 6

that a significant fraction of the shots in the EAST dataset are located in the lower

left-hand quadrant, indicating that they have a flattop phase that is shorter than the

F2-optimised τclass = 950 ms threshold for binary classification of time slices. Further

work is needed to better account for these shots in the classification scheme and analyze

the dynamics that are driving the early triggers on disruptive discharges.

5. Interpretation of Predictions via Feature Contribution Analysis

Being a resourceful machine learning algorithm, Random Forests are characterised by

many white-box features; RF provide not only information on the training set via impor-

tance ranking for its input features [18], but rich content is stored in the decision paths

of each forest tree, developed during the training process. This approach is adopted in

many fields [25] to interpret the forest predictions. It is outside the scope of this paper

to provide an in-depth description of this methodology, called feature contribution ana-

lyisis [26]; we refer to [15] for more details and examples.

We use this prediction interpretation method to identify the signals driving the

DPRF output on any given individual discharge, which can then be used to gain an

understanding of disruptive behavior in aggregate on each tokamak. It suffices to say

that the feature contribution analysis involves a linear decomposition of each predicted

value into the contributions coming from each of the input features. These are indeed

constrained to assume positive or negative values that add together algebraically to give

the RF output value for each time slice (or evaluated feature vector). In our application,

a negative feature contribution value indicates that the feature’s real value pushes the

model towards a feature space that defines the far from disruption or non-disruptive

class.

Figure 7 shows the average feature contributions and disruptivity values at the

trigger time, collected for each disruptive discharge in the test sets used for each

different tokamak. The waterfall charts give an idea of the strongest drivers of disruptive

predictions in each dataset, revealing that the highest contributing parameters are

markedly different on each machine. Note, for example, that n equal 1 normalised

and q95 are the top contributing features on DIII-D, which is known to have a large

fraction of locked-mode and MHD-driven disruptions, whereas these parameters are the

least contributing on EAST. On EAST, we see that V loop is a major contributor to

disruption predictions, which is correlated with the aggregate increase in this parameter
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Figure 7: Mean feature contributions recorded at the trigger times of disruptive shots

in the test datasets for C-Mod (a), DIII-D (b), and EAST (c); each set of mean

contributions sums to the mean disruptivity at the trigger time, which is greater than

the corresponding high threshold for the F2-optimised model in Table 3 [27].
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identified in Figure 1. These two machines contrast again with C-Mod, which shows

that several parameters contribute relatively equally to the disruption predictions in the

test set, indicating that there may be a wider variety of disruptions on C-Mod.

6. Real-Time Machine Learning-Based Algorithms on DIII-D and EAST

Figure 8: Example of non-disruptive discharge on DIII-D, for which DPRF ran its

real-time calculations. The plasma current is reported in the upper panel, in MA. The

disruptivity is shown in the central panel and ranges around 15% throughout the flattop.

Most shots in our train and test datasets exhibit this kind of quiescent behavior, where

the disruptivity does not rise high enough to trigger a disruption warning during the

flattop phase of the discharge. In the bottom panel we report the computing time of

the CPU that ran the DPRF algorithm.

6.1. The Real-Time Application on DIII-D [15]

A DPRF routine to run in the DIII-D PCS in real-time was developed by training on

the same data that is furnished to the PCS in real-time, including quantities from real-

time EFITs. DPRF has continuously run in the DIII-D PCS for more than 4 months
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of operations, gathering data on more than 900 discharges, 66% of which were non-

disruptive, 6% disrupted during the flattop, and the remaining 28% disrupted during

rampup or rampdown. The training set is again limited only to the flattop portion of

thousands of discharges (both disruptive and non-disruptive), spanning many years of

DIII-D experiments.

In this section, we report only an example of a non-disruptive discharge, shown in

Figure 8. The plasma current is shown at the very top, the disruptivity predictions are

reported in the central panel of the figure, while the computing time for DPRF infer-

ence is reported in the bottom panel. It is possible to see that the CPU computing time

ranges around 250-300 µs, which is definitely compatible with real-time requirements.

For more detailed examples and a full discussion on DPRF performances during

2018 campaign, we refer to [15].

6.2. EAST VDE Experiments

The DPRF algorithm was also tested on EAST between shots during experiments per-

formed to purposely trigger Vertical Displacement Events (VDEs). For these particular

experiments, EAST DPRF was trained on 7257 discharges, 5330 of which were non-

disruptive ones. Furthermore, given the experimental target, three additional input

signals were included, apart from those already mentioned in Table 1: the elongation,

and the current centroid information (Z), plus the error between the programmed cur-

rent centroid position and the actual reconstructed one (δZ).

A representative discharge is shown in Figure 9: in the first panel, the plasma

current (black) and the disruptivity (blue; causally smoothed using a convolution with

a Gaussian filter and a 10 ms window) are reported, while in the bottom panel it

is possible to see the contributions from the 13 input features. Only the three most

relevant contributions are shown in color. As explained in Section 5, the sum total of

these feature contributions yields the disruptivity value at any given time. From the

bottom panel of Figure 9 it is possible to see that the disruptivity signal is strongly

affected by the elongation and the current centroid signals, reflecting the actual changes

in the physics of the discharge.

7. Summary and Conclusions

In this paper, we have presented a methodology to fine-tune DPRF, a Random For-

est algorithm for disruption prediction, that is separately optimized for three different

tokamaks. This gives a basis for consistent comparison of prediction performance across

multiple devices, a necessary tool for development of a universal disruption predictor.

This is distinct from other adaptive algorithms trained from scratch [4, 5, 28] that have
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Figure 9: EAST DPRF disruptivity prediction for discharge 81317. In the first panel,

the plasma current (black) and the disruptivity (blue) are reported. The disruptivity

is causally smoothed with a 10 ms window and shown only during the flattop phase of

the plasma current. The second panel shows the breakdown of disruptivity in terms of

its 13 feature contributions, only the three most highly contributing features are shown

in color. It is seen that the predictor determined that elongation and current centroid

information reflect changes in the physics evolution prior to the VDE, even though these

types of VDEs were not tailored when training the algorithm.

achieved very good performances with databases of more limited size or curated to ex-

clude specific disruption dynamics [8].

On an individual time slice basis, the prediction accuracies vary considerably, with

the true positive rate on C-Mod and EAST being particularly low, i.e. many missed

disruption time slices. However, we find that optimised predictors do much better on

a shot-by-shot basis on all three machines (∼ 80-90% success rates for each machine),

an encouraging result that we attribute to the extremely low rate of false positive time

slices. This could mean that simultaneously running a suite of predictors, each trained

on a different type of disruption, or a different region of operational space, may be a way
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to realise machine-independent disruption prediction. Noting from Table 3 that these

true positive rates come at a cost of false alarms ∼ 10%, further improvement of DPRF

performance requires an elimination of false alarms. Investigation of the early warning

behavior discussed at the end of Section 4.3 may allow a substantial improvement. The

cause of this behavior should be identified and isolated by the addition of one or multi-

ple features correlating with DPRF early warnings, or further curation of the region of

validity for training.

DPRF provides a predictive output correlated with the onset of disruptions, i.e.

a disruptivity signal, now incorporated in the DIII-D PCS. Thanks to the white box

features of Random Forests, DPRF also provides a way to interpret the prediction (e.g.

which signals contributed the most to triggering an alarm). By identifying the causes

underlying the disruption events, a better understanding of disruption dynamics can be

achieved, and the most appropriate actuators can be identified in the future for possibly

avoiding impending disruptions. We find that the most important disruption-relevant

physics parameters on C-Mod, DIII-D, and EAST are different on each machine, which

likely reflects the fact that their operational spaces are not identical, and that different

types of disruptions are more prevalent on each machine.

Work in the near future will include a study of the attributes of early warnings in

each dataset and how these affect the optimisation procedure. This problem will likely

be most fruitful to study on EAST due to the long flattop duration for most shots on

this device. To advance understanding of how disruption dynamics scale from machine

to machine, future work must also involve studies in domain adaptation. This includes

training an algorithm on data from one tokamak or physics regime and testing it on

another, as well as training an algorithm using data from all machines together. This

effort can be further advanced by populating the database with additional dimensionless

parameters that are both relevant to disruptions and available in real-time to the plasma

control system.
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