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Abstract
Objective. Primarily due to safety concerns, biphasic pulsatile stimulation (PS) is the present
standard for electrical excitation of neural tissue with a diverse set of applications. While pulses
have been shown to be effective to achieve functional outcomes, they have well-known deficits.
Due to recent technical advances, galvanic stimulation (GS), delivery of current for extended
periods of time (>1 s), has re-emerged as an alternative to PS. Approach. In this paper, we use a
winner-take-all decision-making cortical network model to investigate differences between
pulsatile and GS in the context of a perceptual decision-making task.Main results. Based on
previous work, we hypothesized that GS would produce more spatiotemporally distributed,
network-sensitive neural responses, while PS would produce highly synchronized activation of a
limited group of neurons. Our results in-silico support these hypotheses for low-amplitude GS but
deviate when galvanic amplitudes are large enough to directly activate or block nearby neurons.
Significance. We conclude that with careful parametrization, GS could overcome some limitations
of PS to deliver more naturalistic firing patterns in the group of targeted neurons.

1. Introduction

An accepted theoretical model of how we reach a
decision given two alternatives posits that the aver-
age firing rates of two opposing neural popula-
tions encode the saliency of each alternative, and a
decision is made when one of the two populations
clears some firing rate threshold [1–3]. Using a well-
accepted in-silico model of this process, we asked
how electrical stimulation of one of the neural pop-
ulations would influence the decision-making pro-
cess. This problem is nontrivial because of the recur-
rent nature of the network with excitatory and inhib-
itory interconnections. We compared two forms of
electrical stimulation each applied to a well-known
decision-making task: conventional pulsatile stimu-
lation (PS) andmore recently re-introduced, galvanic
stimulation (GS).

Biphasic PS is the standard for safe and effective
electrical stimulation of the brain. In basic research,
low-amplitude (e.g. 5 µA) sub-millisecond pulses or
sequences of pulses are commonly used to probe
brain connectivity and function [4–7]. Clinically,
pulses are used in neural prosthetics [8], preresec-
tion surgeries for drug-resistant epilepsy [9], deep
brain stimulation for Parkinson’s disease [10], and a
host of emerging applications in ‘bioelectronic medi-
cine’ [11]. While pulses are clearly capable of indu-
cing sensory percepts [8], muscle movements [12],
and bias decision making [13], there are clear limit-
ations to their ability to deliver natural sensation [14]
or motion [15].

GS (a.k.a. ‘direct current’ or DC) has been lim-
ited to transcutaneous application (such as trans-
cranial direct current stimulation or tDCS), due to
safety implications associated with electrolysis and
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pH changes at themetal electrode [16, 17]. This limit-
ation however is being addressed in the recent devel-
opment of implantable GS devices [17, 18] and con-
ventional stimulators with high capacity electrodes
[19].

Pulses delivered to an electrode implanted near
isolated neurons will cause most of the neurons
within the targeted region to evoke an action poten-
tial (AP) in phase with the presented pulse. This rule-
of-thumb response however does not hold for neur-
ons located very close to the electrode or those loc-
ated further away. Nearby neurons may be blocked
from evoking an AP and those located further away
will experience only slight depolarization that does
not result in an AP. The interaction with the natur-
ally occurring ‘spontaneous’ activity is more complex
since the neuron can be in the refractory period when
the pulse arrives and result in that pulse being inef-
fective in being able to evoke an AP [20]

In contrast, by smoothly altering the extracellular
potential, GS changes a neuron’s membrane poten-
tial, with cathodic GS (CGS) bringing it closer or
anodic GS (AGS) further from the AP generation
threshold. As a result, GS modulates firing rates up
and down while preserving natural firing statistics
and without producing unnatural synchrony due to
phase-locking [21–24].

The single neuron effects of PS and GS lead to
hypotheses of how a network of excitatory and inhib-
itory neurons would behave. We hypothesize that a
population of neurons experiencing GS will be more
sensitive to network level excitation and inhibition
than if this population were subjected to PS. The abil-
ity of a network to reach persistent activity states is
critical in maintaining working memory for percep-
tual decision making [2]. We also hypothesize that
GS activationwill be spreadmore uniformly through-
out the stimulated population, while PS may have
high population-wide variability between high firing
rate neurons and low firing rate neurons. We fur-
ther hypothesize that PS will induce unnaturally high
levels of neural synchrony whichmay lead to different
decision-making latencies.

We extended a well-established computational
model of perceptual decision making [2] to explore
these predictions by adding pulsatile and GS to bias
the decision-making output of themodel. The invest-
igation in this manuscript is a rigorous exploration
of the cortical network effects previously suggested in
our EMBC conference proceedings publication [25].
To add considerably more explanation to the phe-
nomenological observations described in that work,
herewe explore the comparison based on a ‘level play-
ing field’ set up by behavioral equivalence between
PS and CGS, and examine the inhibitory effects
of AGS.

2. Materials andmethods

2.1. Realistic intracortical microstimulationmodel
For the sake of computational efficiency, the per-
ceptual decision-making model extended here [2]
approximates individual neuron behavior with leaky-
integrate-and-fire (LIF) dynamics. Each LIF neuron is
modeled by

dVm

dt
=

−gL (Vm − EL)+ Isyn + Istim
Cm

;Vm < Vthreshold.

Once Vm exceeds Vthreshold, an AP is recorded, Vm

is reset to Vr, and that neuron goes into a refractory
period for τr ms. axon (see supplementary material
table S1 for the parameter values).

Although this simplification yields accurate
population-averaged neural firing rates under
physiological conditions, it does not naturally accom-
modate intracortical electrical microstimulation.

The challenge that arises when representing extra-
cellular current stimulation with LIF neurons is that
LIF neurons only contain a single membrane poten-
tial representing the whole ‘point’ neuron whereas
biological neurons are spatially extendedwith a gradi-
ent of different membrane potentials depending on
the location relative to the electrode. To address
this challenge, we assume that the magnitude of the
voltage response to extracellular current stimulation
is greatest in the axon segment that is closest to the
electrode. We then defined the point-location of each
LIF neuron as being localized at this axon segment.

We estimated the current Istim injected into the
LIF neuron based on the distance from the neuron to
the electrode. The electrical current at the electrode
Ielectrode creates an electric field around the electrode,
such that extracellular voltage at any point distance r
from the electrode is given by

Vext (r) =
ρext
4π r

Ielectrode

where ρext is the uniform extracellular tissue
resistivity.

Then, based on the mirror estimate [26], the
steady-state membrane potential can be expressed as
a function of the extracellular voltage

V ss
m = Vext −Vext

where Vext is the average extracellular voltage across
all the spatial nodes along a linearly positioned axon
(see supplementary material for details).

Istim for a given LIF neuron is then assumed to
be proportional to V ss

m at the location of the LIF
point neuron, and therefore corresponding to the
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maximum membrane potential for the biological
neuron at that location:

Istim = kgsV
ss
m and Istim = kpsV

ss
m

for galvanic and PS, respectively.
In the case of GS, the current is delivered for the

duration of the stimulation. In case of PS, the current
is delivered for the duration of the pulse presentation.

We estimated the values for kgs and kps by match-
ing the LIF responses to a cable equation simula-
tion of a linear axon positioned near an electrode
source [17] axon (see supplementary material for
Cable Equation and table S4 for parameter values).
We then uniformly distributed the neurons around
the electrode from 10 µm–2 mm away based on
neural mapping of staining work by Levitt et al [27].

2.2. Pulsatile and galvanic blocking effects
In further examination of the previously observed
neural responses to PS [28], our recent work [29,
30], using an adapted axon model from Hight
and Kalluri [31], systematically catalogues the pos-
sible firing rate responses to biphasic PS trains. For
example, pulses can block the spontaneous APs,
spontaneous APs can block subsequent pulses, and
pulses can block subsequent pulses. These refract-
ory effects are amplitude-dependent, with higher-
amplitude pulses causing longer blocking periods.
They are also dependent on the spontaneous firing
rate, with higher spontaneous firing rates resulting
in more pulse-spontaneous interactions. We there-
fore expect that delivering PS to a population of neur-
ons would induce a mosaic of activation and deactiv-
ation, since each neuron in a network experiences a
different spontaneous firing rate and a different max-
imumextracellular voltage based on its distance to the
electrode. We approximated these effects by adding
pulse-pulse (tpp) and pulse-spontaneous (tps) refract-
ory periods analogous to the spontaneous refractory
period inherent in the LIF model.

During these refractory periods, membrane
potential is freely allowed to vary, but pulse induced
APs are not initiated during the pulse-pulse refract-
ory period, and spontaneous APs are not initiated
during the pulse-spontaneous refractory period. To
capture the amplitude-dependence of pulse-pulse
blocking effects, we used the blocking times (tpp)
from Steinhardt and Fridman [29] (0–132 ms) para-
meterized at various extracellular amplitudes; we
generated intermediate values using linear interpola-
tion to produce a continuous refractory function. If a
pulse arrived while a neuron was already in the pulse-
pulse refractory period, a refractory time of tpp

2 was
used to capture residual pulse-pulse blocking effects.
(see supplementary materials table S6 for details)

Using this approach, we replicated the charac-
teristic amplitude dependence and spontaneous rate

dependence in the pulse rate vs. firing rate curves
[29].

Steinhardt and Fridman [24] also quantified the
depolarizing block that can occur with excessive CGS.
This effect is also dependent on the spontaneous
firing rate, with higher spontaneous rates inducing
block at lower cathodic amplitudes. We adapted this
effect to the LIF model by setting an instantaneous
maximum current during GS (1135 pA) such that
steady state membrane potential could not exceed
−19 mV. This was based on the observation that
membrane potential stabilizes at −19 mV at the
threshold current of depolarizing block from Qian
et al [32]. Anytime instantaneous current inputs
exceeded this maximum, the input currents were
manually set to 0 pA. With this simple rule, we rep-
licated the characteristic amplitude and spontaneous
rate dependence of GS. Importantly, our amplitudes
are consistent with those observed in nerve blocking
studies [33].

2.3. Biophysical attractor model
The biophysical model was based on a well-
established decision-making network [2]. The model
simulates a two alternative forced choice task with
P1 (blue) and P2 (red) encoding task input (strength
of moving dot leftward versus rightward motion). A
non-selective (NS) population (yellow) and inhibit-
ory interneuron (Int) population (purple) are also
included for a winner-take-all network construction
(figure 1(A)). The network model consisted of N
neurons (80% pyramidal neurons and 20% inhibit-
ory interneurons), connected with weights:

wweak = 0.8765, wmedium = 1, wstrong = 1.7

for weak, medium, and strong connections respect-
ively (figure 1, strength shown with line thickness).

Importantly, all neurons in this model were con-
nected with one of these three weights. The model
simulated neurons with LIF dynamics and synaptic
currents from AMPA, NMDA, and GABA receptors.
As described in [2], synaptic currents are modeled by

Isyn =
NE∑
n=1

wnI
(n)
AMPA +

NInt∑
n=1

wnI
(n)
GABA +

NE∑
n=1

wnI
(n)
NMDA

where wn is the weight of the connection (strong,
medium, or weak). For the following equations we
consider a single synapse of each type.

AMPA currents are exponential decay functions
with external and recurrent components

IAMPA = (gAMPAext sAMPAext + gAMPArec sAMPArec)(EAMPA −Vm)

dsAMPA

dt
=− sAMPA

τAMPA

3
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Figure 1. Experimental Design. (A) Model consists of two subpopulations (P1 and P2) responsive to leftward and rightward
motion, non-selective pyramidal neurons (NS) and inhibitory interneurons (Int). Neurons are connected with strong, medium,
and weak connections (thickness proportional to strength), with purple arrows indicating inhibitory connections. During a trial,
all neurons receive background input. From 1–3 s, P1 and P2 receive task-related input proportional to coherence of left versus
rightward motion. P1 also receives electrical stimulation from 1–3 s (black) to bias the network behavior. (B) Mean population
firing rates of P1 (blue), P2 (red), NS (yellow), and Int (purple) in a representative control trial without electrical stimulation.
Task input strongly favors P2 (−51.2% coherence) resulting in P2 winning the trial. (C) Mean population firing rates in a
representative trial with PS of P1. Despite task input favoring P2 (−51.2% coherence), PS biases the network such that P1 wins
the trial.

where sAMPAext is incremented every time an external
AP is recorded, and sAMPArec is incremented every time
a recurrent AP is recorded with synaptic delay τdelay.
Note, external or background input currents repres-
ent inputs to the network from outside neurons such
as upstream visual neurons. Recurrent APs refer to
synaptic inputs from within the network that is being
modeled.

GABA currents are exponential decay functions
with different constants

IGABA = (gGABAsGABA)(EGABA −Vm)

dsGABA
dt

=− sGABA
τGABA

where sGABA is incremented every time a recurrent
inhibitory AP is recorded with synaptic delay τdelay.

NMDA currents are double exponential functions
with both a rise time constant and a decay time con-
stant, as well as amagnesium-dependent conductivity
constant.

INMDA =
(gNMDAsNMDA)(ENMDA −Vm)

1+
CMge−62Vm

3.57

dxNMDA

dt
=− xNMDA

τNMDA1

dsNMDA

dt
= αxNMDA (1− sNMDA)−

sNMDA

τNMDA2

where xNMDA is incremented every time a recurrent
excitatory AP is recorded with synaptic delay τdelay.
Note, Vm is expressed in volts rather than mV.

For our simulations, N = 1000
neurons and a time step of dt = 0.05 ms were used.
(see supplementary material tables S2 and S3 for the
parameter values).

2.4. Perceptual decision-making task
A random dot motion task was simulated at coher-
ence levels from fully leftward (+100%) to fully right-
ward (−100%) coherence (figure 1(A), circles). 100
trials were executed at each coherence level under
four conditions: PS, CGS, AGS, and no-stimulation
control. Throughout each 4-second trial, all neur-
ons received 2400 Hz background Poisson inputs that
triggered AMPA EPSCs. This caused the pyramidal
neurons in the network to fire spontaneously at 2–
3 spks/s (figure 1(B)). At t = 1 s, neurons in popu-
lations P1 (blue) and P2 (red) received task-related
input proportional to coherence c:

FRtask = 40c+ 40

where if motion is in the opposite direction c is
negative [2] (figures 1(A) and (B), magenta). To bias
the network, all neurons in P1 also received elec-
trical stimulation (black) concurrent with task input
(figure 1). At t = 3 s, task-related inputs and stimula-
tion ceased. Decisionmaking experiments show a sig-
moidal relationship between coherence and accuracy.
To capture this relationship, coherences were sampled
logarithmically around the empirically determined
center of the sigmoid for each stimulation condi-
tion. For control stimulation, this was 0% [2, 34]. For
pulsatile and CGS, the center coherence was estim-
ated as −57.0%. For AGS, the center coherence was
estimated as+30.0%.

2.5. Decision data analyses
Instantaneous neuron firing rates were calculated in
5 ms bins, followed by a 50 ms moving average.
Population firing rates were then taken as the aver-
age instantaneous firing rate of all the neurons in each
subpopulation. Decisions were recorded at the end
of the 4-second trial, if the final average firing rate
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of one of the two neural subpopulations (P1 or P2)
exceeded 15 spk/s, while the other did not. In such
cases, the subpopulation whose firing rate exceeded
15 spk/s was deemed the ‘winner’ of the trial. This
threshold was chosen based on Wang [2]. Decision
data were then analyzed using logistic regression as
in Hanks et al [34]. Differences in decision mak-
ing were assessed for significance by 2-sample non-
parametric bootstrap (N = 10 000) on the bias and
sensitivity parameters. The time at which the win-
ning subpopulation exceeded 15 spk/s after the start
of task stimulation (t = 1 s) was considered the
decision time. Trials that reached their decision after
the task period (t > 3 s) were excluded from analyses
of time-dependent effects (figures 3–5). Differences
in decision times were assessed for significance by
unpaired t-tests.

2.6. Disconnected, feedback only, and recurrent
only network analyses
Task firing rates were computed by binning all spikes
for each P1 neuron between t = 1 and t = 3 s. In the
disconnected condition, P1 neurons were not con-
nected to any other neurons in the network. In the
feedback only condition, P1 neurons were connec-
tedwith 30 inhibitory interneurons (keeping an 80/20
E/I ratio) with standard synaptic strength w= 1. In
the recurrent excitation only condition, P1 neurons
were connected to one another with weakened syn-
aptic strength (w= 1). Population-averaged task fir-
ing rates were computed by averaging all the indi-
vidual neuron task firing rates in P1. All stimulation
conditions were compared relative to control by sub-
tracting the mean of the control group. Differences in
distributions of firing rates across stimulation condi-
tions were assessed for significance by Kolmogorov–
Smirnov tests. Differences in individual neural fir-
ing rates were assessed for significance by 1-tailed t-
tests with Bonferroni correction formultiple compar-
isons. Differences in population-averaged task firing
rates were assessed for significance by Kruskal–Wallis
tests.

2.7. Firing rate trajectory data analyses
Start-of-task firing rates were computed by binning
all spikes from P1 neurons occurring between t = 1
and t = 1.1 s and dividing by the duration (0.1 s).
End-of-task firing rates were computed similarly for
the period between t = 2.9 and t = 3.0 s. The fir-
ing rate slope around the decision-making threshold
(15 spk/s) was estimated separately for each trial as

m=
20− 10

t20 − t10
,

where t10 is the first time when the P1 population
firing rate exceeded 10 spk/s and t20 is the first time
the P1 population firing rate exceeded 20 spk/s. This
method mitigated noise in the P1 population firing

rates. The maximum P1 firing rates were computed
by finding the maximum instantaneous firing rate in
the P1 population for each trial. All stimulation con-
ditions were compared relative to control by subtract-
ing the mean of the control group. All comparisons
of P1 firing rate trajectories were assessed for signific-
ance by Kruskal–Wallis tests.

2.8. Firing rate distribution data analyses
Instantaneous neuron firing rates were calculated in
50 ms bins, followed by a 200 ms moving average.
Firing rates were down sampled to 20 Hz to match
temporal resolution. Kurtosis of the resulting firing
rate trace was calculated for each time point and trial
separately. Beginning (0–0.5 s) and end (3.5–4 s) of
trials are excluded when population firing rates are
too low (<1 spk/s) to establish a stable firing estim-
ate. Beginning-of-task (t = 1.1–1.2 s) and end-of-
task (t = 2.9–3.0 s) kurtosis values were obtained by
averaging all time points during those time periods.
Comparisons of P1 kurtosis were assessed for signi-
ficance by Kruskal–Wallis tests.

2.9. Spike timing data analyses
Phase-locking of neurons to the pulse stimuli was
assessed by measuring the percentage of APs occur-
ring during pulse presentations for each neuron.
Regularity of spiking was assessed using coefficient
of variation (CV). Synchrony of firing between pairs
of neurons was quantified by measuring the percent-
age of coincident APs, normalized to the neuron with
the higher overall firing rate. To facilitate comparison
with phase-locking, APs were deemed coincident if
they occurred within one pulse phase (300 µs) of each
other. Differences in spike timing were assessed for
significance by 1-way ANOVA.

3. Results

3.1. Experimental design
In this in-silico study, we assessed the ability of
PS and direct current (a.k.a. ‘galvanic’) stimulation
(GS) to bias large networks of neurons by expos-
ing a well-established computational model of per-
ceptual decision making [2] to both paradigms. In
brief, this winner-take-all model consisted of two
subpopulations of pyramidal neurons (P1 and P2)
responsive to leftward and rightward dot motion
respectively, NS pyramidal neurons, and a com-
mon pool of inhibitory interneurons (Int), shown
in figure 1(A). All neurons were simulated with
LIF dynamics and connected with varying synaptic
weights as in Wang [2]. We used the neural network
parameters described in that publication to build
our network. Neurons were given strong connections
(wstrong = 1.7) within subpopulations (ex. P1–P1),
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weak connections (wweak = 0.8765) across subpop-
ulations (ex. P1–P2), and medium-strength connec-
tions (wmedium = 1) with interneurons. In each of
100 trials, all neurons received 2400 Hz background
Poisson-randomexcitatory input (AMPAEPSCs) res-
ulting in spontaneous firing rates of 0–4 spk/s for
pyramidal neurons and 5–7 spk/s for interneurons
(figure 1(B)). During the experiment, from t = 1–
3 s, P1 and P2 received differential task input (AMPA
EPSCs) varying from 0–80 Hz depending on the task
coherence for that trial (see Methods for details).
For the example in figure 1, when the task coher-
ence is−51.2%, P2 neurons receive task input EPSCs
at 60 Hz and P1 neurons receive task input EPSCs
at 20 Hz. For this control experiment, this was the
only input to the model. As a result of this input,
P1 and P2 firing rates increased until P2 exceeded
a natural threshold of about 15 spk/s, and sub-
sequently P2 firing rates rapidly increased, winning
the decision. Subsequently, P1 firing rates were sup-
pressed by feedforward inhibition from the interneur-
ons (figure 1(B)). Consistent with previous work, we
defined ‘winning’ and ‘losing’ by comparing the aver-
age firing rates of the pyramidal populations P1 and
P2 at the end of each trial (see methods for details).
If, during this period (t = 1–3 s) we exposed neur-
ons in P1 to electrical stimulation, we could bias the
network behavior, reversing the decision outcome,
making P1 win and suppressing the P2 response
(figure 1(C)). After task input and electrical stimu-
lation were turned off, the high-firing-rate attractor
statewas self-perpetuated by the network in both con-
trol and stimulation trials as seen between 3 and 4 s
in figures 3(B) and (C), respectively.

3.2. Electrical stimulation alters decisionmaking
The electrical stimulation paradigms were point-
source monopolar (referenced to distant ground)
pulsatile charge balanced biphasic pulse trains (PS),
and cathodic (excitatory) and anodic (inhibitory) gal-
vanic currents (CGS andAGS respectively). The stim-
ulation paradigms were assumed to create spherical
electric fields in a homogeneous environment and
implemented to affect pyramidal neurons within the
LIF model based on their distance from the electrode
as discussed in the Methods. P1 neurons were uni-
formly distributed around the electrode from 10 µm–
2mmaway based on stainingwork by Levitt et al [27],
and PS pulse parameters by design matched those of
Hanks et al [34]: 10 µA, 300 µs/phase, 200pulses s−1.

In figure 2, the behavioral effects of PS, CGS,
and AGS on decision making were assayed by the
percentage of trials in which the stimulated popu-
lation (P1) won and the decision time. In control
trials without electrical stimulation, the decision-
making network produced a characteristic psycho-
metric curve with no significant bias (p= 0.98 by 1-
sample non-parametric bootstrap N = 10 000). The

percentage of trials in which P1 wins depended on the
coherence of the task input, with−100% favoring P2
and+100% favoring P1 (figure 2(A), black). (see sup-
plementary material table S7 for the values of the task
input coherence parameters).

To compare the relative effects of excitatory stim-
ulation from PS to those induced by CGS, we cal-
ibrated the input from CGS such that the bias of
the two stimuli were statistically equivalent. We did
this by adjusting the current amplitude of CGS,
until its psychometric curve matched that of PS
(green and red respectively are equal by design in
figure 2(A)), resulting in CGS = −1.4 µA. We then
adopted AGS = −CGS = +1.4 µA so that we could
make a direct comparison to network behavior based
on these stimulation paradigms. (see Supplementary
Material table S5 for the final values of the stimulation
parameters).

Excitatory stimulation from PS and CGS caused
the network to favor P1, shifting the psychomet-
ric curve by −54.3% ± 1.8% and −55.0% ± 1.7%
respectively (figure 2(A); PS in red, CGS in green).
Electrical inhibition from AGS caused the network
to favor P2, shifting the psychometric curve by
+32.3% ± 1.1% (figure 2(A), blue). Although CGS
and AGS used identical amplitude current (1.4 µA),
AGS shifted the psychometric curve significantly less
(p< 10−4 by 2-sample non-parametric bootstrap
N = 10 000). CGS and PS induced statistically equi-
valent shift (p= 0.76 by 2-sample non-parametric
bootstrap). PS and CGS also broadened the psycho-
metric curve (although only PS was statistically sig-
nificant), decreasing the slope by 0.94 ± 0.24 and
0.83 ± 0.28 respectively relative to no-stimulation
(p= 0.022, p= 0.059 by 2-sample non-parametric
bootstrap N = 10 000). AGS steepened the psycho-
metric curve, increasing the slope by 1.56 ± 0.53
(p= 0.009 by 2-sample non-parametric bootstrap
N = 10 000).

All three stimulation paradigms also affected the
decision times (figure 2(B)). Excitatory stimulation
from PS and CGS decreased peak decision time by
0.53 ± 0.02 s and 0.58 ± 0.02 s respectively and
shifted the peak decision time by −57.5% ± 1.7%
and −57.0% ± 1.8% (figure 2(B); PS in red, CGS
in green). Inhibitory influence from AGS increased
peak decision time by 0.69 ± 0.04 s and shifted the
coherence by +31.3% ± 1.3% (figure 2(B) blue). As
with the psychometric curve, AGS shifted the coher-
ence significantly less than CGS (p= 3.1× 10−23 by
unpaired t-test). However, AGS induced statistically
equivalent change in peak decision time as CGS (p=
0.34 by unpaired t-test). As with the psychometric
curves, CGS and PS induced statistically equivalent
coherence shift of the peak decision time (p= 0.83 by
unpaired t-test).

These changes in decision making elicited by PS
in our model are consistent with those observed in
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Figure 2. Effects of electrical stimulation on decision making and decision time (N = 100 trials). The decision metrics are shown
for pulsatile (red) and cathodic galvanic (green), anodic galvanic (blue), and no stimulation (black). (A) The percentage of trials
in which the stimulated population (P1) wins the decision-making process are displayed for various levels of visual coherence.
Psychometric curves are shown in bold with shaded regions indicating 95% bootstrapped confidence intervals (N = 10 000
bootstraps). Red and green curves were calibrated to coincide by design to allow us to compare the subsequent effects of PS and
CGS on the neural populations. (B) The time it takes for the winning population to clear the decision threshold (defined to be
15 spk/s) is shown. Error bars depict trial mean and standard error at each coherence level.

behavioral studies [34], albeit with larger magnitude.
Psychometric curves are shifted such that stronger
task-related input is required to make decisions
against the stimulated population (P1). Decision
times are decreasedwhen task-related input and stim-
ulation both favor P1 (e.g. at +25% coherence)
but increased when task-related input and stimu-
lation battle over control of the network (e.g. at
−60% coherence; figure 2(B), red). CGS showed
similar interactions (figure 2(B), green), while the
effects of AGS were smaller in magnitude and oppos-
ite in polarity (figure 2(B), blue). The decreased
effectiveness of AGS relative to CGS was likely due
to a floor effect, since neurons cannot decrease
their firing rates below 0 spk/s from a baseline of
only 0–4 spk/s. Importantly, both excitatory stim-
ulation paradigms (PS and CGS) pushed P1 fir-
ing rates toward the decision threshold and thereby
decreased overall decision times; whereas electrical
inhibition (AGS) pulled P1 firing rates away from
the decision threshold and thereby increased over-
all decision times. Importantly, AGS inhibited P1
decision times so much that a substantial fraction of
trials did not reach the decision threshold before the
task period ended at t = 3 s. This effect is consistent
with experimental studies using tDCS to bias decision
making [35]. Similarly, both excitatory stimulation
paradigms (PS andCGS) reduced the slope of the psy-
chometric curves, whereas electrical inhibition (AGS)
steepened the slope. These results agree with findings
by Salzman et al [36] that PS of area MT signific-
antly flattened psychometric curves. This line of evid-
ence suggests that CGS can effectivelymimic PS in the

context of perceptual decision making, at a relatively
low amplitude (−1.4 µA).

3.3. PS and GS induce different profiles of neuronal
activation/deactivation
PS and GS affect single neurons differently. PS has a
strong depolarizing effect on supra-threshold neur-
ons, primarily causing affected neurons to evoke APs
in response to each pulse. GS on the other hand,
smoothly modulates extracellular potentials, mak-
ing affected neurons more likely or less likely to fire
APs in response to EPSPs. We hypothesized that the
effects of PS on neurons will be less affected by other
neural connections due to its strong ability to evoke
spikes.

3.3.1. Responses in a completely disconnected network
To investigate themechanism of howPS andGS inter-
act with the neural network, we first ascertained the
effects of PS and GS in disconnected neurons, lever-
aging the benefits of the experiment being conduc-
ted entirely in-silico. Disconnecting the neurons in P1
allowed us to measure firing rates over the entire task
period (t = 1–3 s) without the confounds induced by
network activity (figure 3(A)).

As expected from single neuron studies, during
stimulation (figure 3(A), yellow zone) the distribu-
tions of firing rates induced by PS and CGS were sig-
nificantly different from each other and matched the
expectations of single neural responses to stimula-
tion (p= 1.1× 10−18 by Kolmogorov–Smirnov test;
figure 3(B)).
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Figure 3. Effects of pulsatile (red), cathodic galvanic (green), anodic galvanic (blue), and control (black) stimulation on
individual P1 neural firing rates (N = 100 trials). Networks with fully disconnected neurons (A)–(C), feedback inhibition only
(D)–(F), and recurrent excitation only (G)–(I) are investigated. Average P1 Firing for representative trials are shown in (A), (D)
and (G). Each neuron’s mean task firing rate±sem (t = 1–3 s) is shown as a function of its distance to the stimulation electrode
during stimulation (yellow zone) (B), (E), (H); left: neurons<400 µm from electrode, right; neurons>400 µm from electrode).
Box plots (C), (F), (I) depict each trial’s population-averaged change in firing rate relative to no stimulation. For all trials,
task-related input was equal for P1 and P2 (coherence= 0%).

For PS, due to the refractory effects of high-
amplitude pulses, the neurons closest to the PS elec-
trode (<40 µm) were blocked. Most of the neur-
ons farther away (44–314 µm) were excited with
decreasing level of excitation as a function of distance.
Excitation was limited to the neurons close to the PS
electrode up to m from the stimulation site (347µ by
unpaired 1-tailed t-test with Bonferroni correction;
figure 3(B) red, right panel).

In contrast, for CGS, the neurons closest to
the stimulation electrode (<400 µm) were strongly
excited with firing rates up to 173 spk/s (figure 3(B)
green, left panel). In addition, weak excitation spread
far from the GS electrode with small but significant
increases in neural firing rates up to 1798 µm away
(p= 0.83 p< 0.05 by unpaired 1-tailed t-test with
Bonferroni correction; figure 3(B) green, right).

Compared to CGS, AGS had equal and opposite
effects on neural firing rates for neurons > 246µm
away (p> 0.05 by unpaired 2-tailed t-test with
Bonferroni correction; figure 3(B), blue). However, it
completely blocked the activity of neurons <50 µm
away and thereby induced a smaller change in firing
rate compared to CGS (figure 3(B), blue). As a result,
AGS induced a smaller average change in firing rate
(median: 2.09 spk/s IQR: 1.97–2.22 spk/s) compared
to CGS (median: 3.56s pk/s IQR: 3.39–3.67 spk/s)
in the P1 population (p= 2.6× 10−34 by Kruskal–
Wallis test; figure 3(C)).

PS induced a smaller change in firing rate
(median: 2.80 spk/s IQR: 2.65–2.91 spk/s) than CGS
when averaged over the entire neural population of
P1, likely due to its smaller spread of activation (p=
6.7× 10−9 by Kruskal–Wallis test; figure 3(C)).
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From these results in disconnected neurons, one
would expect that CGSwould induce a greater change
in decision-making than PS since it affectsmore neur-
ons and induces a greater overall change in firing rate.
However, by design they induce identical effects in a
fully connected network (figure 2(A)), suggesting that
PS and GS interact with the interconnected network
in more complicated ways.

3.3.2. Network with only inhibitory feedback
We next probed the effects PS and GS in the con-
text of feedback inhibition. We added 30 inhibitory
interneurons connected to the P1 population to cre-
ate the 80/20 E/I ratio, which yielded a stable P1 spik-
ing activity during PS and CGS (figure 3(D), yellow
zone).

Feedback inhibition dramatically reduced spon-
taneous firing rates from ∼25 spk/s to <1 spk/s.
Nevertheless, some neurons closest to the CGS and
PS electrodes (<100 µm) were still strongly activated
achieving firing rates up to 162 spk/s from CGS and
147 spk/s from PS (figure 3(E), left panel). However,
the far-reaching weak excitation induced by CGS
seen in the disconnected network (figure 3(B), right
panel) was severely attenuated by compensatory feed-
back inhibition (figure 3(E), right panel). CGS only
induced increases in neural firing rates up to 178 µm
away from the electrode (p< 0.05by unpaired 1-
tailed t-test with Bonferroni correction; figure 3(E)
green, right panel).

P1 neurons stimulated by PS also experienced
compensatory feedback inhibition, causing 51 neur-
ons 500–2000 µm away from the electrode to have
lower firing rates than non-stimulated control (p<
0.05by unpaired 1-tailed t-test with Bonferroni cor-
rection; figure 3(E) red, right panel).

As a result, both CGS and PS were significantly
less effective at increasing neural firing rates under
feedback inhibition than with disconnected neur-
ons (p= 2.6× 10−34 and p= 2.6× 10−34 respect-
ively by Wilcoxon rank sum test; figure 3(C)&F).
Importantly, however, CGS induced a smaller aver-
age increase in firing rate (median: 1.41 spk/s IQR:
1.40–1.43) than PS (median: 2.06 spk/s IQR: 2.02–
2.11 spk/s) under feedback inhibition (p= 5.6×
10−9 by Kruskal–Wallis test), indicating that the
effects of PS are more resistant to network-based
suppression.

The effects of AGS were almost completely indis-
tinguishable from the non-stimulated control under
strong feedback inhibition (figures 3(E) and (F)),
providing further support for the hypothesis that the
limited effectiveness of AGS is driven by a floor effect.

From these results in neurons exposed to feed-
back inhibition only, one would expect that PS would
induce a greater change in decision making than CGS
since it induces a greater increase in average firing
rate. On the contrary, we observed an equivalent

effect, indicating that another network effect may be
influencing decisions.

3.3.3. Network with only excitatory feedback
Finally, we investigated the effects of GS and PS
with recurrently connected P1 neurons only. To avoid
runaway recurrent excitation, we added weak recur-
rent excitatory connections (wrec = 0.05) among the
neurons in P1 and still maintained a stationary pro-
cess (figure 3(G)). Recurrent excitation dramatically
increased spontaneous firing rates from∼25 spk/s to
∼52 spk/s.

Despite the increased baseline firing rates, the
neurons exposed to PS experienced a similar activ-
ation profile as in the disconnected case with a few
neurons firing ∼90 spk/s, one neuron fully activated
at 200 spk/s, and neurons >145 µm away not sig-
nificantly increased relative to control (p< 0.05 by
unpaired 1-tailed t-test with Bonferroni correction;
figure 3(H), red).

In contrast, CGS activation scaled synergistically
with the recurrent excitation, inducing higher fir-
ing rates than in the disconnected case for all but
the closest neuron (figure 3(H), green; compared to
figure 3(B), green). Due to the high excitatory cur-
rent from both CGS and recurrent inputs, the closest
neuron experienced intermittent depolarizing block,
which caused its average firing rate to decrease to
82 ± 7 spk/s, which was highly variable among tri-
als. Importantly, CGS induced a significantly greater
increase in firing rate than PS under recurrent excita-
tion (p= 7.6× 10−10 by Kruskal–Wallis test), indic-
ating that the effects of CGS are more synergistic with
network-based excitation.

Under recurrent excitation, AGS induced a lar-
ger change in firing rates (median: 3.82 spk/s IQR:
3.69–4.01 spk/s) than in the disconnected case
(median: 2.09 spk/s IQR: 1.97–2.22 spk/s) due to
the elevated spontaneous firing rates and removed
floor effect (p= 2.6× 10−34 by Kruskal–Wallis test;
figure 3(C)&I, blue).

Since membrane voltage changes in response to
suprathreshold pulses are not affected by small fluc-
tuations inmembrane potential, neurons that are dir-
ectly affected by PS are not very sensitive to either
feedback inhibition or recurrent excitation. In con-
trast, GS induces small changes in membrane poten-
tial that increase (for CGS) or decrease (for AGS)
the probability of firing APs in response to natur-
ally occurring EPSCs and IPSCs [29]. For this reason,
CGS and AGS are more sensitive to the ongoing
network activity, and significantly alter average fir-
ing rates farther from the site of the electrode than
PS. As a result of these phenomena, increasing the
strength of feedback inhibition in the network gives
PS more influence on the network activity relative
to GS; whereas increasing the strength of recurrent
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excitation in the network gives GS more influence
over network activity relative to PS.

3.4. PS vs. GS effectiveness depends on dynamic E/I
balance changes
Based on the results obtained with modified excita-
tion/inhibition in the previous section, we hypothes-
ized that the ability of GS to modulate the fully con-
nected network activity would be highly dependent
on the excitatory/inhibitory balance. In contrast, the
ability of PS to evoke spikes should largely remain
unchanged independent of this network behavior.

Because of the recurrent nature of the network,
the relative strengths of feedback inhibition and
recurrent excitation change during the time course
of each trial, with or without electrical stimulation.
Wemeasured the relative impact of these two network
motifs by recording the recurrent AMPA,NMDA, and
GABA currents experienced by each neuron in P1.
We indexed the overall network current by adding the
recurrent excitatory AMPA and NMDA currents and
subtracting the inhibitory GABA current. Thus, when
the network current is negative, the network favors
feedback inhibition, but when it becomes positive it
favors recurrent excitation (figure 4(A) and (B)).

At baseline, feedback inhibition is substantially
stronger than recurrent excitation (≈−100 pA),
which holds the pyramidal neuron firing rates at
0–4 spk/s (figures 4(A)–(D)). Once the task-related
input turns on at t = 1 s, input excitation and recur-
rent excitation together overpower feedback inhibi-
tionand pyramidal firing rates begin to rise. As P1
firing rates rise, recurrent excitation grows, creating
a positive feedback loop. If P1 wins, when average
P1 firing rates clear the critical decision threshold of
15 spk/s, this positive feedback loop overwhelms feed-
back inhibition, and P1 firing rates surge rapidly up
to ∼30 spk/s. In this elevated firing rate state, recur-
rent excitation is dominant (+25–50 pA) and sustains
high firing rates (30–40 spk/s) even after the task-
related input turns off at t= 3 s (figures 4(A) and (C))
dotted lines identify time indices for 15 and 30 spk/s).
If P1 loses, it is instead strongly suppressed by feedfor-
ward inhibition after P2 clears the decision-making
threshold. In this case, feedback inhibition is domin-
ant throughout the trial, but recurrent excitation is
most competitive (≈−70pA) just before P2 clears the
decision-making threshold, when both populations’
firing rates are elevated (∼10 spk/s) (figure 4(B) and
(D), dotted line). Therefore, the relative strengths of
feedback inhibition and recurrent excitation depend
on both the outcome (P1 winning or losing) and time
course of each trial.

Based on the results in the simplified networks,
we hypothesized that PS would become more effect-
ive as feedback inhibition became more dominant,
and CGS would become more effective as recurrent
excitation became more dominant in the network.
These differences should be apparent in the firing

rate trajectories of winning and losing trials. Indeed,
we observed distinct differences in the average P1
firing rate trajectories between PS, CGS, and AGS
(figures 4(C)–(J)). These differences occurred even
though PS and CGS induced equivalent changes in
decision making.

We first assessed the effectiveness of PS and GS
at the beginning of each trial to understand their
immediate effects on the decision-making network
(figures 4(E) and (H)). In the first 100 ms of the task
period (t = 1–1.1 s) PS caused a larger increase in P1
firing rates (median: 3.89 spk/s IQR: 3.14–4.73 spk/s)
compared to CGS (median: 2.64 spk/s IQR: 1.81–
3.14 spk/s) in trials in which P1 won (figure 4(E);
p= 0.078 by Kruskal–Wallis test). PS also caused a
significantly larger increase in P1 firing rates (median:
3.93 spk/s IQR: 3.45–4.51 spk/s) than CGS (median:
2.34 spk/s IQR: 1.97–3.05 spk/s) in the first 100 ms
(t = 1–1.1 s) of trials in which P1 lost (figure 4(H);
p= 6.9× 10−3 by Kruskal–Wallis test). This result is
consistent with the hypothesis that PS is more effect-
ive than CGS when feedback inhibition is strongly
dominant in the network (≈−100 pA at 1.1 s in
figures 4(A) and (B)). This finding is independent of
the outcome of the trial because feedback inhibition is
dominant at the beginning of both winning and los-
ing trials.

Next, we assessed the effectiveness of PS and
GS Next we assessed the effectiveness of PS and GS
around the decision-making threshold (figures 4(F)
and (I)) to understand how their effects integrate with
dynamic network activity.

In winning trials, we observed that the slope
of the P1 firing rate curve around the decision
threshold (15 spk/s) was significantly affected by
both PS and CGS (figure 4(F); p= 4.2× 10−5

by Kruskal–Wallis test). The slope of the firing
rate was increased by CGS (median: 8.72 spk/s∧2
IQR: −12.38–19.63 spk/s∧2), but decreased by PS
(median: −8.89 spk/s∧2 IQR: −17.01–5.08 spk/s∧2)
and AGS (median: −19.82 spk/s∧2 IQR: −27.31-
(−6.00) spk/s∧2) compared to No Stim (figure 4(F)).
As a result, CGS had a significantly higher median
slope than PS (p= 0.03 by Kruskal–Wallis test) and
AGS (p= 0.005 by Kruskal–Wallis test). This find-
ing is consistent with the hypothesis that CGS is
synergistic with recurrent excitation, since recur-
rent excitation drives the rapid increase in P1 fir-
ing rates around the decision threshold of 15 spk/s.
On the other hand, PS-induced activation does not
synergize well with recurrent excitation, limiting its
effectiveness to rapidly increase firing rates around
the decision threshold. The inhibitory effectiveness
of AGS is increased as P1 firing rates increase due to
the relaxing of the floor effect, which also results in a
shallower slope.

In losing trials, we observed that themaximumP1
firing rate was increased by PS (median: 5.30 spk/s,
IQR: 3.72–7.20 spk/s) and CGS (median: 3.21, IQR:
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Figure 4. Effects of pulsatile (red), cathodic galvanic (green), anodic galvanic (blue), and control (black) stimulation on P1
population firing rates over time (N = 100 trials). Trials in which P1 won (left, (A), (C), (E)–(G) and P1 lost (right, (B), (D),
(H)–(J)) are investigated separately. (A), (B) Network currents (IAMPArec + INMDA − IGABA) received by P1 neurons are shown in
two representative trials. (C), (D) P1 firing rate trajectories are shown over time in two representative trials. (E), (H) Box plots
depict the population-averaged change in firing rate relative to no stimulation for the first 100 ms of the trial (t = 1–1.1 s). (F)
Box plots depict the population-averaged change in firing rate slope around the decision threshold of 15 spk/s relative to No Stim.
(I) Box plots depict the population-averaged maximum firing rate relative to No Stim. (G), (J) Box plots depict the
population-averaged change in firing rate relative to No Stim for the last 100 ms of the trial (t = 2.9–3 s). For all trials,
task-related input was set such that P1 and P2 each won 50% of the trials (coherence= 0% for No Stim,−57% for Pulsatile and
Cathodic Galvanic, and+30% for Anodic Galvanic). Only trials in which P1 won before t = 2.5 s were included in the analysis.

1.99–7.78 spk/s), but decreased by AGS (median:
−1.13 spk/s, IQR: −2.01-(−0.14) spk/s) relative to
No Stim (figures 4(D) and (I)). PS and CGS induced
statistically equivalent increases in maximum P1
firing rate (p= 0.44by Kruskal–Wallis test). Our
explanation for these equivalent increases in firing
rate is that CGS becomes more effective relative to
PS with even a slight increase in recurrent excitation
(figure 4(D), dotted line).

Finally, we assessed the effectiveness of PS and GS
at the end of each trial to understand their long-term
effects on the network in steady state (figures 4(G)
and (J)). In the last 100ms of the task period (t= 2.9–
3 s), average P1 firing rates were increased by PS
(median: 0.58 spk/s IQR: −1.25–+ 2.83s pk/s), not
affected by CGS (median: 0.00 spk/s IQR: −2.59–
+ 2.41 spk/s), and decreased by AGS (median:

−8.09 spk/s IQR: (−11.02)–(−4.52)) relative to
No Stim in trials in which P1 won (figure 4(G)).
Crucially, PS and CGS induced statistically equivalent
changes in P1 firing rates relative toNoStim (p= 0.82
by Kruskal–Wallis test). This finding was somewhat
surprising, and not immediately consistent with our
hypothesis. Recurrent excitation is strongly dominant
at the ends of trials in which P1 wins (+25–50 pA
at 3 s; figure 4(A)), so we expected CGS to induce a
greater increase in P1 firing rates than PS. Instead, we
observed that CGSwas equivalent to and even slightly
less effective than PS. Upon further investigation, we
found that shortly after P1wins, the dramatic increase
in recurrent excitation caused one of the P1 neurons
to experience depolarizing block fromCGS. This out-
lier drastically reduced average P1 firing rates, while
not affecting the decision-making outcome of the
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trial, since the decision threshold had already been
cleared.

In the last 100 ms of losing trials (t = 2.9–
3 s), P1 firing rates were increased by PS (median:
3.98 spk/s IQR: 3.40–4.42 spk/s) and CGS (median:
2.19spk/s IQR: 1.52–2.56 spk/s) but decreased byAGS
(median: −0.10 spk/s IQR: −0.31–(+0.11) spk/s)
relative to no stimulation (figure 4(J)). As expec-
ted, PS caused a significantly larger increase in P1
firing rates than CGS (p= 3.8× 10−4 by Kruskal–
Wallis test). These findings are consistent with the
hypothesis that increased feedback inhibition favors
PS relative to CGS. At the ends of trials in which
P1 loses, feedback inhibition is as dominant as it
gets (−100–(−120)pA), and the difference between
PS and CGS is also at its maximum (∼2 spk/s).
Additionally, AGS is much more effective in winning
trials than losing trials due to the relief of the floor
effect. These differences in P1 firing rate trajectories
over the time course of each trial represent measur-
able predictions about the different effects of PS and
GS on functional networks of neurons that arise dir-
ectly from a mechanistic understanding of their dif-
fering responses to network motifs of excitation and
inhibition.

3.5. PS and GS induce different spatiotemporal
distributions of activation
Because PS appears to be generally less susceptible
to network effects, we expect to find high variabil-
ity in neural responses as we examine the PS effect
on neurons at different distances from the electrode.
PS should affect neurons nearby more than neurons
farther away. In contrast, we would expect the effect
of GS to be more uniform and less dependent on
distance. To examine these hypotheses, we investig-
ated the distribution of neural firing rates in the fully
connected network. We visualized the neural activ-
ity as it evolved during the time course of each trial
and as a function of distance from the electrode. To
quantify the differences in variability of neural fir-
ing rates across the population of neurons, we used
the fourth central moment: kurtosis as a measure of
variability of firing rates across the neural popula-
tion (figure 5(B)). High kurtosis values indicate high
variability and low kurtosis values indicate uniform-
ity of firing rates across population. We selected this
metric due to its ability to highlight the most dra-
matic changes in neural firing rates such as blocking
(<1 spk/s) and hyper-excitation (>100 spk/s).

As expected from the disconnected trials, CGS
and PS strongly excited a small subset of neurons
close to the electrode (<500 µm) up to 200 spk/s
(figure 5(A)). PS also induced full pulse-pulse block-
ing in the closest neuron. These strong local effects
are seen as increases in kurtosis at the beginning of the
task period (t = 1.1–1.2 s) of both winning and losing

trials (figure 5(B)). During this onset, CGS strongly
activated only the closest neuron, whereas PS activ-
ated a larger block of close by neurons. As a result,
CGS induced significantly larger kurtosis transients
(median: 82.87 IQR: 76.63–87.83) compared to PS
(median: 57.31 IQR: 53.51–60.48 p= 2.6× 10−5 by
Kruskal-Wallis test).

In winning trials, PS caused relatively static excit-
ation (figure 5(B), solid red), but CGS excitation
changed with time (figure 5(B), solid green). As P1
firing rates increased, CGS activation spread due to
the increased recurrent excitation, captured by the
falling kurtosis levels. PS activation also spread, but
much less than CGS. As a result, by the end of the
task period (t = 2.9–3 s) of winning trials, PS main-
tained the large nonuniformity in firing rates, shown
by the significantly higher kurtosis (median: 47.88
IQR: 46.56–49.53) than CGS (median: 10.48 IQR:
9.19–11.51 p= 2.4× 10−5).

In losing trials, P1 firing rates achieved a max-
imum around 1.5 s before P2 cleared the decision-
making threshold, after which P1 was suppressed.
Accordingly, CGS achieved its maximal spread
throughout the network during this time, and then
reverted to strongly activating only a few neurons
(figure 5(A), bottom). As a result, similar to the initial
transients, CGS maintained higher (but not signific-
antly higher) kurtosis (median: 101.61 IQR: 48.96–
106.15; figure 5(B), dashed green) than PS (median:
66.43 IQR: 64.70–68.71; figure 5(B), dashed red) at
the end of the task period (t = 2.9–3 s) of trials in
which P1 lost (p= 0.22 by Kruskal–Wallis test).

AGS induced a mild deactivation, especially
prominent for the closest neurons (<500µm) inwin-
ning trials. AGS did not affect firing rates dramatically
in losing trials due to the floor effect. As a result, AGS
did not induce significant changes in firing rate distri-
butions compared to No Stim (p> 0.05 by Kruskal–
Wallis test for all comparisons).

These findings support the hypothesis that CGS
induces a more uniform spread of activation that
is highly network-dependent, whereas PS activates a
single block of neurons relatively statically through-
out the task period. Interestingly, at the beginning of
the task period, when P1 firing rates are low, CGS
induced higher kurtosis than PS (figure 5(B)). This
indicates that CGS takes some time for its effects to
spread throughout the network, and initially strongly
activates fewer neurons than PS. Similarly, when P1
lost and firing rates remained low, CGS induced
higher kurtosis than PS, suggesting that high levels of
recurrent excitation relative to feedback inhibition are
necessary to propagate the effects of CGS throughout
the network. This finding is consistent with the res-
ults from the simplified networks, in which feedback
inhibition attenuated the spread of activation induced
by CGS.
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Figure 5. Effects of pulsatile (red), cathodic galvanic (green), anodic galvanic (blue), and control (black) stimulation on
distributions of P1 firing rates over time (N = 100 trials). (A) Heatmaps show individual neural firing rates for trials in which
P1won (top) trials in which P1 lost (bottom). (B) Kurtosis of the distribution of P1 firing rates is shown over time. Trials in which
P1 won are represented by solid lines, and trials in which P1 lost are shown by dashed lines. Beginning (0–0.5 s) and end (3.5–4 s)
of trials are excluded due to artifactual effects when population firing rates are too low (<1 spk/s). For all trials, task-related input
was set such that P1 and P2 each won 50% of the trials (coherence= 0% for No Stim,−57% for Pulsatile and Cathodic Galvanic,
and+30% for Anodic Galvanic). Only trials in which P1 won or lost before t = 3 s were included.

3.6. PS but not GS induces synchronous firing in
the closest neurons
The decision-making model employed here assumes
that spatiotemporal integration of neural firing
exclusively determines the perceptual decision-
making process. However, recent evidence suggests
that precise spike timing may play a complement-
ary role in determining when to prioritize certain
streams of information over others [37, 38]. Given
that PS is more likely to influence neurons independ-
ent of network activity, we expect that the effect of PS
on neural firing would be stronger and more phase-
locked at the start of the stimulation, while the effect
of GS on the population would be more distributed
and less correlated.

To understand the steady-state effects of each
stimulation modality, we measured spike timing in
the last 0.5 s of the task period (t = 2.5–3 s;
figure 6(A), yellow). We found that PS induced
fully phase-locked activity in the responding neur-
ons closest to the electrode (<300 µm), and par-
tially phase-locked activity (20%–60% phase-locked
aPs) in neurons a moderate distance away (300–
400 µm) in P1 (figure 6(B), red). For each neuron
in P1, we computed the CV to measure regularity
of firing. PS induced highly regular firing (0–0.4)

in a small number of neurons closest to the elec-
trode (<150 µm); whereas CGS and AGS caused
a more modest increase in regularity (figure 6(C)).
Last, for each neuron pair in P1, we calculated the
percentage of synchronized aPs (<300 µs apart) in
figure 6(D). We observed a large increase in syn-
chrony among the neurons phase-locked to pulses
(up to 100% synchronized <300 µm from the elec-
trode; figure 6(D), left). These neurons were the
primary drivers of an overall increase in synchrony
from PS (p< 10−15 by 1-way ANOVA). In con-
trast, CGS did not induce significant synchrony
compared to control (figure 6(D), middle-left; p=
0.930.93 by 1-way ANOVA). AGS caused a mild
desynchronizing effect (figure 6(D), middle-right;
p< 10−15 by 1-way ANOVA).

From these results, we conclude that PS induces
phase-locked aPs in the directly activated popula-
tion, which manifest synchronized connections in
that subset of neurons. CGS largely preserves spike
timing and AGS induces a mild desynchronization.
Interestingly, based on the CV statistic, these neurons
are not firing as regularly as one might expect. This
is likely due to neurons phase-locking to an irregular
subset of pulses based on variable relative refractory
periods.
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Figure 6. Spike timing differences in P1 neurons among stimulation conditions (Pulsatile, red; cathodic galvanic, green; anodic
galvanic, blue; and no stimulation, black) for N = 100 trials. (A) Representative trial rasters are plotted for each stimulation
condition, with end-of-task period (t = 2.5–3 s) highlighted in yellow. (B) The percent of each neuron’s APs that occur during a
pulse presentation for the end-of-task period is shown as a function of its distance to the stimulation electrode. (C) Each neuron’s
end-of-task coefficient of variation (CV) is shown as a function of its distance to the stimulation electrode. (D) Heat map of the
percent of APs from a neuron that are synchronized to another neuron as a function of distance from the stimulation electrode.
Self-synchrony was undefined (N/A, blue). For all trials, task-related input was set such that P1 and P2 each won 50% of the trials
(coherence= 0% for no stim,−57% for pulsatile and cathodic galvanic, and+30% for anodic galvanic). Only trials in which P1
won before t = 3 s were included.

4. Discussion

By design, both CGS and PS achieved the same
strong biasing effect and decreased decision time.
Given this equivalence, the two stimulation meth-
odologies exhibited nuanced differences in the ways
that they interacted with the decision-making net-
work to achieve this bias. PS elicited responses within
the network by strongly and synchronously activat-
ing a static block of neurons close to the electrode
during both winning and losing trials. In contrast,
CGS directly activated a much smaller number of
neurons, which yielded a smaller increase in firing
rates at the task onset. As the task progressed, the
synergy between CGS and recurrent excitation led
to faster accumulation of perceptual evidence and a
steeper slope in the transition between low P1 firing

and high P1 firing. This synergy also contributed
to a broader spread of activation in winning trials.
When P1 lost, CGS’s sensitivity to feedback inhibition
allowed P1 to be appropriately suppressed, but with
some unnatural residual activation. Throughout win-
ning trials, CGS did not induce any additional syn-
chrony, generally respecting the spike timing trans-
mitted from the EPSCs/IPSCs analogous to that of the
non-stimulated trials. In general, these results show
that CGS produces more spatiotemporally distrib-
uted responses primarily due to its synergistic rela-
tionship with recurrent excitation; whereas PS pro-
duces more synchronized responses due to the phase-
locked nature of its AP initiation.

One limitation of this study is that the effect of
PS on decision making in the model is larger than the
effect in vivo with the same stimulation parameters
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[34]. Similar studies with lower pulse amplitude
(5 µA) were shown to achieve an equivalent effect
on decision making in some experiments, also high-
lighting the apparent inter-subject variability [7, 39].
Another limitation is that we only considered elec-
trical activation of excitatory pyramidal neurons in
our model, even though inhibitory neurons are co-
located in the decision-making circuit. Inhibitory
neurons have much smaller axons, so they exper-
ience a much weaker effect of electrical stimula-
tion. Also, similar modeling studies suggest that the
effects of electrical stimulation on decision-making
are primarily driven by its effect on excitatory pyr-
amidal neurons rather than inhibitory interneurons
[35]. Nevertheless, there may be some nuanced effect
via the interneurons that would be interesting to
explore in future work.

We assessed one pair of PS and GS amplitudes,
each of which gives rise to a specific pattern of activ-
ation/deactivation depending on distance from the
electrode. We chose this approach to enable dir-
ect comparison to existing experimental work in the
literature [34]. CGS required a nearly 10-fold lower
amplitude at 1.4 µA to achieve an equivalent beha-
vioral effect as PS at 10 µA. This is consistent with
the standard strength-duration curve that attributes
lower thresholds for long duration stimuli due to the
prolonged time given to charge the membrane capa-
citance and consequently induce larger effects on the
membrane voltage.

To compare PS to GS in this study we specific-
ally chose PS train parameters to mimic the stim-
ulation paradigm of the previous experiments [34].
Previously published experimental work as well as
our own computational analysis suggests that varying
pulse rate has strong nonlinear effects on the result-
ing firing rate of targeted neurons especially for high
amplitude pulses and in the presence of spontaneous
activity [28–30]. Indeed, in this publication we see
this effect with the inhibition of the neurons closest to
the electrode that experience the highest amplitude.
For this reason, to achieve more predictable results
using PS, we would expect that small amplitude stim-
uli would bemore effective over awider range of pulse
rates than using large amplitude pulses, assuming that
the recruitment of the neural population is acceptable
within the activated network.

Based on the modeling experiments in this
work, GS appears able to interact with functional
neural circuits as effectively as PS, while minimiz-
ing undesired side-effects such as excessive neural
synchrony, uneven distributions of neural activation,
and insensitivity to ongoing network dynamics. These
effects were largely consistent with our hypotheses
based on previous modeling work in single neurons
but differed in small ways idiosyncratic to the stimu-
lation protocol we used. Specifically, our CGS amp-
litude was sufficient to directly activate a few neurons
closest to the electrode regardless of EPSCs/IPSCs.

These neurons fired more regularly (as measured
by CV), remained somewhat active under feedback
inhibition, and one neuron experienced depolariz-
ing block under sufficient recurrent excitation. This
small minority differed from the overall trends of
activation and was responsible for unexpected find-
ings such as the decrease in efficacy at the ends of tri-
als in which P1 won. Future work exploring differ-
ent parameter combinations of PS and CGS will be
instrumental in determining whether these depolar-
izing block effects consistently arise or depend on spe-
cific CGS amplitudes.

In addition to excitation, GS can readily sup-
port electrical inhibition via AGS. Inhibiting P1 neur-
ons via AGS caused a behavioral bias opposite in
polarity, but smaller in magnitude than the bias
induced by CGS, due to the floor effect on firing rates.
Inhibitory AGS also increased decision times and psy-
chometric sensitivity, whereas excitatory CGS and PS
decreased decision times and psychometric sensitiv-
ity. These findings, together with related work [3, 35,
36], paint a picture in which excitation drives fast,
imprecise decisions, and inhibition drives slow, pre-
cise decisions. Despite its substantial behavioral bias,
AGS did not induce any alterations in firing rate dis-
tributions, and it avoids the risks of excessive neural
activation such as excitotoxic shock. Therefore, AGS
may be an even better candidate for effective neural
interfacing than CGS.

Feedback inhibition and recurrent excitation are
crucial components of the decision-making net-
work, and disruptions to their operation have been
shown to impair the decision-making process [3].
Similarly, synchrony effects are important to a vari-
ety of cognitive processes [37] and disease states
such as epilepsy [38]. Furthermore, population firing
rate distributions follow a characteristic long-tailed
structure throughout the brain thought to support
sparse neural coding of information [40]. Therefore,
although electrical pulses are clearly an effective way
to alter decision-making circuits and, more broadly,
to interface with the nervous system at large, they
may struggle to replicate nuanced interactions that
depend on precise spike timing, on-going network
activity, and neuron-specific coding. GS generally
preserves neural spike-timing, respects on-going net-
work activity, and maintains population firing rate
distributions. Recent work has shown that more
naturalistic, ‘biomimetic’ intracranial microstimula-
tion (ICMS) outperforms traditional ICMS in soma-
tosensory prosthesis for bionic hands [41]. Since
GS mimics the natural cortical firing patterns more
closely than PS, we expect it would be a good can-
didate for improving somatosensory prosthesis, along
with any other ICMS application in which ongoing
cortical network activity proves to be important.

While there appear to be functional benefits of
using GS for cortical micro-stimulation, the safety
of using these techniques for clinical use are yet
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unproven for prolonged duration. The technology
that would allow chronic delivery of direct current in
an implant is under active investigation [21, 42–46].
At present, the only delivery of direct current that has
had clinical validation is tDCSwhich lacks spatial pre-
cision and is physically difficult to develop for prac-
tical continual applications [17].

The future of effective cortical neuromodulation
technology that would replicate normal functionmay
lie in using the combination of the two methods.
While GS can bias the network in a more natural way,
PS can be used to deliver more tightly localized and
precise neural responses.
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