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Abstract
Objective. Constructing a theoretical framework to improve deep brain stimulation (DBS) based on
the neuronal spatiotemporal patterns of the stimulation-affected areas constitutes a primary target.
Approach. We develop a large-scale biophysical network, paired with a realistic volume conductor
model, to estimate theoretically efficacious stimulation protocols. Based on previously published
anatomically defined structural connectivity, a biophysical basal ganglia-thalamo-cortical neuronal
network is constructed using Hodgkin–Huxley dynamics. We define a new biomarker describing
the thalamic spatiotemporal activity as a ratio of spiking vs. burst firing. The per cent activation of
the different pathways is adapted in the simulation to minimise the differences of the biomarker
with respect to its value under healthy conditions.Main results. This neuronal network reproduces
spatiotemporal patterns that emerge in Parkinson’s disease. Simulations of the fibre per cent
activation for the defined biomarker propose desensitisation of pallido-thalamic synaptic efficacy,
induced by high-frequency signals, as one possible crucial mechanism for DBS action. Based on
this activation, we define both an optimal electrode position and stimulation protocol using
pathway activation modelling. Significance. A key advantage of this research is that it combines
different approaches, i.e. the spatiotemporal pattern with the electric field and axonal response
modelling, to compute the optimal DBS protocol. By correlating the inherent network dynamics
with the activation of white matter fibres, we obtain new insights into the DBS therapeutic action.

1. Introduction

Abnormal functioning of the basal ganglia (BG)-
thalamo-cortical circuit plays a central role in sev-
eral movement disorders. One main characteristic
of the altered circuitry in Parkinson’s disease (PD)
and dystonia is a change in oscillatory patterns of
the cortico-BG network [20, 59, 86]. In PD, abnor-
mally pronounced β-activity (12−35 Hz) emerges in
the entire BG network. This is thought to underlie
the severe motor symptoms of PD, such as hypo-
kinesia [16, 43, 76]. The synchronous elevated β

BG rhythm should, in principle, also affect thalamic
activity by sending strong inhibitory signals via GPi
(globus pallidus interna) and SNr (substantia nigra
pars reticulata) efferents to motor nuclei of the thal-
amus, i.e. ventral anterior and ventrolateral nuc-
lei (VA and VL) [27]. Studies in MPTP-treated
monkeys and optogenetic mouse models on activ-
ation of inhibitory GPi-thalamic projections show
that GPi stimulation results in rebound burst dis-
charges in the thalamic nuclei [44, 46] after the ini-
tial inhibition [49]. The enhanced bursting activity
due to hyperpolarisation of thalamic neurons comes
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from an increased inhibitory BG output tone and a T-
type calcium channel-dependent mechanism [1, 46].
In summary, this would predict a slowing, malfunc-
tioning of thalamic oscillatory activity [27].

Deep brain stimulation (DBS) of the BG was
shown to be an efficient treatment for movement dis-
orders [19, 80], but its therapeutic mechanism is still
not fully understood. The main hypotheses put for-
ward so far are (a) suppression of neuronal activ-
ity of the target area, (b) neuroprotective and plas-
ticity effects (including structural plasticity), and (c)
enhanced neuronal activity that results in firing pat-
tern alterations, in particular, disruption of hyper-
synchronised β-band oscillations [15, 32, 43, 46, 64].
Indeed, recordings in animal models [15, 46, 85]
and observations from computational network mod-
els [28, 63, 64, 67] suggest that DBS in the nuc-
leus subthalamicus (STN) results in a more periodic
and regular firing at higher frequencies in the BG-
thalamic network.

Certain progress in predicting therapeutic DBS
effects was achieved using the computational concept
of the volume of tissue activated [11, 12]. Although
it became a standard approach when estimating
DBS outcomes with computational models, it does
not consider the anatomy of brain fibre tracts and,
importantly, does not take into account network
effects. A qualitative advance in stimulation mod-
elling is an estimation of DBS-induced activation
of neuronal pathways and propagation of activ-
ity in the respective networks. For various neuro-
logical diseases, computational and clinical studies
show a correlation between axonal firing in specific
pathways and the patient condition [10, 29, 35,
42]. Nevertheless, it is not well understood how
the pathways’ activation affects the neural activity
of the respective networks. Prediction of DBS out-
come based on network models is not novel, but
the induced stimulation current is usually simulated
as an increased abstract activation [63, 64, 69]. In
this paper, we couple pathway activation modelling
(PAM) with a computational network of the BG-
thalamo-cortical circuit in order to optimise DBS
treatment for Parkinson’s motor symptoms.

Firstly, we use structural connectivity obtained
in previous multi-modal imaging data analysis [13,
50, 62]. Secondly, we simulate neuronal popula-
tions in different areas (GPe/GPi, STN, etc), pla-
cing and connecting neurons using the aforemen-
tioned structural connectivity. Each node-neuron
is modelled with a variation of Hodgkin–Huxley’s
current-balance equations [36, 64, 73]. Then, integ-
rating this high dimensional nonlinear system, we
simulate spatio-temporal patterns consistent with
healthy (normal) and Parkinsonian states. We define
a biomarker for thalamic spatio-temporal activity to
quantify the pathological thalamic behaviour in the
PD state. Using the network, we optimise pathway

per cent activation (i.e. per cent of activated fibres)
based on the deviation of the biomarker from the
healthy state. After the optimal input is determined,
it is assigned as the goal function for the electric field
optimisation via adjustment of the electrode posi-
tion and the stimulating current. The ultimate aim of
the study is to obtain a DBS protocol that provides
the therapeutic pattern encompassing the entire BG-
thalamo-cortical network.

2. Methods

2.1. Data sources
To describe the structural connectivity of the net-
work, data from different studies on human brain
anatomy were utilised. The BG nuclei and their sub-
structures were taken from the DISTAL Atlas [13,
22], and the Melbourne Subcortex Atlas [74] was
used to delineate substructures of the thalamus, while
the relevant cortical regions were selected using the
Brainnetome Atlas parcellation [23]. Fibre tracts clas-
sified to pathways in the vicinity of the STN were
taken from [62], and projections of the VA nucleus to
motor-cortical regions, required to complete the BG-
thalamo-cortical network, were extracted from the
structural group connectomeof 90PPMIPD-patients
GQI [50], post-processed in [22]. All data were rep-
resented in theMontreal Neurological Institute space.

2.2. Structural connectivity of the
BG-thalamo-cortical network
To investigate DBS network effects in PD, the clas-
sic circuit model of the BG-thalamo-cortical network
was employed (figure 1(A)) [55]. It consists of three
inputs from motor-cortical regions: the direct path-
way that passes through the striatum and continues
as a GABAergic projection to the GPi and SNr; the
indirect pathway that also traverses the striatum but
has GABAergic projections to the GPe (external seg-
ment of the globus pallidus), which in turn inhib-
its the STN, GPi and SNr; and the hyperdirect path-
way through which the STN receives direct excitatory
input from the cortical areas. The glutamatergic effer-
ents of the STN innervate the GPe, GPi and SNr.
GABAergic projections of the two latter nuclei to the
VA and the VL regions of the thalamus represent the
output of the BG circuit [7]. The circuit loop is closed
by excitatory input of the thalamus to the motor-
cortical regions.

The intrastructural connectivity of the network
was obtained from fibre tracts that were either
already assigned to pathways [62], classified based
on their position relative to the involved struc-
tures (thalamo-cortical projections), or substituted
by direct current modulations (striatal efferents, see
below). The classified fibre tracts are presented in
figure 1. Furthermore, the fibres from [62] were
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Figure 1. Basal ganglia-thalamo-cortical circuits. (A) Circuit model comprising all main connections. MC/PMC—motor and
premotor cortical regions, respectively. (B) Simulated reduced circuit model with highlighted (bold arrows) connections affected
by STN-DBS. The synaptic connections between Striatum and Globus Pallidus pars externa/interna (GPe and GPi) were modelled
by different constant currents. (C) Structural connectivity of the simulated network is based on the pathway atlas of the human
motor network constructed from multimodal data, including diffusion, histological and structural MRI data, fused to a virtual
3D rendering [62]. (C1) Projections from GPi to the thalamus (VA nucleus) are shown in red, connections between the nucleus
subthalamicus (STN) and GPe are shown in green, and projections from STN to GPi are shown in violet. (C2) Connections
between the motor cortex (MC/PMC) and the thalamus projections were obtained by classifying fibre tracts from [50] and are
shown in orange. Projections from the motor cortex to STN (hyperdirect pathway) are shown in blue. Nuclei are shown in the
following colours: GPe in light grey, GPi in dark grey, STN in dark orange, thalamus (VA nucleus) in yellow and motor cortex
(M1) in light grey. Adapted from [68]. CC BY 4.0.

grouped depending on the subregions of brain struc-
tures they connect. In this study, the simulated net-
work (figure 1(B)) does not include the substan-
tia nigra (SN). The dopaminergic projections of the
SNc (substantia nigra pars compacta) have a low
level of myelination [33]. They are hence less excit-
able (by approximately two orders of magnitude)
by extracellular electric fields [72]. The SNr is often
paired with the GPi in the context of the direct/indir-
ect pathways, although the fibre trajectories related
to STN-DBS electrodes are distinctly different. To
ensure homogeneity of the BG pathways, only those
pathways present in [62] were employed, which did
not include the striatonigral and the nigrothalamic
projections.

2.3. Modelling structural connectivity using
complex network theory and pathway
classification
The topological structure of the brain network plays
a critical role in the emergent neuronal activity and
brain functionality. Structural brain connectivity fea-
tures weremodelled by defining neuronal elements as
nodes and the interconnections among them as edges
of the network. The underlying connectivity can
be described and simplified using complex network
theory [9, 70].

We assimilate the network structure of section 2
to build a realistic computationalmodel that provides
insights into the mechanisms behind the brain
functionality or dis-functionality (i.e. movement

3
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disorders) and predict the neuronal dynamics on
multiple scales [37, 38]. Specifically, we build a direc-
ted network using the previously described structural
connectivity. The intrastructural connectivity within
the areas (STN,GPeGPi, VA,motor cortex (MC))was
defined assuming an internal complex network struc-
ture (see section 2.3.2).

2.3.1. Construction of the inter-connectivity using
structural data analysis
We express the structural connectivity of section 2.2
using network theory, i.e. the connectivity is written
as a graph G= (V,E), where V is the set of nodes
and E represents the set of edges. The nodes of the
structural network are defined as points in the three-
dimensional space and correspond to the starting and
ending points of a fibre tract. Also, due to limitations
of imaging, the network resolution is set at 1 mm3.
The structure of the network is described with the
adjacency (or connectivity)matrixA: if there is a fibre
tract starting at position pi = (xi,yi,zi) and ending at
pj = (xj,yj,zj) then A(i, j) = 1; otherwise A(i, j) = 0.

At the given resolution of 1 mm3, the network con-
tains 134 STNnodes, 244 and 246GPe andGPi nodes,
respectively, 833 thalamic nodes and 2070 cortical
nodes [68].

2.3.2. Internal connectivity using small world topology
In this section, we model the internal connectivity of
each region (i.e. how the nodes-neurons are connec-
ted within a region) using small-world structures [4,
9, 70, 83]. In such small-world complex networks [60,
83], each node interacts with its k nearest neighbours;
additionally, a few randomly chosen remote connec-
tions (with a small probability p) within the area are
also formed [83]. Small-world structures are com-
monly used/emerged in computational and clinical
neuroscience [4–6, 17, 24, 58, 66, 68]. Note that the
model only considers the respective motor parts of
the different structures and not any other function-
ally distinct areas.

The GPe/GPi, VA and MC layers are modelled as
separate small-world networks. Each node increases
the initial number of connections (or the degree of
the node) by k= 20 degrees on average. The new link
lies at a distance ⩽5 mm (defining the local neigh-
bourhood). We assume that 95% of the neurons are
interconnected locally. Nonetheless, the small-world
topology [83] also allows remote connections (at a
distance>5 mm) with a small probability of 5%. The
phenomenological values of k and p in this model are
chosen such that the network resembles both random
and lattice structure as it appears in many studies in
neuroscience [4–6, 17, 24, 58, 66]. With the chosen
values, the connectivity structure resembles real neur-
onal connectivity as it is shown, for example, in the
work of [17] and [58].

For the STN, we chose a modified sparse small
world approach inspired by experimental findings
of [2, 30]. In our model, 80% of STN does not
form local STN connections, and the remaining 20%
of STN neurons have an average of 25 connections
each, while few of these are randomly chosen remote
connections [30, 68, 69].

2.4. Modelling the dynamics of the
thalamo-cortical BG circuitry
We construct neuronal populations in the different
areas (GPe, GPi, STN, etc), placing and connecting
neurons using the aforementioned connectivity of
the augmented network. Depending on the region,
each node-neuron is modelled with a variation of
Hodgkin–Huxley current balance equations [36, 64,
73], i.e. the membrane potential of the ith node is
given by:

C
dVi

dt
=−

∑
Iion −

∑
Isyn + Iapp, (1)

where C is the membrane capacitance and Vi repres-
ents the membrane potential. The first term on the
right-hand side of equation (1) represents the sum-
mation of ionic currents, the second, the summation
of synaptic currents and the third term represents the
DBS stimulus (which is simulated for all BG areas by
different levels of direct current injection, although
far from the stimulation site, distant nuclei are activ-
ated by synaptic connections and probably remain
little affected by the stimulation electrode) or sen-
sorimotor inputs in the cases of the thalamus and
motor areas. Different areas show different proper-
ties for the currents in equation (1) The model con-
tains the following brain regions: the nucleus STN,
the globus pallidus externa (GPe) GPi, the thalamus
(VA) and the MC region. We model the connection
between neurons according to the augmented struc-
tural connectivity of section 2.3.2. In the supplement-
ary section, a detailed mathematical description is
given.

2.5. Macroscopic biomarker of pathological
thalamic activity in the Parkinsonian state
The highly synchronised activity (characteristic for
PD) coincides with enhanced bursting activity of the
BG and thalamus [75, 86]. Activity in the β-band
range is found in both healthy and Parkinsonian
states, and it is thought to be associated with
the control of ongoing motor activities [59]. In
the Parkinsonian state, this activity is significantly
enhanced [59] [43]; however, the reason for this
enhancement is not fully understood [21, 59].

The increased BG inhibitory output reduces the
excitability of postsynaptic thalamic neurons [44]. As
a result of the increased inhibitory drive on thalamic
motor nuclei, thalamic neurons fire in low-frequency
burst discharges [27, 46]. This pathological activity
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refers to rebound bursting [27, 46, 49], as thalamic
neurons rhythmically recover from hyperpolarisa-
tion, involving T-type calcium channel activation
[27, 46], and likely also HCN channels [45]. This
altered behaviour is related to Parkinsonian changes,
such as tremors and hypokinesia, but also arousal
states in rats, monkeys, and humans [46, 49]. In order
to quantify the thalamic activity, we define a macro-
scopic variable that takes into account precisely these
two main characteristics of the disturbed abnormal
thalamic behaviour, i.e. a decreased neuronal activity
in conjunctionwith an increased bursting behaviour:

fa (X) = aBR(X)+ (1− a)SP(X) , (2)

where X represents the stimulated state (i.e. healthy
(normal)/Parkinsonian/DBS), meaning that the
parameters of the model are tuned in accordance
to each simulated state, see also section 3.1, BR is
the average number of the bursting blocks (in the
thalamic area) and SP represents the average number
of spikes (in the thalamus). The parameter a ∈ [0,1]
defines a convex combination and controls the beha-
viour of the macroscopic function fa, which summar-
ises thalamic activity by counting the relative amount
of bursting and spiking activity.

Experimentally and computationally, it is chal-
lenging to identify bursts because bursting sets a
parameter (mean inter-spike interval) according to
intrinsic properties of the detected burst spike trains
[14]. Here, we follow the simplifying method of [14]
to detect bursting blocks. When the mean value of
several successive inter-spike intervals is not larger
than 15 ms, this behaviour is defined as burst firing.

Another macroscopic variable that is used in this
paper is the mean voltage activity V of neurons in an
area (e.g. STN); specifically, we define:

Vx (t) =
1

N

N∑
k=1

Vk (t). (3)

The mean voltage activity V (related to the local field
potential) is utilised for the characterisation of syn-
chronised rhythm (through the Fourier spectrum)
under different states (healthy, Parkinsonian or DBS).

2.6. Pathway per cent activation of DBS using the
network model
The effectiveness of the DBS treatment depends on
(a) which specific pathways are activated and (b) on
the level of activation [35, 40]. In the network simula-
tions, we use a one-compartment somaneuronmodel
for all areas. Thus, the activation of an edge (i.e. an
axon) due to DBS is modelled as a supra-threshold
DBS stimulus on the neuron node, which is the end-
ing point of the axon (i.e. the postsynaptic neuron).

We define the per cent activation Ax→y from
nucleus x to y as:

Ax→y =
NA,x→y

Nx→y
, (4)

where NA,x→y is the number of activated edges
from x→ y and Nx→y is the total number of edges
(axons) from x to y nucleus. In this study, we analyse
the following per cent activations, A1 =AMC→STN,
A2 =ASTN→GPe, A3 =ASTN→GPi, and finally A4 =
AGPi→VA. We developed an algorithm using the
Metropolis optimisation [47] for randomly chosen
activated nodes (described in the supplementary
material) consistent with per cent activationAx→y.

For each set of the parameters A=
(A1,A2,A3,A4), the model produces a different
neuronal activity whose effectiveness is evaluated
from the objective function. The objective func-
tion should capture the main impact of DBS, i.e. to
increase the thalamic neuronal activity and simul-
taneously reduce thalamic bursting activity (see also
section 2.5)

obj(A) := |fa
(
Xhealthy

)
− fa (XDBS) |, A ∈ R4

+. (5)

Substituting the formof f, i.e. equation (2), we obtain:

obj(A) =
∣∣a(BR(Xhealthy

)
−BR(XDBS)

)
+(1− a)

(
SP

(
Xhealthy

)
− SP(XDBS)

)∣∣ .
(6)

The values of the model parameters Ai , i = 1, . . .,4,
were estimated numerically by minimising objective
function i.e. equation (6).

The minimisation problem was solved using
the MATLAB function fmincont, a gradient-based
method for nonlinear problems with constraints for
the function class C1 [52]. The step size tolerance
was set to tol(X) = 0.001 and the function tolerance
was set to tolF = 1. The maximum number of itera-
tions was set to 100. The optimal firing rates now are
referred to as Aoptimised. They will constitute the tar-
get vector of equation (7) of section 2.8 in order to
compute corresponding DBS protocols.

2.7. Estimating realistic pathway per cent
activation
While the optimised per cent activation, suggested
by the network, is defined on abstract neurons, it is
important to consider spatial constraints of the activ-
ation extent related to the mutual proximity of vari-
ous neuronal circuits, including regions of avoidance,
e.g. the internal capsule implicated in motor side-
effects for STN-DBS [77]. Note that the external stim-
ulation alters the transmembrane potential on both
axons and somata with dendritic trees, but the former
has been shown to bemore excitable by external stim-
uli [61]. Therefore, here we quantify activation by
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Figure 2. Pathway activation modelling. (A) Extracellular electric potential distribution on computational axons is computed in
the volume conductor model for a given current protocol. Here the electrode is shown at the position that was optimal for the
normalisation of the VA-thalamic activity. Note that in order to reduce the computational effort, the axons do not cover the whole
length of the pathways but only segments exposed to the high electric field. (B1), (B2) Activation status of the network pathways
and other projections (corticofugal and associative pallidosubthalamic), respectively. By solving the cable equation for the
computed distribution, responses of passive axons to the stimulation are quantified. If the axon elicits an action potential, it is
considered activated. Note that some axons traverse the electrode and/or the encapsulation layer; those are considered ‘damaged’
and excluded from the simulation. (C) Electrode tip placement is optimized within a 4 mm bounding box centred at the motor
aspect of the STN.

the axonal response to DBS. In figure 1, projections
that are expected to be reinforced by stimulation are
shown in thick lines, and only on these projections
were axon models allocated. It is important to note
that the DBS-induced extracellular field might affect
not only pathways projecting from/to the STN but
also passing fibres, such as the pallidothalamic tract.
Additionally, we monitored activation in the cortico-
fugal tract to control for current protocols that can
cause capsular side effects and the associative portion
of the pallidosubthalamic projections, which stimu-
lation might affect cognitive function.

To probe an initiation of action potential in the
neuronal tissue, a double cable model of the myelin-
ated axonwas employed [54]. This widely usedmodel
of the mammalian nerve fibre describes a detailed
morphology of internodal segments and complex ion
channel dynamics. Importantly, no tonic firing was
modelled at this stage so that action potentials could
be elicited only due to the DBS-induced field. The
initial membrane potential was set to −80 mV, and
fibre diameters of 5.7 µm were chosen, except for the
hyperdirect pathway, where the collateral diameter
was set to 3.0µm. It should be noted that themajority
of fibres in the BG are thinner [26, 51]; however, lar-
ger diameterswere also reported [79]. An array of pre-
viously published works in the computational field
uses fibre diameters of, or close to, 5.7 µm [31, 35, 42,
54], and consequently we chose to adapt this value.
To reduce computational costs, axon lengths for long
projectionswere limited (e.g. 16mm for the hyperdir-
ect pathway) since the electric fieldmagnitude further
from the STN is negligible. Seeding of an axon was
always initiated at the fibre tract’s segment closest to
stimulation contacts, and in total, the algorithmalloc-
ated 6735 axon models (see figure 2).

To compute the spatial distribution of the induced
extracellular field, a volume conductor model was
developed following the approach described in
[10]. In brief, the heterogeneity of conductivity was
obtained from patient-specific MRI segmentations,
while tissue anisotropy was assessed based on the
normative diffusion data [87], warped into patient
(native) space using routines implemented in Lead-
DBS toolbox [39]. All calculations were performed
within the simulation platform OSS-DBS [11], spe-
cifically developed for iterative DBS modelling that
encompasses geometry and mesh generation, elec-
tric field computations and quantification of the
induced neuronal activation. The accuracy of the
field modelling was ensured by an adaptive mesh
refinement algorithm of OSS-DBS that assessed the
convergence of the electric potential on the axonal
compartments.

2.8. Computing optimal electrode position using
the per cent activation of the neuronal network
model
The optimised pathway per cent activation defined
the goal function for the electric field optimisation

fgoal =
n∑

i=1

|Aoptimised,i −Ai|
|Aoptimised,i|+ |Ai|

, (7)

whereAi is the per cent activation in the ith pathway.
Here, we quantified the difference between activation
patterns with theCanberra distance [48] that was pre-
viously shown to be effective in a correlation model
for the PD motor symptoms’ improvement [10].
Furthermore, we rejected solutions that yielded per
cent activation above 5% in the corticofugal tracts,
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which are implicated in motor contractions. The fol-
lowing DBS parameters were set as the optimisation
variables: the coordinates of the implantation site,
the tilt of the electrode in the sagittal and coronal
planes, and the delivered currents through the elec-
trode contacts. The coordinates of the implantation
were bounded by a 4 mm box centred on the STN,
and the sagittal and coronal tilts were varied between
29.2◦–45◦ and 10◦–30◦, respectively [34]. The DBS
signal was defined as a 130 Hz 60 µs train pulse.
Its amplitude was limited by 2.5 mA for concent-
ric and 2.0 mA for segmented contacts. This not
only ensured that the charge density per phase lies
below the threshold of 0.03 mC cm−2 [3, 53] but also
restricted the optimisation algorithm tomore energy-
efficient protocols.

In this study, an axon was considered to have
been activated if the discrete event of an action
potential initiation was observed in response to
the altered extracellular field. Therefore, the stand-
ard derivative-based methods are less suitable for
optimisation. Furthermore, the goal function and
the distribution of the projections implicated a
non-convex problem with multiple local minima.
After preliminary testing, the generalised simulated
annealing [84], implemented in the Python package
Scipy [81], was chosen as the optimisation algorithm.
The optimisation of the current was performed util-
ising the linearity of Laplace’s equation. It allows
for avoidance of the recalculation of the electric
field for any new combination of currents/poten-
tials for the given electrode position. The algorithm
works in the following order for an electrode with N
contacts:

The computationally intensive operations, such as
the iterative solution of the electric field problem and
the cable equation for thousands of axons were effi-
ciently parallelized on a 24-Core 3.8 GHz worksta-
tion with 256 GB of memory. The electrode place-
ment optimizer converged after≈34 days of continu-
ous computations.

3. Results

3.1. Simulating normal state
Parameters were tuned to simulate healthy conditions
during the initiation of motor activity (as described
in the supplementary material). Figure 3 depicts the
neuronal activity of the nuclei under normal condi-
tions. The STN, GPe, and GPi show sparse firing with
low levels of correlation of neuronal activity between
STNand the pallidal nuclei (except for one rather syn-
chronised firing period, which intrinsically emerged
in the network at approx. 650 ms, followed by an
approx. 50 ms pause in the GPe, and to a lesser extent
in the GPi).

Algorithm 1. DBS current optimisation.

1: Choose a new electrode position with the outer
loop optimiser

2: For frequencies in the power spectrum of the DBS
rectangular pulse, compute spatial distributions of the
electric potential for each contact, setting this contact
to 1 V, others to floating potentials and grounding the
exterior of the computational domain

3: Apply Inverse Fourier Transformation (IFT) to obtain
N solutions ϕ1V(r, t);

4: Find the optimal currents by scaling the solutions with
vector S and superpositioning (i.e. solve the
optimisation problem for S):
• If available, choose S from the previous iterations
as the initial guess

•With the scaled potential ϕscaled(r, t) on the axonal
compartments, compute the pathway activation
and evaluate equation (7);

5: Return the result to the outer loop optimiser

Generally, STN neurons form an almost random
pattern and fire irregularly. Neuronal activity usually
consists of spiking (B) and rare bursting activity (see
figure 3(B)). The Fourier analysis of the macroscopic
mean voltage VSTN (see equation (3)) shows a wide,
nearly stable spectrum, with a small peak at around
20 Hz and a drop from 500 Hz onwards (expected to
reflect intercalated firing of different neurons, with
ever smaller inter-spike intervals becoming increas-
ingly unlikely; see also supplementary material).

TheGPe-GPi activity is plotted in figures 3(b) and
(c). Like the STN activity, it is also characterised by
sparse firing, while individual neurons can show both
bursting and spiking activity (b). The frequency of the
mean voltage V for both GPe and GPi shows peaks in
low β-band, underlying weak rhythmicity at approx.
15 Hz.

The resulting time-dependent activity of neurons
in the VA thalamus and MC is shown in figures 3(d)
and (e), respectively. In contrast to STN and GP, both
thalamic and motor areas show a dense spiking activ-
ity in γ-band with a peak at 48 Hz, with a broader
range of γ-band (between 45 and 60 Hz) for the MC
(see also supplementary material).

3.2. Simulating Parkinsonian state
In PD, the degeneration of nigrostriatal dopaminer-
gic neurons leads to a loss of dopaminergic innerv-
ation in the striatum. The resulting reduction of
D1/D2 receptor-mediated activity affects direct/in-
direct pathway functionality. In the direct pathway,
reduced D1-receptor activation results in an increase
of the GPi neuronal activity as a consequence of dis-
inhibition, which in turn, results in higher levels of
inhibitory activity in projections to the thalamus. In
the indirect pathway, the reduction of suppressive
D2-mediated receptor activation leads to an inhibi-
tion of GPe, thus enhancing STN activity (note that at
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Figure 3. Representation of the whole network dynamics under healthy conditions. Each row represents the indicated area (STN,
GPe, GPi, Tha/VA and MC). Under healthy conditions, there is only loosely correlated activity in STN, GPe and GPi, with tonic
activity in the thalamus and motor cortex, at frequencies peaking at 47 Hz, i.e. in the γ range. (I) Raster plot representation. Black
dots represent activated neurons (i.e. action potentials defined as transients passing V=−15 mV to positive values) against time
(in ms) and space (i.e. neuron index in the nuclei). (II) The middle column depicts the time series of one representative neuron in
each of the nuclei. (III) The right column shows the power spectrum of the mean voltage activity; see equation (3). The axes in III
are on a logarithmic scale.

this stage, we do not consider feedback activation of
the STN from the GPe, which actually would lead to
unphysiological delayed STN inhibition). The over-
active STN will enhance neuronal activity in the GPi
even more—which again leads to even more pro-
nounced thalamic inhibition.

Consistent with disturbed SNc-striatal pathway
activation, in the model, we increase the conduct-
ances gSTN, gSTN→GPe, gSTN→GPi, while decreasing
the internal GPe conductance. Simultaneously, we
increase the inhibition from GPi to the thalamus by
increasing the synaptic conductance gGPiVA (see sup-
plementary material, section 3). Figure 4 shows the
network dynamics under Parkinsonian conditions.
The main emergent characteristic of the BG network
activity is the synchronous activity, see figures 4(A)
and (B), particularly in STNandGP, peaking at 24Hz.
The neurons, in turn, often fire in bursts (B).

The increased GPi activity is projected directly
through the network to the VA and VL regions of
the thalamus. An immediate consequence of this pro-
jection is that the ventral thalamic neurons change
from regular spiking (healthy behaviour, at approx.
47 Hz) to bursting activity (at approx. 8 Hz). Due to
the complex network structure of the thalamus, the
ventral thalamic bursting activity, in turn, is projec-
ted to theVA thalamus through remote inter-thalamic

connections [65]. Formotor-cortical activity, this res-
ults in a slight slowing, reaching a peak now at 37 Hz,
rather than 47 Hz under healthy conditions.

The time-dependent activity of all neurons in the
thalamus and MC is shown in figures 4(d) and (e),
respectively. As already described, both thalamic and
motor areas show an altered power spectrum com-
pared to the healthy conditions: The power spectrum
of thalamic activity peaks at low frequency, i.e. 8 Hz
(low α), resulting mainly from the silencing of the
thalamus and the emergence of low-frequency burst-
ing. The spectral analysis of the MC shows a low γ to
high β band activity, with the main component shif-
ted to 37 Hz (from 47 Hz in the healthy state); see the
supplementary material.

3.3. Simulating DBS using optimal per cent
activation of the network
In this section, we present the optimisation results for
the network interaction dynamics based on the min-
imisation of the biomarker of the thalamic activity
defined in section 2.6 with equation (6). For this, the
network structure and the model parameters reflect
the Parkinsonian state. The optimal values of the per
cent activation found are: AMC→STN = 0.878 (from
MC to STN),ASTN→GPe = 0.464,ASTN→GPi = 0.562,
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Figure 4. Representation of the network dynamics under Parkinsonian state. Each row represents the indicated area (STN, GPe,
GPi, Tha/VA and MC). Under Parkinsonian conditions, there is a marked increase in synchronisation among STN, GPe and GPi,
with frequency peaking at 24 Hz, i.e. within the β range. Altogether, this results in a lower thalamic firing frequency (major peak
at 8 Hz, and a secondary one at 37 Hz, i.e. in the low β and low γ ranges). (I) Raster plot representation. Black dots depict
activated neurons (i.e. action potentials defined as transients passing V=−15 mV to positive values) against time (in ms) and
space (i.e. neuron index in the nuclei). (II) The middle column depicts the time series of one representative neuron in each of the
nuclei. (III) The right column shows the power spectrum of the mean voltage activity see (3). For comparison reasons, the power
spectrum of the healthy conditions is depicted with blue colour.

Figure 5. DBS-induced per cent fibres activation, optimised
in the network using the biomarker of the VA-thalamic
activity. The optimal values of the percentages of activated
fibres found are:AMC→STN = 0.878 (from MC to STN),
ASTN→GPe = 0.464,ASTN→GPi = 0.562 and
AGPi→Tha = 0.052.

AGPi→Tha = 0.052, see also figure 5. DBS induces dra-
matic alternations in firing dynamics in all three BG
nuclei. In the STN, neurons fire tonically, and over-
all they show a significant peak in the Fourier spec-
trum at 43 Hz, see figure 6(a)-(III), with further

dampened peaks at harmonic frequencies, as repor-
ted by [78]. Looking more specifically at individual
neurons (all identical in properties, but heterogen-
eously connected), four classes of response behaviour
can be differentiated in this nucleus: About 34% fol-
low the stimulation at 130 Hz, showing additionally
subthreshold depolarization (that might be attrib-
uted to either intrasubthalamic connections or GPe
inhibition). Another 30% do not follow this rhythm
but fire action potentials at 43 Hz. About 22% of
the neurons remain unaffected by the stimulation
and just fire single action potentials during the entire
300 ms period. The remaining cells stay utterly silent
at hyperpolarised potentials (see section 5 and figure
1 of the supplementary material).

As a result of this activity in STN, GPe and GPi
regions, neurons also show fast tonic activity again
with the first component at ≈43 Hz, corresponding
to one-third of the neurons (STN driving these cells).
However, an even higher peak appears at ≈130 Hz,
in resonance with the DBS and corresponding to fast-
firing cells of the STN (another third of the neurons),
presumably driving these cells.

As a consequence of STN DBS, thalamic activ-
ity is reset to fire tonically, albeit not at the 47 Hz
rhythmof the healthy state, but at a slightly faster pace
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Figure 6. Representation of the network dynamics under DBS conditions using the optimal per cent activation values of
section 3.3. Each row represents the indicated area (STN, GPe, GPi, Tha/VA and MC). (I) Raster plot representation. Black dots
depict activated neurons (i.e. action potentials defined as transients passing V=−15 mV to positive values) against time (in ms)
and space (i.e. neuron index in the nuclei). (II) The middle column depicts the time series of one representative neuron in each of
the nuclei. (III) The right column shows the power spectrum of the mean voltage activity; see equation (3). For comparison
reasons, the power spectrum of the healthy conditions is also depicted with blue colour. Under DBS, the activity in STN, GPe and
GPi remains highly synchronised, particularly between GPe and GPi, at even higher peak frequencies (43 Hz). The representative
neurons in the thalamus and cortex, i.e. II (d) and (e), become tonic again, at higher frequencies (58 Hz), in the γ range, and thus
assume an activity pattern similar to the healthy condition again.

(58 Hz). In turn, neurons in the MC revert to firing
faster, close to the second peak of the healthy state
(58Hz). So overall, the activity is approaching healthy
conditions again. As outlined above, the mean activ-
ity V in the thalamus peaks at 58 Hz, with a wider
activation range in the interval [35-65] Hz, which
shows a broad γ-band activation close to a previous
healthy condition. Analogous behaviour is presented
inMCwith a characteristic γ-band activation and the
highest peak at 58 Hz. These findings underscore that
during DBS, in all nuclei, there is a bandwidth shift to
the γ range, overwriting the pathological β synchron-
isation of Parkinsonian state, see figure 4.

3.4. Matching the optimal per cent activation in the
volume conductor model
The question addressed in this study is whether an
electrode position and current protocols can be found
that will approximate optimised per cent activation
Aoptimised predicted by our network model. While
it may be possible to disrupt pathological activ-
ity by optimising stimulation patterns in the net-
work model, it might still be problematic to trans-
late this into feasible stimulation settings if the pat-
tern is not reproducible with standard DBS systems.

The electrode placement and current optimisation
allowed us to reach nearly the same per cent activa-
tion (see figure 9) using the directional lead (Boston
Scientific VerciseTM, Marlborough,MA, USA), except
for the hyperdirect pathway, the activation of which
was limited by the detrimental capsular stimulation.

4. Discussion

This study proposes a biomarker-based optimisation
paradigm for DBS treatment by combining complex
spatio-temporal patterns emerging in large-scale net-
works with modelling of pathway activation. Rather
than optimising a volume of tissue activated, the
combined model extends this approach and aims to
optimise realistic spatio-temporal discharge patterns
in the motor nuclei of the thalamus. This directly
associates the network’s structural connectivity and
the inherent dynamics to trajectories of white mat-
ter fibres, whose activation can be quantified by PAM.
It allowed us to evaluate different electrode positions
and stimulation protocols with respect to patholo-
gical bursting vs. spiking thalamic activity, serving as
biomarkers.
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The large-scale network model produces realistic
spatio-temporal patterns with enhanced β activity
(24 Hz, see figure 4) in the BG during the simulation
of the Parkinsonian state. This pathological emer-
gent behaviour is in good agreement with experi-
mental findings in animal models of PD and with
increased burst firing in patients [16, 43, 75, 76].
Specifically [76], analysed eight patients with PD and
DBS and showed that pathological symptoms of bra-
dykinesia, dyskinesia and tremor were accompan-
ied by STN multi-unit activity showing a β-peak
(≈20 Hz ± 6 Hz) [76].

Additionally, in our model, not only the fre-
quency spectrum of the BG activity is shifted in the
Parkinsonian state, but also that of the thalamic activ-
ity: the latter shows a slowing of activity, with a shift
in the spectrum, from γ- to slow α-band (8 Hz; see
figure 4). These emergent spatio-temporal dynam-
ics of the thalamus are characterised by decreased
thalamic tonic spiking and increased bursting activity.

These results are confirmed by several studies in
patients and human and animal models [27, 44, 56].
Both the reduced thalamic activity (i.e. reduced firing
rate) [27, 56], and, more specifically and importantly,
an increase of power in the 3–13 Hz band (mean at
8 Hz, i.e. in the low α-band) with the reduction of γ-
band spiking activity in VA neurons of the thalamus
was shown in Parkinsonian nonhumanprimates [44].
In the current study, simulating the neuronal network
with Parkinsonian conditions, the number of burst-
ing periods of VA thalamic neurons increased as a
result of the enhanced BG inputs (see figure 8(B)).
An increased number of bursts was also reported in
the study of Kim et al [46]: using an optogenetic
mice model in which specific BG outputs were select-
ively perturbed, multiple Parkinson-like symptoms
could be evoked. Specifically, Kim et al [46], using
light trains of 20 Hz in GPI (imitating Parkinsonian
β rhythm), induced high-frequency muscle and low-
frequency tremor activity. The authors showed that
these symptoms depended on the number of thalamic
neurons that exhibit bursting behaviour.

The optimal per cent activation of fibres under
DBS (computed by ourmethod) re-establishes higher
frequency dynamics in the BG network. Thus, the
activity peak in STN, GPe and GPi shifts from β- to
γ-band, i.e. from 24 to 43 Hz (see figure 6). Similarly,
the thalamus shows an activity shift from 8 Hz (α) to
58 Hz (γ), and in the MC, this results in a shift from
37 to 58 Hz (i.e. from low to higher γ). DBS simu-
lations at optimal activation rate showed that a pro-
portion of STN neurons depict unusually wide action
potentials during DBS (33% of STN neurons). We
assume that these neurons experience unphysiologic-
ally strong activation during DBS. Although there are
no measurements of action potentials in vivo under
these conditions, our model predicts that under such
conditions, calcium currents are activated, which are
strong enough to result in underlying [Ca2+]-spikes.

4.1. GABAergic synaptic plasticity effects during
DBS
The simulation highlights the importance of the
depression of GABAergic activity (either by direct
silencing or desensitisation) for the efficacy of DBS.
For the latter, a postsynaptic loss of sensitivity for the
ligand still bound to the receptor is well described for
GABAergic synapses [8]. In addition, a depletion of
the readily releasable transmitter pool as a presynaptic
loss of synaptic efficacy is possible. This depletion of
the transmitter has been described for hippocampal
GABAergic interneurons, and it is dependent on the
firing history of the synapse and, as a consequence,
on the frequency of applied DBS. Thus, at high fre-
quencies (>100 Hz), the transmitter release is sup-
pressed shortly after the onset of the stimulus [57,
82]. It is possible that also pallidal neurones show this
behaviour.

Our model proposes that precisely this suppres-
sion (be it via desensitisation or depletion) is one
part of the DBS mechanism: high-frequency DBS
induces loss of GABAergic synaptic efficacy, lead-
ing to a disruption of the pathological signal trans-
mission through the pallidothalamic network. In
figure 7, we show three single thalamic neurons
under DBS, but under two different conditions: In
the first (blue traces), desensitisation of GABAergic
synapses is taken into account, and in the second,
not (black traces). These examples demonstrate that
when desensitisation of GABAergic pallidal projec-
tions is present, thalamic neurons continue to fire
tonically. Otherwise, themajority of cells in themotor
thalamus actually fall silent figures 7(A) and (B)
due to the ongoing inhibition. Only a small fraction
escapes it and continues to fire figure 7(C).

4.2. Two possible mechanisms of DBS: pre- and
postsynaptic GABAergic silencing
The modelling of DBS suggests two possible mech-
anisms of DBS acting in parallel, as shown in
figure 8. In this figure, the critical importance of the
level of pallido-thalamic inhibition is demonstrated.
Under healthy conditions, this level was simulated
as extremely low (close to 0.01 pA), with minimal
fluctuations, assuming a locomotive activity of the
network. In essence, this releases thalamic neurons
into firing tonically, and the firing frequency is fine-
tuned byminimal changes in inhibitory drive figure 8
(A)-(I)−(III). Under Parkinsonian conditions, the
GPi becomes much more active (due to disinhibition
in the direct pathway and due to facilitation in the
indirect pathway), resulting in much higher pallido-
thalamic inhibition levels (0.1–0.4 pA; baseline and
peaks, respectively). This silences thalamic neurons
for most of the time and only occasionally allows for
burst-like behaviour in figures 8 (A)-(I)−(III), par-
ticularly after rhythmic and strong inhibitory epis-
odes (B)-(II).
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Figure 7. Single unit activity of three neurons in the ventral anterior thalamus under STN-DBS. In all cases (A)–(C), the blue
traces depict neuronal activity considering GABAergic desensitisation, and the black traces show neuronal activity with
non-desensitising GABAergic inhibition. If desensitisation is present, thalamic neurons continue to fire tonically in the γ-band in
all instances (A)–(C). If desensitisation is not occurring, most of the neurons are actually inhibited and silent (A) and (B), and
only some continue to be active (C).

Figure 8. Time series representation of activity (right ordinate, red traces) of three different thalamic neurons in the network
(three rows) under normal (A), Parkinsonian (B) and (C) DBS treatment. The total synaptic current (from GPi to THA) is given
on the left ordinate. (A) Modelling the healthy state, the three examples show the tonic firing of the thalamic neuron, whose
frequency depends on the inhibition level. Although this is generally low, there is still some inhibition present in examples 1 and
3. Still, virtually none in example 2. (B) Simulating the Parkinsonian state, essentially three similar behaviours are observed:
Under these conditions, in all examples, the inhibition level is generally much higher than under healthy conditions, varying
between 0.1 pA as basal level, and 0.4–0.6 pA at peak inhibition. As a consequence, thalamic activity is strongly reduced, and only
intercalated firing can be observed. While in principle, intermittent bursting of thalamic neurons can be seen in all cases, the
higher the rhythmicity and organisation of inhibition become (see example 2 with very rhythmic inhibitory drive), the more
pronounced the rebound burst firing in thalamic neurons upon release from inhibition. (C) Under conditions of DBS, two
different scenarios lead to restoration of thalamic firing: in example 1, inhibition is low but still present, indicating that
pallido-thalamic projections are active, but the response is desensitised postsynaptically. As a result, the thalamic neuron fires
tonically at a lower frequency. In example 2, a second mechanism takes over: In this case, inhibition is completely lost, possibly
due to presynaptic silencing of GPe (due to GPi projections, for example). Again, this results in tonic firing, but now at a higher
frequency. Example 3 shows that DBS is not acting perfectly: Here, the inhibition level is not very low (neither desensitisation nor
silencing work perfectly), and as a consequence, the thalamic neuron is mainly silent, as under Parkinsonian conditions.
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Figure 9. Optimised electrode placement for the suppression of thalamic rebounding. (A) The optimal electrode position was
found in the motor aspect of the STN (highlighted in black). All contacts of the directional lead were active with both polarities,
but the amplitude on a single contact did not exceed 1.3 mA, and the total current summed up to 0.9 mA. The obtained per cent
activation deviated by less than 10% from the network-based optimal rates, except for the hyperdirect pathway, where the targeted
rate was 30% higher. The reason for the limited activation is the spread of the current to the corticofugal pathway (not shown
here); in the model, its per cent activation was capped at 5% to avoid capsular side effects. GPa and GPm—associative and motor
portions of the globus pallidus, respectively. (B) Power spectrum of the VA/Tha activity in three cases, i.e. in a healthy state
(black), under conditions of DBS, using thalamic biomarker to optimise network behaviour (red, network), and under conditions
of DBS using electric field optimisation around the electrode (blue, electric field). (C) Power spectra of GPi in three cases, i.e. in a
healthy state (black), under conditions of DBS using the thalamic biomarker to optimise network behaviour (red, network), and
for per cent activation achieved by electric field optimisation (blue, electric field ). The power spectra for the latter case is
computed in the network using, however, the values of per cent activation that are depicted in A.

Looking at this example more closely, the burst
firing occurs in the wake of an inhibitory event but
before the inhibition has entirely ceased, suggesting
that the inhibitory hyperpolarisation is instrumental
in initiating the burst.UnderDBS, the high-frequency
activation of the STN efferents also drives the GPi to
higher activity. Nevertheless, pallido-thalamic inhibi-
tion levels drop to levels close to the healthy situation.
Why this? As already explained, one mechanism of
this reduction of the inhibitory drive is actually due
to postsynaptic desensitisation [8] at high-frequency
pallidal firing—an example is seen in figures 8(C)-(I).
Besides this postsynaptic process, also a presynaptic
one appears to occur: a complete silencing of inhib-
ition due to DBS. One possible explanation is that
massive STN activation due to DBS also activates the
excitatory STN-GPe pathway (or, actually, the path-
way is activated directly), and via this route, also the
inhibitory GPe-GPi pathway, which would silence at
least some of the GPi neurons. Such an example is
seen in figures 8(C)-(II). The simulation also allows
for a third insight: DBS is not always perfectly effect-
ive. In figures 8(C)-(III), the pallido-thalamic inhib-
ition escapes suppression and remains nearly as act-
ive as under Parkinsonian conditions (in fact, pallidal
afferents appear to fire in the range of [60− 70] Hz,
two times lower than DBS frequency (130 Hz)). As
a consequence, the thalamic neuron falls silent, also

because the inhibitory firing frequency appears to be
too low to allow for postsynaptic desensitisation.

4.3. Optimised electrode position closely matches
the clinically efficient placement for motor
symptoms
The optimisation results for the current and elec-
trode placement demonstrated that a conventional
DBS system could induce activation patterns similar
to those proposed by the network to restitute VA-
thalamic activity close to healthy conditions. A com-
plete restitution is not reached since (a) DBS induces
artificial activity that does not match physiological
conditions and (b) the anatomical constraints limit
stimulation (e.g. due to the proximity of the cortico-
fugal tract). The optimised electrode position closely
matched the clinically efficient placement in the
motor aspect of the STN [18]. It should be emphas-
ised that the computational network operates with
abstract activations and can generate physiologically
implausible solutions, which need to be further eval-
uated with the biophysical model (see figure 9(A)).
In this case, the suggested hyperdirect activation level
was high. Aswas shown in [41], activation of theHDP
is also highly correlated with activation of the cor-
ticofugal tract, which is associated with motor con-
tractions, dysarthria and other side effects. This was
taken into account for the current optimisation in our
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biophysicalmodel, where theHDP activation reached
57.4%, comparable to the values reported in [41].
The per cent activations computed in the biophysical
model were again tested in the network model and
created comparable VA dynamics (see figure 9(B)).

Furthermore, the optimised currents used both
polarities, resulting in a strong local electric field, with
only a 0.9 mA flow to the remote grounding, i.e. the
casing (see figure 9). Importantly, one should bear
in mind that various modelling approximations and
uncertainties affect the electric field computations.
Hence, the provided values should be rather used as
the initial setting, further adjusted depending on elec-
trophysiological recordings and patient response.

4.4. Model’s limitations
The present study constitutes a computational
approximation of the BG-thalamo-cortical network
with the following assumptions and limitations.
The connectivity structure was based on normat-
ive atlases; however, the methods can be adapted
using individual patient tractography, replacing the
network adjacencymatrixA of section 2.3.1. The syn-
aptic coupling was tuned according to the theory of
direct indirect pathways’ activation in Parkinson’s to
produce beta-band oscillatory activity within the BG
as a pathophysiological marker of PD. Further, intra-
structural connectivity in the nuclei was assumed to
take the formof small-world complex structures. This
novel approach in BG modelling is reasonably justi-
fied in previous modelling and experimental pub-
lications [4–6, 17, 24, 58, 66]. As a limitation of the
model, the exact structure of the connectivity on this
microscopic level is not known. Hence, it remains to
be clarified in the future how this can be analogously
modelled. In the current study, the striatal input to
GPe andGPiwas simplified as homogeneous constant
currents to all neurones in the nuclei but with differ-
ent values between GPe and GPi, as well as between
the healthy and Parkinsonian conditions.

The approach for the modelling and quantifica-
tion of pathway activation from the networkmodel in
this study differs from [25]. For the current approach,
as explained in the methods section 2.6, neurons in
the nucleus (STN, GPE etc) are modelled as single-
soma-neuron; however, in the computation of path-
ways activation, we used a multicompartment axon
model. Based on experimental findings [27, 44, 46,
49], in the current study, we introduced new bio-
markers (bursting and spiking behaviour of thalamic
neurons, inspired by the experiment of [46]), thus
focusing on restoring thalamic functional, dynamic
behaviour. Other possible options for biomarkers
could be envisaged, for example, the local field activ-
ity of the MC or BG, which would focus on β-band
suppression [25, 43, 63, 71]. Finding optimal bio-
markers to guide DBS, with the clinical scores as
the outcome measure, would be the gold standard in
future studies.

From a futuremodelling perspective, one import-
ant topic will be the study of dynamic network vari-
ations with respect to DBS parameters (targeting,
pulse width, frequency, shape, etc). Functional brain
partitioning, which can be reached by combining
model dynamics and network structure, may offer
a computational approach and a systematic method
that connects the clinical score with the biomarkers
used for DBS optimisation.
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