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Abstract
Objective. The aim of the present study was to elucidate the brain dynamics underlying the
maintenance of a constant force level exerted during a visually guided isometric contraction task by
optimizing a predictive multivariate model based on global and spectral brain dynamics features.
Approach. Electroencephalography (EEG) was acquired in 18 subjects who were asked to press a
bulb and maintain a constant force level, indicated by a bar on a screen. For intervals of 500 ms, we
calculated an index of force stability as well as indices of brain dynamics: microstate metrics
(duration, occurrence, global explained variance, directional predominance) and EEG spectral
amplitudes in the theta, low alpha, high alpha and beta bands. We optimized a multivariate
regression model (partial least square (PLS)) where the microstate features and the spectral
amplitudes were the input variables and the indexes of force stability were the output variables. The
issues related to the collinearity among the input variables and to the generalizability of the model
were addressed using PLS in a nested cross-validation approach.Main results. The optimized PLS
regression model reached a good generalizability and succeeded to show the predictive value of
microstates and spectral features in inferring the stability of the exerted force. Longer duration and
higher occurrence of microstates, associated with visual and executive control networks,
corresponded to better contraction performances, in agreement with the role played by the visual
system and executive control network for visuo-motor integration. Significance. A combination of
microstate metrics and brain rhythm amplitudes could be considered as biomarkers of a stable
visually guided motor output not only at a group level, but also at an individual level. Our results
may play an important role for a better understanding of the motor control in single trials or in
real-time applications as well as in the study of motor control.

1. Introduction

During action execution, the brain operates an adapt-
ive control of movements by constantly comparing
the incoming sensory signals with the predicted sens-
ory outcome in order to successfully tune the motor
output to the desired performance. During this pro-
cess, the values of the parameters of the control rule
on which motor control is based undergo changes

due to the external sensory feedback received dur-
ingmotor action. Among the various external sensory
feedbacks that can be provided to the motor sys-
tem, the key source of information to achieve a pro-
ficient motor control is visual information [1, 2].
This process of sensory feedback, integration and
motor execution is supported by recurrent loops
between parietal and motor areas within distributed
fronto-parietal networks [3–7]. Accordingly, when
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maintaining a constant output, as in the case of the
application of a constant force during an isometric
muscle contraction, sensory feedback and integration
processes form the foundation for a good perform-
ance, i.e. the maintenance of a required constant con-
traction level [8, 9].

Although it is known that the cortical oscillat-
ory activity, as measured by electroencephalography
(EEG) or magnetoencephalography, plays a funda-
mental role in different mechanisms regulating both
movement execution and cognitive processes [10], its
functional role during the control of a stable motor
output is not yet fully understood. Beta band (15–
25 Hz) activity in the motor network has been tradi-
tionally associated with a steady-state motor output
[11–15]. Indeed, a higher power in the beta band was
found to be correlated to maintaining a more stable
force level [12], and the decrease of the beta band
amplitude (namely event related de-synchronization
(ERD)) was typically found during the preparation,
execution, imagination, or observation ofmovements
[16]. Nevertheless, no correlation has been found
between the modulation of the beta ERD during
motor task execution and the values of several para-
meters characterizing the maintenance of a constant
force, such as movement speed, weight of the manip-
ulated load and level of the exerted force during an
isometric contraction [17, 18]. In 2010, Engel and
Fries hypothesized that the beta band activity can
represent the signature of an active process needed
to maintain the actual motor or cognitive state by
impeding the elaboration of new movements or cog-
nitive processes [10]. Within this framework, evid-
ence showed that the beta band is involved in a more
efficient elaboration of the sensory feedbacks needed
tomonitor the state of themotor system [19]. To sup-
port this hypothesis, other studies found that the beta
band activity can change in relation to the expectancy
of an incoming event [20] while inhibiting the pro-
cessing of new movements [21]. For these reasons, in
the context of an adaptive control of movement, the
beta band activity could play a controversial role in
the maintenance of a constant motor output because
of a sort of ‘inertia’ of the motor control system. In
fact, the activity of the beta band appears to be related
to the inhibition of unexpected external feedback in
favor of the top-down endogenous control [10].

Beyond the functional role of cortical oscillations
during a stable motor output, the brain dynamics
associated with a successfully maintained isometric
force is still unexplored. So far, studies investigat-
ing this issue [11, 12, 14] considered the brain elec-
trical field only in specific brain areas with an a pri-
ori selection of electrodes of interest, at given time
intervals and/or in specific frequency bands. How-
ever, to better understand the sensory feedback and
integration processes during the control of a good iso-
metric motor performance, methods estimating the
global dynamics of widespread neural networks that

do not rely on any type of a priori hypothesis (such
as the electrode location or specific frequencies) are
needed. Microstate analysis permits to represent the
multichannel EEG signals in terms of global neur-
onal activity and to identify periods in which the
topographic configuration of the electrical potential
on the scalp is quasi-stable [22, 23]. This approach
describes the neuronal activity by a sequence of rapid
transitions among a limited number of dominant
scalp potential topographies or ‘maps’, each lasting
about 40–120 ms, which account up to about the
70%–80% of the total topographic variance [22].
The epochs of topographic quasi-stability, referred
to as ‘microstates’, can capture the activity of dis-
tributed cortical networks as global patterns of scalp
potential topographies that dynamically vary over
time in an organized manner [22, 24]. Most previ-
ous studies converged on the existence of four dom-
inant microstates in healthy adults at rest [22]. These
four microstates exhibited highly similar topograph-
ies across studies and seemed to consistently domin-
ate the EEG data across different age ranges, condi-
tions, and pathological states [22, 25, 26].

The aim of the present study was to elucidate the
brain dynamics during the maintenance of a steady
force. We explored the correlation between the tem-
poral evolution of subject-specific microstate fea-
tures and the motor performance, defined in terms
of maintenance of a fixed level of the exerted force
in a visually guided isometric contraction task. Tra-
ditionally, microstates are extracted from broadband
EEG signals and the link between the broadband
topographies and brain activity in specific frequency
bands remains unclear. Several studies have sugges-
ted that broadband topographies are not dominated
by a specific narrow-band brain activity and that the
microstate dynamics cannot be derived from one fre-
quency band or a subset of specific EEG frequencies
[27, 28]. From this perspective, the quantification
of microstate features and the modulation of brain
rhythms are considered complementary as they could
explain different aspects of motor control. For this
reason, we also calculated the amplitude of brain
oscillations in given frequency bands and their role
during the maintenance of a constant force.

The search for a link between microstate features
and brain rhythms during the maintenance of a con-
stant contraction can be considered a multivariate
regression problem [29]. In this type of problem, a
high number of input features are included in the
model (microstate features and brain rhythm amp-
litudes) to predict the output (motor performance).
Our approach relied on a data-drivenmethod [29, 30]
with the avoidance of restricting a priori assumptions.
Specifically, because of a possible strong correlation
between the input variables, a partial least square
(PLS) regression analysis [29, 31], that accounts for
such correlations, was employed to reduce overfitting
of the data and to produce more generalizable results.
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2. Methods

The section 2 is structured as follows: we first describe
the type of volunteers participating in the experi-
mental studies (section 2.1), the type of experimental
task employed (section 2.2) and how the motor per-
formance of the volunteers was assessed and evalu-
ated (section 2.3). Thenwedescribe how the EEGdata
was recorded and analyzed (section 2.4). This subsec-
tion includes a specific section dedicated to describing
the microstate analysis at rest and during isometric
contraction (section 2.4.1) and the regression model
used to verify the predictability of themotor perform-
ance using the EEG band amplitudes and the micro-
state metrics (section 2.4.2). Finally, there is a sub-
section dedicated to describing the statistical analysis
performed (section 2.5).

2.1. Subjects
Eighteen healthy volunteers (twelve males, mean age
of 21.3 ± 1.8 years) were recruited for the study.
All subjects reported no history of neurological or
psychiatric disease and did not receive psychoactive
medications at the time of the recording. The Edin-
burgh questionnaire was used to ensure the right-
handedness of all subjects [32].

The research was conducted in accordance with
the principles of the Declaration of Helsinki. The
experimental protocolwas approved by the local Ethic
Committee (ID number: richlhf92) and all subjects
signed the informed consent form.

2.2. Experimental task
Subjects were requested to press a bulb positioned
on the palm of their right hand by moving the right
thumb against the other fingers, and to maintain
a stable level of contraction. A pressure sensor was
integrated in the bulb to measure the exerted force,
which was represented on a screen by the position
of a horizontal black bar that can slide on a vertical
green bar (figure 1). The requested constant force
level was indicated by twoblack lines at the sides of the
vertical green bar. The maximal voluntary contrac-
tion (MVC), measured in terms of pressure with the
pressure sensor, was acquired at the beginning of the
experiment and expressed as themean of three repeti-
tions of maximal contractions, each one maintained
for 1 s. The experimental task consisted of 48 trials.
Each trial was composed of alternating resting state
and contraction phases. The experiment started with
a resting state of 6 s duration (figure 1). At the end of
this period the contraction phase, lasting for a total
of 8 s, started: two black lines appeared at the middle
height of the vertical green bar—corresponding to
a reference level of contraction equal to 15% of the
MVC—to prompt the subjects to press the bulb, reach
the indicated contraction level, and maintain it con-
stant for 4 s. At the end of these 4 s, the two black lines

moved to a different position, indicating a new level
of contraction that the subject had to reach andmain-
tain for 4more seconds. At the end of this second con-
traction, the two black lines disappeared indicating
that a new resting state phase of 6 s started (figure 1).
During the second part of the contraction phase, the
two black lines were set at one of four levels of con-
traction, two of which were below the reference level
of contraction and corresponded to 5% or 10% of the
MVC, whereas the other two were above the refer-
ence level of contraction and corresponded to 20%
or 25% of the MVC. The four different levels of con-
traction were balanced in the experimental task (12
occurrences for each contraction level) and presented
randomly to avoid learning effects.

2.3. Motor performance evaluation
The relative standard deviation of the exerted force
with respect to the expected force level was calculated
as an index of the stability of the exerted force dur-
ing a given time interval. Specifically, if x1, x2, … xN
are the N samples of the exerted force during the ith
time interval (for the definition of the time intervals
see section 2.4.1 below) and RFLi is the required force
level for the same time interval, both expressed as per-
centage of MVC, the force variation index for the ith
time interval (FVi) was calculated as:

FVi =

√√√√ 1

N

N∑
j=1

(
xj −RFLi

)2
.

The more stable the exerted force is during the
contraction, the lower is the FVi value. An FVi value
equal to zero corresponds to a level of the exerted force
equal to the RFLi over the time interval, indicating
a maximal stability, hence the best performance. On
the contrary, a high FVi value corresponds to values
of exerted force different from the RFLi, indicating a
low stability and a poor performance.

2.4. EEG recording and data analysis
Brain electrical activity was recorded during the per-
formance of the experimental task by means of a 128
channel EEG system (Net 300, Electrical Geodesics
Inc., USA). Skin-electrode impedance was meas-
ured before each EEG recording and kept below
50 kΩ, which is the recommended impedance value
below which EEG signals recorded with an Elec-
trical Geodesics system can be considered of good
quality (www.egi.com/knowledge-center/item/67-
the-effects-of-high-input-impedance-on-eeg-data-
quality). EEG data were measured with a sampling
frequency of 1000Hz and processed offline. The exer-
ted force was measured by the pressure applied on the
pressure sensor with a sampling frequency of 100 Hz.
The pressure sensor was connected to a digital board
hosting in-house-developed electronics that recor-
ded the exerted pressure while providing the visual
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Figure 1. Example of an experimental trial: periods of isometric contraction, while the subject pressed the bulb (upper panel),
were intermingled with periods of rest. In the middle panel, there is an example of the exerted force, as measured by the pressure
sensor inside the bulb. The force is expressed as the percentage of the maximal voluntary contraction force (MVC). In the bottom
panel, the sequence of the visual stimulus provided to the subject during the task: the position of the vertical black line
corresponded to the exerted force. The requested level of contraction was indicated by the two horizontal black lines at the sides of
the vertical green bar.

feedback to the subjects and sending triggers to the
EEG system for synchronization purposes (Interact-
ive Pressure Sensor, InPresS [33]).

The raw EEG data were filtered with a 2nd order
forward-backward Butterworth bandpass filter with
cut-off frequencies at 0.5 Hz and 45 Hz. Filtered EEG
data were visually inspected to exclude EEG chan-
nels exhibiting excessive noise, poor scalp-surface
contact, or isoelectric saturation [34]. Excluded EEG
channels were replaced by spline interpolation of
the neighboring channels [35]. The EEG trials with
more than 50% of the electrodes exhibiting excess-
ive noise were trimmed from the data. A semiauto-
matic procedure, based on independent component
analysis, was applied to remove ocular, cardiac or
electromyogenic artifacts [34, 35]: filtered EEG data
were pre-whitened by principal components ana-
lysis and decomposed into 50 ICs using the exten-
ded Infomax algorithm, which can better separate
signal sources that may exhibit super-Gaussian and
sub-Gaussian distributions [36]. An average number
of 9 ± 4 artefactual components (mean across sub-
jects ± standard deviation) were identified for each

subject. The artefactual ICs were disregarded, and the
clean EEG signals were reconstructed by reproject-
ing the retained non-artefactual ICs onto the sensor
space.

2.4.1. Microstate analysis at rest and during isometric
contraction
To assess possible differences in microstate templates
and dynamics between rest and movement intervals,
the microstate templates were separately extracted
during the 3 s time intervals of rest preceding the
onset of the first contraction and during the last 3 s
of the second contraction (from 5 to 8 s of the total
contraction phase). The 3 s of the second contrac-
tion correspond to the force levels exerted at 5%, 10%,
20% or 25% MVC. We chose to analyze the last 3 s
of the second contraction because this interval is well
separated from the rest period and therefore it is not
influenced by transient phenomena due to the rest/
movement adaptation. Moreover, the time interval
between 5 and 8 s from the movement onset cor-
responds to a period of high stability, in which the
subject was accurately maintaining the new requested
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force level (5%, 10%, 20% or 25% of MVC). The two
subsequent force levels have been introduced in the
experimental task to simulate conditions of contrac-
tion modulation as they occur in ecological motor
performance. Finally, the different levels of the exer-
ted force across trials (from 5% to 25%) simulate
the variability inmotor performance, needed for sub-
sequent regression analysis.

To perform the microstate analysis, the EEG sig-
nals during the intervals defined above were con-
catenated separately for the rest and contraction
conditions. EEG data were referred to the common
average. The global field power (GFP), defined as the
standard deviation across channels, was calculated.
The spatial topographies corresponding to the max-
imum values of the GFP were then submitted to the
k-means algorithm, a modified version of a cluster-
ing algorithm [37]. The optimal number of clusters
was chosen by repeating the k-means algorithmwith k
varying from 1 to 12 and estimating the Krzanowski–
Lai (KL) criterion for each repetition. The number
of clusters corresponding to the second KL max-
imum value was chosen as the optimal number of
clusters [24]. This procedure returns k templates for
each subject for both rest and movement condi-
tions. To obtain global templates across conditions
the mean of the topographies (across subjects) were
separately calculated at rest and during movement
by applying a second clustering procedure. With this
approach, k global topographic templates for rest and
k global topographic templates for movement were
obtained. The match of the global topographic tem-
plates between rest and movement conditions was
based on the minimum of the dissimilarity value
between the templates of the two conditions. The
global dissimilarity between pairs of global templates
is calculated as:

GDu,v =

√√√√ 1

N

N∑
i=1

(
ui

GFPu
− vi

GFPv

)2

where ui and vi are the electrical potentials of the
ith electrode in the global topographic templates u
and v respectively (the global topographic templates
u and v refer to the same microstate template in the
rest and movement conditions, respectively); GFPu_
and GFPv_ are the GFPs of the microstate templates
u and v; N is the number of electrodes. Rest and
movement topographies were compared using the
topographical analysis of variance (TANOVA, [38]),
separately for each microstate template pairs. Micro-
state sequences were then computed by fitting the
templates corresponding to each condition (rest or
movement) to the continuous original filtered EEG
data. This back-fitting procedure was done by cal-
culating the maximum spatial correlation between
each global template and the topography at each
time instant and assigning to each time instant the

template with higher correlation (winner-takes-all
procedure). Given that residual noise could affect
the filtered EEG signals possibly producing unstable
instantaneous topographies, a temporal smoothing
procedure was applied ensuring the same global tem-
plate is assigned to EEG intervals of at least 30ms [39].

For each subject and for each global template, the
following metrics were calculated for both rest and
movement conditions, as mean values across trials:

(a) Mean microstate duration: the mean of the
time covered by a single microstate template,
expressed in milliseconds.

(b) Mean occurrence per second: mean number of
distinct occurrences of a given global template
within the time interval [40].

(c) Global explained variance: a metric expressing
how well the global template describes the whole
dataset [24].

We also calculated the transition probabilities for
each pair of global templates: the X to Y transition
was evaluated as the percentage of the number of
transitions from microstate X to microstate Y over
the total number of transitions in the considered
time interval. Similarly, the Y to X transition was the
number of transitions from microstate Y to micro-
state X over the total number of transitions in the
considered time interval. Directional predominance
quantifies the directional asymmetries in the trans-
itions between two microstates and was calculated as
the difference between the X to Y and Y to X trans-
itions. All possible directional predominance values
were calculated for all possible microstate pairs. A
positive value of X↔Y indicates a higher number of
transitions from X to Y than from Y to X, whereas
a negative value indicates the opposite predominance
of transitions from Y to X.

2.4.2. Regression between microstate metrics/EEG
band amplitudes and motor output performance
The second aim of the data analysis was to verify
whether a combination of microstate metrics and
EEG band amplitudes could predict the performance
in the execution of the motor task. This was done
by a multivariate regression analysis. The independ-
ent variables of the regression model (i.e. the input
variables) were obtained as follows. For each trial,
the movement period from 5 to 8 s was segmented
into six non-overlapping subsequent time intervals of
0.5 s duration. Microstate metrics (mean duration,
mean occurrence, transition probabilities) were cal-
culated for each of these intervals. For the same inter-
vals, the mean EEG band amplitudes were calculated
using the following procedure. Hjorth montage was
obtained in a selection of 14 EEG channels covering
parietal and sensory-motor (C3, CPz, C4, P3, P4),
visual (P9, POz, P10) and frontal (F3, F4, AFz, FCz,

5
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F7, F8) cortical areas. Briefly, for each electrode the
weighted average of the neighboring electrodes was
taken as its reference [41, 42]. Each of these signals
was back-forward filtered in the theta (4–7.5 Hz), low
alpha (8–10Hz), high alpha (10–13Hz) and beta (13–
25 Hz) bands using a fourth-order Butterworth filter.
The amplitude of the bandpass filtered EEG signals
was then obtained by applying the Hilbert transform,
and themean amplitude for each band was calculated
in each of the six time intervals of 0.5 s. By doing so,
for each time interval we obtained:

(a) 56 features for the EEG amplitude (i.e. the mean
amplitude values for the 4 frequency bands× the
14 channels considered);

(b) k× 3 (i.e. kmicrostate templates× 3 microstate
metrics for each template);

(c) (1/2 k (k− 1)) microstate features of directional
predominance.

These features were calculated for all intervals, all
trials and all subjects and were used as independent
variables, i.e. as the input of the regression model.

The dependent variables (i.e. the output of the
regression model) were the motor performance,
estimated by the FVi values for the same time intervals
for which the microstate metrics and the band amp-
litude values had been calculated.

Given their nature, the input variables can be
highly correlated with each other. When predicting
an output from a set of features, such collinearity
could lead to overfitting of the data and poor gen-
eralizability of the results [43]. Such limitations can
be addressed by both linear and non-linear regression
frameworks [44, 45]. We opted for a PLS regression
model, i.e. a linear regression procedure that assigns
weights to all independent variables and exploits a
dimensionality reduction of the regression problem
[29, 46]. The PLS regression is based on the assump-
tion that the measured data are generated by a
reduced number of hidden variables that are not dir-
ectly observable (i.e. the measured data are gener-
ated by latent variables that are somehow related to
the input variables). The dimensionality reduction in
the PLS regression model is implemented by finding
linear combinations of all the input variables (i.e. by
identifying the so-called components of the model)
that optimize the performance of the PLS model. The
optimal number of model components is defined by
the value of a hyperparameter h that can be either
imposed to the PLS model or identified by a data-
driven procedure. We opted for the second approach,
as explained below in the description of the inner loop
of the nested cross-validation (nCV) procedure.

A cross-validation (CV) framework was used to
estimate the generalizability of the PLS model. CV
works by separating the data in folds and estimating

the model on all folds except one-fold (leave-one-out
CV [47]). The excluded fold is used to test the per-
formance of the model, which is estimated by the
correlation between the PLS model outputs and the
measured output values. This procedure is iteratively
repeated for different folds.

CV was also used to estimate the optimal value
of the hyperparameter that must be set a priori in
the PLS model. To this aim, two nested iterations
were implemented, consisting of an outer loop and
an inner loop (nCV, [48]). The outer loop estim-
ates the generalizability of the model at a group level,
whereas the inner loop estimates the optimal value of
the hyperparameter h, while also permitting to assess
the generalizability of the model at individual level.
Figure 2 illustrates how we implemented this proced-
ure with our data.

2.4.2.1. Outer loop
The number of folds corresponds to the number of
subjects (n= 18). For the kth fold (i.e. for the kth sub-
ject’s data, including microstate metrics, EEG band
amplitudes and measured FVi values), data were split
in training data (all folds except the kth one) and
validation data (the excluded kth fold). To estimate
the generalizability of the PLS model, it must be run
for each training fold. Therefore, the hyperparameter
must be set for each fold through the inner loop of
the nCV procedure (see below). Once the outcome of
all PLS models for the training data was achieved, the
outer loop of the nCV procedure verifies the gener-
alizability of the PLS model on the excluded kth fold
(testing data). The outer loop of the nCV procedure
is iterated for each fold. After this CV, the PLS model
can be generalized by setting an average hyperpara-
meter as the average of the hyperparameters obtained
for all subject folds in the inner loops.

2.4.2.2. Inner loop
To identify the hyperparameter h needed to run the
PLS model for each kth fold of the outer loop, only
the corresponding training folds are used (i.e. all
folds except the kth fold). The training folds are split
into two ‘sub-folds’, one containing all training folds
except the jth fold (these folds compose the training
sub-fold) and another one that contains the excluded
jth fold (which is the validation sub-fold and consists
of the jth subject data). The PLS model is then iterat-
ively run on the training sub-fold for h varying from
1 to the number of the input variables and tested on
the validation sub-fold. Once the PLSmodel has been
tested for all h values, the h value corresponding to the
best performance is selected for the jth fold (i.e. the
validation sub-fold). The inner loop of the nCV pro-
cedure is then iterated for each training fold of the
inner loop (i.e. for j = 1, …, 17). At the end of all
iterations needed to identify the optimal h for testing

6



J. Neural Eng. 19 (2022) 056042 P Croce et al

Figure 2. Nested cross-validation (nCV) scheme for the selection of the hyperparameter h and for the validation of the partial
least square (PLS) regression model. The INNER LOOP represents the scheme used to identify the best value of the
hyperparameter h to be used in the generalized PLS regression model. The OUTER LOOP represents the scheme of the
cross-validation procedure used to assess the generalizability of the PLS model.

the kth fold, 17 values for the hyperparameter h are
extracted from the training sub-folds. Among these
17 hyperparameter values we choose the one corres-
ponding to the PLS model with the best performance
as the optimal hyperparameter to be used in the outer
loop to calculate the predicted output and test the PLS
model on the kth fold.

2.5. Statistical analysis
All microstate metrics are reported as mean values
across subjects ± standard error of the mean. To
detect the differences between the microstate met-
rics (duration, occurrence, global explained variance,
directional predominance) at rest and during move-
ment, the Wilcoxon rank sum test was separately
applied to each microstate. The significance level was
set at 0.05 and a Bonferroni correction for multiple
comparisons was applied. To detect a significant pre-
valence of transitions frommicrostateX tomicrostate
Y (or from Y to X), a single sample Wilcoxon test of
the X↔Y directional predominance was performed,
checking the difference of the median of these values
from zero: a significant positive (or negative) X↔Y
value indicated a prevalence of transitions from X to
Y (or from Y to X).

A Pearson’s correlation analysis between the
measured and the predicted FVi values was used to
assess the performance of the cross-validated PLS
regression model. The Pearson’s correlation coeffi-
cient r and the null hypothesis significance (p value)
were reported. The Pearson’s correlation between the
measured and the predicted FVi values was repeated

for each subject to quantify the performance of the
PLS model at single subject level.

The PLS model, similarly to other linear
regressors, allows a direct a posteriori evaluation of
the relevance of each input feature for the output of
the model. Given that the PLS model components
are linear combinations of all the input features, it is
possible to estimate the general weights of each ori-
ginal feature by reversing the dimensionality reduc-
tion transformation. Given that the magnitude of
these weights is related to the relevance that each ori-
ginal feature has in the regressionmodel, we analyzed
the weights associated with each feature (i.e. each
independent input variable) to estimate the signi-
ficance of the microstate metrics and the EEG band
amplitudes in predicting the FVi values. Given that
the PLS models were trained to predict the FVi val-
ues, positive weights indicate that high values of the
independent variables are associated with high FVi

values, and thus with low motor performance. Con-
versely, negative weights indicate that high values of
the independent variables are associated with low
FVi values, and thus a good motor performance. The
statistical significance of the weights was assessed
through a randomization procedure, estimating a
confidence interval of the null hypothesis of each
weight being zero (by means of 10 000 iterations of
the same algorithm on randomly shuffled FVi val-
ues). The significance thresholds for the weights
were estimated considering the 2.5 and the 97.5
percentiles of the randomly shuffled PLS weights
distributions.
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Figure 3. (a) Global templates of microstates A, B, C and D, separately obtained for the rest and movement conditions. Red/blue
colors indicate positive/negative values of electrical potential, respectively. (b) Dissimilarity matrix between microstate global
templates at rest (REST) and during movement (MOV).

3. Results

3.1. Microstate templates
According to the KL criterion, we found an optimal
number of microstate global templates equal to 4
for both rest and movement conditions. TANOVA
between the map topographies at rest and during
movement did not show any significant differences
for microstates B, C and D (p > 0.500 consist-
ently), whereas the templates of microstate A at rest
and during movement were significantly different
(p = 0.009). The microstate templates at rest showed
topographies similar to those obtained in previous
studies [22, 49]: a left posterior to right frontal orient-
ation for template A; a right posterior to left frontal
orientation for template B; a symmetrical distribu-
tion between the two hemispheres, with an occipital
to prefrontal orientation for template C; a fronto-
central activity for template D (figure 3). The micro-
state template A during movement presented a pos-
terior to frontal orientation.

With the optimal number of templates, the global
explained variance (mean and standard error) was
83.3 ± 2.2% during movement and 84.3 ± 2.1% at
rest.

3.2. Rest vs movement comparison: microstate
metrics and directional predominance
Given that two different globalmicrostate templates A
were found for the rest andmovement conditions, for
this microstate we only report the values of the met-
rics in the two conditions in figure 4, whereaswe com-
pared themicrostatemetrics at rest and duringmove-
ment for microstate B, C and D. The Wilcoxon test
applied to microstate duration revealed that micro-
states C andDwere significantly longer duringmove-
ment than at rest (p < 0.001, consistently), whereas
no differences were found for the duration of micro-
states B (p > 0.5, figure 4(a)). Similarly, occurrences
ofmicrostates C andDwere higher duringmovement
than at rest (p < 0.001), whereas no difference were
found for the occurrences ofmicrostates B (p= 0.100,
figure 4(b)).

No significant differences were found for micro-
state global explained variance.

The values of directional predominance obtained
for the rest and movement conditions were com-
pared by the Wilcoxon test, which revealed that the
transitions from microstate A to microstate D and
frommicrostate B tomicrostate D occurredmore fre-
quently during movement than at rest (p < 0.001).
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Figure 4.Means of the of microstate duration (a), occurrence (b) and directional predominance (c) calculated across subjects for
each microstate (A, B, C and D) at rest (light gray) and during movement (dark gray). The vertical columns indicate the mean
values, and the vertical bars indicate the standard errors. The stars indicate significant differences between rest and movement
conditions, as found with the Wilcoxon test (∗∗ p< 0.005).

Please note that the fact that microstate A is different
for the rest andmovement conditionsmight influence
the statistical results.

The single sample Wilcoxon test against the zero-
value showed that only the transitions from A to D, B
toC andC toDduringmovement had a positive value
that was significantly different from zero (p < 0.001,
consistently, figure 4(c)), and that only the transitions
from A to C during movement had a negative value
significantly different from zero (p< 0.001).

3.3. PLS regression
Given that four global microstate templates were
found with the KL criterion for movement condi-
tion, for each time interval we obtained a total of
74 independent input variables for the PLS regres-
sion model (12 microstate metrics, 6 directional pre-
dominance values and 56 EEG band average spectral
amplitudes). When checking for correlations among
the input variables of the PLS model, we obtained
high correlation values in the upper- (lower-) diag-
onal elements of the correlationmatrix across all sub-
jects, in particular across the EEG channels within

the same frequency band and across the microstate
metrics (figure 5). Interestingly, no correlations were
found between the EEG band average amplitudes and
the microstate metrics.

When performing the PLS regression analysis for
predicting the FVi values, the number of the input
variables was reduced to a smaller set of uncorrel-
ated components. From the 74 original variables, the
nCV procedure identified an average of 6 uncorrel-
ated components, i.e. linear combinations of all the
input variables, for the general PLS model.

The Pearson’s correlation was performed between
the FVi values estimated by the PLS model and the
measured FVi values. We found a significant positive
correlation (r = 0.29, p< 0.000 01, figure 6(a)), con-
firming that a combination of microstate metrics and
EEG band amplitudes is indicative of how constant
is a force exerted during an isometric contraction
supported by visual feedback. The mean Pearson’s r
values between the estimated and the measured FVi

values calculated for each subject was 0.31 ± 0.12
(mean ± standard deviation; minimum: 0.16, max-
imum: 0.60, p< 0.001 consistently).
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Figure 5. Correlation matrix calculated between the 74 input features of the PLS model. These features include the EEG spectral
amplitudes (in the theta, low alpha, high alpha, beta bands at positions C3, C4, F3, F4, FCz, POz, P3, P4, AFz, P9, P10, CPz, F7,
F8) and the microstate metrics (duration, occurrence and global explained variance) and directional predominance (A↔B,
A↔C, A↔D, B↔C, B↔D, C↔D).

Figure 6. (a) Scatterplot of the FVi values estimated by the leave one out cross-validated PLS model vs the recorded FVi values.
The regression line is shown. (b) Weights of the 74 input features (18 microstate features and 56 spectral features) of the
generalized PLS regression model. The 95% confidence interval of the null hypothesis (weight equal to 0) is shown (dotted line).

Looking at the estimatedweights of the independ-
ent variables, we found significant negative values
for the microstate duration and occurrence of tem-
plates A, B and C, for the global explained variance

of templates B, and for the directional predominance
from A to D, from B to C and from B to D. A signific-
ant positive value was found only for the explained
variance of template C. We also found statistically
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significant (p< 0.05) positive values for the EEGband
amplitudes at C4 for the theta band, at F4 for the high
alpha band and at FCz and CPz for the beta band.
Significant negative weights were found at C3 for the
theta, low alpha and high alpha bands, at AFz for the
low alpha band, at FCz and P4 for the high alpha
band, and at POz, P4 and F7 for the beta band.

4. Discussion

To elucidate the brain dynamics during the main-
tenance of a visually driven constant force, we have
proposed a multivariate regression model where the
collinearity problem was addressed by a data-driven
approach. The results obtained confirmed that the
proposed PLS model, cross-validated with a nested
approach [44, 50], reached a good generalizability
and succeeded to show the predictive value of EEG
microstates and spectral features in inferring the sta-
bility of the force exerted during a hand isometric
contraction supported by visual feedback. As we dis-
cuss in more detail below, our results also suggest
that longer duration and higher occurrence of micro-
states that could be associated with visual and execut-
ive control networks corresponded to better contrac-
tion performances, suggesting that the visual system
and the executive control network play a crucial role
in visuo-motor integration.

The experimental protocol was conceived to allow
us to select and analyze the time intervals during
which only the phenomena related to the mainten-
ance of a stable contraction were present, thus avoid-
ing the interference of confounding factors, such as
the response to the ‘go’ signal, the transient brain
activity from rest to movement, and the contrac-
tion modulations to reach the requested force level.
The functional brain activity was recorded by means
of EEG, that provides the high temporal resolution
needed to calculate the independent variables that
serve as input for the PLS model. The brain dynam-
ics during the performance of the motor task, i.e. the
maintenance of a constant force level during an iso-
metric contraction, was represented with a set of dif-
ferent features referring to both local and global brain
activity. The local brain dynamics from 14 differ-
ent sites covering the whole scalp was represented
by means of spectral features, calculated as the aver-
age EEG rhythm amplitudes at different frequency
bands, which are functionally related to the sensory-
motor processes. On the other hand, the global brain
dynamics was described by means of the metrics of
sequences of global microstates. However, both fea-
ture types were affected by collinearity, and positive
and negative correlations were found among all fea-
tures. In fact, due to volume conduction phenom-
ena, the electrical field generated by the neuronal
assemblies in the cortex is spatially widely spread at

the sensor level [51], giving rise to possible correl-
ations among the EEG sensors. This phenomenon,
together with possible inter-individual correlations
between the EEG amplitudes at different frequency
bands, produces a high collinearity among the fea-
tures, as shown by the elements of the correlation
matrix calculated across subjects (see figure 5).

The collinearity among the independent variables
used as input features to the PLS model represents
a major limitation in building prediction models
based on multivariate methods. Furthermore, col-
linearity can lead to unreliable results because the
weights of the model variables can be far from their
optimal values and the model may suffer from poor
generalizability [45]. To overcome this problem, we
applied the PLS regression model within an nCV
framework. Starting from the 74 independent vari-
ables, we found that 6 independent linear combina-
tions of the microstate metrics and spectral features
were optimal for inferring the motor performance
during isometric contractions, with a good generaliz-
ation of the PLS model at both group and individual
levels. After having identified the best value of the PLS
hyperparameter h in the inner loop of the nCV, it
was possible to estimate the general weights associ-
ated with each input feature in the generalized PLS
model. The value of each weight was then associated
with the relevance of the corresponding feature in the
PLS regressionmodel, with its sign providing inform-
ation on the regression direction.

Looking at the sign of the PLS weights, our res-
ults showed a negative correlation between the dur-
ation and occurrence of microstates A, B and C and
the measured FVi values. This means that longer
duration and higher occurrence of these microstates
were related to low FVi values, i.e. to a better con-
traction performance. The duration metric has been
previously interpreted as being associated with the
stability of the neural assembly activities underlying
a microstate [49]. Therefore, a longer duration of
given microstates associated with a better perform-
ance indicates a higher stability of the brain dynamics
during the maintenance of a stable force. Similarly,
the occurrence of a microstate has been associated
with the tendency of the underlying neural generat-
ors to become activated [22]. A higher occurrence of
a microstate during a good contraction performance
could indicate that the general brain activations rep-
resented by thatmicrostate underpin the achievement
of a good performance. The association of a long dur-
ation and a high occurrence with a good motor per-
formance is more evident for microstates A, B and C.

Previous studies attempted to associate single
EEGmicrostate topographies with sets of active brain
areas at rest, evidenced by functional MRI [52].
However, no univocal results were achieved [52–54].
Other studies localized the sources of broadband EEG
scalp topographies [23]. In the light of the results
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of these studies, microstate B has been associated
with the visual area activity [53] and with the visual
processing [55]. Therefore, our results on microstate
B could be associated with an involvement of the
visual system for the visuo-motor integration during
task execution.

Moreover, microstate C has been associated with
the activity of brain regions belonging to the cingulo-
opercular network (CON), a well-studied functional
system involved in attention control (or executive
control), i.e. in the maintenance of behaviorally-
relevant task parameters, of alertness during task
performance [56–58], and of cognitive resources
available for task performance [59–62]. Given its
executive control function, the CON is necessary for
volitional motor actions and dexterity, and has been
associated with the generation of force and with the
motor performance in a visuo-motor tracking task,
so that its damage in stroke patients significantly con-
tributes to their motor deficits [63]. Based on these
results, higher values of microstate C metrics could
be associated with an involvement of brain structures
devoted to the executive control function to achieve
a good performance in maintaining a constant force
level.

The microstate A during movement is a task-
specific microstate. Indeed, its topography, different
from the topography of microstate A at rest and with
a posterior to frontal orientation, was similar to the
topography of themicrostate E obtained by Pirondini
et al [64] during the holding phase of a reaching-
and-grasping task. Indeed, these authors found that,
in a condition similar to our isometric contraction,
the microstate repertoire was characterized by four
states: three similar to the microstates found in the
resting-state condition (B, C and D) and one micro-
state, named E, that was task specific. Thismicrostate,
as our microstate A during movement, seems to be
task-specific and to be related to general motor con-
trol strategies during movement execution.

Finally, in previous studies microstate D has been
associated with the activity of the right superior and
middle frontal gyri and with the right superior and
inferior parietal lobules [23], and has been related to
the activation of the dorsal attention network [53].
Although the duration and occurrence of microstate
D did not show any relevance in the regressionmodel,
nonetheless we observed that a higher probability to
transit from microstate A and B (associated with the
sensory networks) to microstates C and D (associated
with higher cognitive control networks) positively
correlated with a better performance, as evidenced by
the negative weights of A↔D, B↔D and B↔C dir-
ectional predominance. This result could support an
involvement of microstate D in the achievement of a
good motor performance.

A direct localization of microstate dynamics
would be very interesting and could confirm or

weaken the associations made between given micro-
states and specific brain network activations. How-
ever, the localization of brain activity generat-
ing EEG microstates is not a trivial problem: the
volume conduction effects and the fact that different
brain current density distributions can result in the
same scalp potential topography makes the solution
ambiguous. We used the results of previous studies
[23, 65] to infer a possible link between microstate
dynamics and specific brain networks. It will be inter-
esting to explore the possibility of a direct localiza-
tion of the observed microstate dynamics in future
studies.

The comparison of the microstate metrics
between the rest and movement conditions showed a
larger representation of microstates C and D during
movement (i.e. longer duration and higher occur-
rence ofmicrostates C andD, and a higher probability
to transit from microstate A to D, and from micro-
state B to C). Although in our case microstate A has a
different topography at rest and during movement—
which could influence the statistical comparison—
our result is in agreement with a previous finding of
Pirondini et al [64] who, by investigating the EEG
microstates during the motor control of reaching-
and-grasping movements, found that the occurrence
of microstates C and D significantly increased dur-
ing the holding phase of the grasping movement.
They also showed that, during the execution of vol-
untary movements, the brain activity evolves passing
through a set of spatiotemporal states composed of
topographical patterns with spatiotemporal struc-
tures similar to those found at rest. Our results also
showed similar microstate topographies at rest and
during movement (microstates B, C and D), thus
confirming that spontaneous brain activity at rest is
shared with the basic neural mechanisms underlying
motor control.

When we analyzed the sign of the weights of the
spectral features in the general PLS model, our res-
ults showed a positive correlation between the theta
band amplitude over the sensorimotor cortex con-
tralateral to the movement (C3) and a good per-
formance. Accordingly, previous studies outlined a
possible functional role of the theta activity in the
motor control of the hand. The activation of the
theta band has been related to motor plan update,
motor learning and neural representations of hand
kinematics [66–68], situations in which a sensory-
motor integration for movement control is required.
Moreover, long-range theta coupling between the
primary motor cortex and multiple brain regions
has been described, also mediated by mechanisms
of phase-amplitude coupling with higher frequencies
[67, 69].

We also found that both the low and high alpha
band activities in the contralateral sensory-motor
areas were positively correlated with a good motor
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performance. An ERD of the alpha rhythm was
observed during volitional movement [16] and pre-
vious studies reported that the alpha band activity is
localized in the post-central sensory areas [70, 71],
and that its modulation during movement is related
to the processing of sensory information [72, 73]. In a
visuo-motor task similar to the one used in our study,
Porcaro et al [74] observed that a significant higher
alpha ERD occurred in trials with high performance
but only during the first second of the movement,
when a huge sensory processing is needed to adjust
the level of the exerted force to the required force level.
In our case, during the intervals with a bad motor
performance, a huge visual mismatch between the
level of the exerted force and the required force level
was present, resulting in a higher demand for sensory
processing to adjust the motor output. This higher
demand was related to a lower alpha amplitude.

Interestingly, while we observed that the EEG
band amplitudes at C3 (i.e. the brain activity over
themotor cortex contralateral to themovement) were
associated with a good performance (i.e. with a stable
exerted force), the EEG band amplitudes at C4 and
F4 (i.e. over the ipsi-lateral motor/premotor areas)
were associated with a higher variability of the exer-
ted force, hence with a poor performance. This res-
ult might be compatible with the ‘interhemispheric
competition’ model [75]. According to this model,
the contralateral hemisphere controls the motor exe-
cution while suppressing the activity of the ipsilateral
hemisphere to reduce putative interference of ipsilat-
eral descending pathways believed to degrade motor
performance.Within this framework, our results dur-
ing movement seem to indicate the onset of a kind
of inter-hemispheric competition aiming at achieving
an optimal motor performance.

Differently from other studies, where a posit-
ive relationship between the beta band activity over
the primary motor cortex and a stable motor out-
put during a visuo-motor task was found [12], we
observed that the values of the weights in the beta
band at C3 were not significantly different from zero.
However, the beta band amplitude over FCz, a site
corresponding to the fronto-central brain areas, was
negatively correlated with the motor performance,
confirming the role of the beta activity in maintain-
ing the current sensorimotor state [10]. It is known
that fronto-central brain areas, as the supplement-
ary motor area and the anterior cingulated cortex, are
generally involved in self-generated action [76].

We also found positive and negative correlations
of the alpha and beta band amplitudes with motor
performance in parietal sites, thus suggesting that the
achievement of a good motor performance is also
supported by the involvement of different brain areas
functionally connected for visuo-motor integration.
In fact, previous transcranial magnetic stimulation
studies [77] documented functional connections
between contralateral primary motor cortex and the

parietal cortex and its sub-regions (such as posterior
parietal cortex and different portions of the intra-
parietal sulcus). As well, transcranial direct current
stimulation of the right parietal cortex (P4) was
shown to induce changes of the primary motor cor-
tex excitability during motor imagery and action
observation [78].

Interestingly, we did not find a direct correla-
tion between the microstate metrics and the spec-
tral amplitudes, suggesting that both types of fea-
tures contribute, although differently, to describe the
brain dynamics that support the achievement of a
good motor performance during the maintenance
of a stable visually guided force. Given that micro-
state metrics and EEG amplitudes characterize brain
dynamics at different scales, the absence of correla-
tion among these features supports the concept that
they represent complementary aspects of brain pro-
cessing. It is worth noting that, based on the results
of the nCV of the PLS model, microstate metrics and
brain rhythm amplitudes together seem to explain
the brain dynamics underpinning themaintenance of
a visually guided stable motor output not only at a
group level, but also at an individual level. This find-
ing could play a crucial role for a better understand-
ing of the motor system in single trials or in real-
time applications, having an impact on the progress
of brain computer interface systems [79], in the study
of motor control development [80] or of motor con-
trol changes due to aging [81].
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