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Abstract
Objective. Recently developed magnetoelectric nanoparticles (MENPs) provide a potential tool to
enable different biomedical applications. They could be used to overcome the intrinsic constraints
posed by traditional neurostimulation techniques, namely the invasiveness of electrodes-based
techniques, the limited spatial resolution, and the scarce efficiency of magnetic stimulation.
Approach. By using computational electromagnetic techniques, we modelled the behaviour of
recently designed biocompatible MENPs injected, in the shape of clusters, in specific cortical
targets of a highly detailed anatomical head model. The distributions and the tissue penetration of
the electric fields induced by MENPs clusters in each tissue will be compared to the distributions
induced by traditional transcranial magnetic stimulation (TMS) coils for non-invasive brain
stimulation positioned on the left prefrontal cortex (PFC) of a highly detailed anatomical head
model.Main results.MENPs clusters can induce highly focused electric fields with amplitude close
to the neural activation threshold in all the brain tissues of interest for the treatment of most
neuropsychiatric disorders. Conversely, TMS coils can induce electric fields of several tens of
V m−1 over a broad volume of the PFC, but they are unlikely able to efficiently stimulate even small
volumes of subcortical and deep tissues. Significance. Our numerical results suggest that the use of
MENPs for brain stimulation may potentially led to a future pinpoint treatment of
neuropshychiatric disorders, in which an impairment of electric activity of specific cortical and
subcortical tissues and networks has been assumed to play a crucial role.

1. Introduction

The last years have experienced an unprecedented
growth of nanomedicine applications (Pelaz et al
2017, Bayda et al 2019), boosted by the progress in
nanotechnology and the parallel interest in highly
personalized precision medicine (Goetz and Schork
2018). Among the various nanotechnology enablers
recently introduced in the biomedical field, such as
ferromagnetic super paramagnetic iron oxide nano-
particles, metallic and polymeric nanoparticles (Ali
et al 2016, Banik et al 2016, Lee and Jun 2019),
magneto electric nanoparticles (MENPs) have gained
attention for their unique properties.

The most widely used type of MENPs are core
shell ‘magneto electric’ (ME) nanostructures, made
of a ferromagnetic core and a ferroelectric shell. Due

to their multiferroic physics they exhibit the so-called
‘ME effect’, which raises from the strain mediated
coupling between the magnetostrictive properties of
the core and the piezoelectric properties of the shell
(Fiebig 2005, Eerenstein et al 2006). The ME effect
thenprovidesMENPs the capability to efficiently con-
vert themagnetic energy that reach them, into electric
energy (Kopyl et al 2021).

On a practical ground, MENPs can wirelessly
induce strong localized electric fields when prop-
erly activated with magnetic fields. That feature
makes them suitable for a great number of bio-
medical applications, where the wireless control of
the cellular-electric field interactions plays a crucial
role (Ryan et al 2021). Very early applications of
MENPs include local nervous system electric stimu-
lation (Guduru et al 2015, Singer et al 2020, Kozielski
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et al 2021, Nguyen et al 2021), targeted drug delivery
(Xie et al 2008, Guduru et al 2013, Chen et al 2017,
Kaushik et al 2017, Stimphil et al 2017, Stewart et al
2018), also across the blood–brain barrier (Barbu et al
2009, Nair et al 2013, Kaushik et al 2016, Rodriguez
et al 2017), and high contrast bioimaging (Nagesetti
et al 2017,Guduru et al 2018). Systematic review stud-
ies of current and potential biomedical applications
of MENPs can be found in (Golovin et al 2017, Kopyl
et al 2021, Kolishetti et al 2022).

Among these applications, wirelessMENPs-based
brain stimulation could represent a valuable alternat-
ive to modern brain stimulation approaches, whose
capabilities are limited by either their invasiveness,
as for deep brain stimulation (DBS) (McIntyre et al
2004) and intracortical micro-stimulation (ICMS)
(Bak et al 1990), or the low efficacy and poor spa-
tial resolution as for transcranial magnetic stimula-
tion (TMS) (Loo and Mitchell 2005).

The idea of using MENPs for the central nervous
system stimulation was first proposed by (Yue et al
2012) in a computational study in which small size
core–shell CoFe2O4–BaTiO3 MENPs, injected in the
area of the subthalamic nucleus of a model patient
with Parkinson’s disease (PD), were exposed to a low
magnetic field (below 80 kA m−1) at 80 Hz to induce
high electric fields (amplitude > 105 V m−1). These
electric fields were theoretical proven to be effective
in bringing the electric activity of the impaired target
brain structures of the PD patient to levels compar-
able to healthy people.

However, only recently this proof of concept has
been corroborated with some experimental results
(Guduru et al 2015, Kozielski et al 2021, Nguyen et al
2021). (Guduru et al 2018) demonstrated the effective
capability of MENPs to modulate the brain electro-
encephalography (EEG) activity in vivo when activ-
ated with a low-energy (i.e. around 8000 A m−1)
AC magnetic field in the 0–20 Hz frequency range.
Very recently, (Kozielski et al 2021) implanted sim-
ilar MENPs directly in the brain tissue by using ste-
reotactic injection into the subthalamic region of
mice. Interestingly, a DC magnetic field of 220 mT
was coupled with a small AC field (6 mT, 140 Hz) to
induce a local neural activity that was able to activate
regions of the corticobasal ganglia-thalamocortical
circuit, showing the efficacy of the wireless activation
of MENPs for deep brain stimulation. In parallel, in
(Nguyen et al 2021), authors reported a cortical activ-
ation of individual neuron and large neural networks
in vivo by activating MENPs with two electromagnets
(∼500 ms pulse-width at ∼30–40 kA m−1), further
proving the potential of CoFe2O4–BaTiO3 MENPs to
interact with neural activities atmagnetic field intens-
itiesmuch lower than those used for typical TMS pro-
tocols (Deng et al 2014, Gorelick et al 2014), i.e. up to
1–2 T around the coil loop equivalent, in the vacuum,
to 800–1600 kA m−1.

To provide significant insights into these exper-
imental observations and to boost the translation
of this approach in clinic, computational modelling
becomes an imperative component (Hu et al 2017)
that, to date, is still scarcely applied to this research
field.

Moreover, since in this paper we focus on the spe-
cific possible application of MENPs mediated electric
stimulation of different cortical and subcortical tar-
gets for the non-invasive treatment of neuropsychi-
atric disorders, computational models represent the
only way to assess the electric fields in target tissues,
most of which are located deep in the brain.

Neurological and psychiatric disorders share
indeed a disfunction of both cortical and deep brain
areas which translates in a partial alteration of the
corresponding brain target electric activity (Johnson
et al 2013). To restore these brain functions methods
based on the direct application of electric field in the
brain, such as DBS and ICMS, require the implant of
electrodes in the tissue to be stimulated, resulting in
all side effects due to their intrusiveness. On the other
hand, non-invasive brain stimulation techniques
based on electromagnetic fields have been success-
fully used to this purpose (for a review see (Brunoni
et al 2019), thus proving that the activation/inhib-
ition of electric patterns, even when non-invasively
administered, could be a valuable treatment option
to the classical pharmacological therapy.

Among the others, non-invasive repetitive TMS
(rTMS) has been proposed as the main tool for the
non-pharmacological treatment of different psychi-
atric disorders, specifically granting FDA-clearance
to treat major depression in 2008, followed by
migraine headaches in 2013, obsessive compuls-
ive disorders in 2018, smoking addiction in 2020
(Regenold et al 2022). However, even if largely used,
the rTMS approach showed some limits in reach-
ing specific deep subcortical networks involved in
the progression of most of neuropsychiatric dis-
orders (Demirtas-Tatlidede et al 2013). The possib-
ility of using CoFe2O4–BaTiO3 MENPs, once posi-
tioned semi-invasively in the selected brain targets,
for treating these types of disorders could represent
a disruptive novelty in clinical practice, being a sub-
stantial improvement in terms of electric field penet-
ration and focusing capability over the currently used
rTMS approaches.

This study, therefore, precisely addresses this
possibility.

Specifically, the behaviour of clusters of
CoFe2O4–BaTiO3 MENPs, already characterized in
literature, will be modelled in specific cortical tar-
gets of a highly detailed anatomical head model. The
distributions and the tissue penetration of the elec-
tric field induced by MENPs will be compared to
the distributions induced by traditional TMS coils
used for the treatment of neuropsychiatric disorders
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(Deng et al 2014, Gorelick et al 2014, Regenold et al
2022), namely figure-of-eight (FoE) TMS coils posi-
tioned on the left prefrontal cortex (PFC).

2. Material andmethods

The methodology here applied to model the elec-
tric field (E) distributions induced by both MENPs
and FoE coils, is similar to the one described in pre-
vious papers (see, e.g. Parazzini et al 2017, Fiocchi
et al 2018). In summary, the E distributions were
estimated using the simulation platform SIM4life
(by ZMT Zurich Med Tech AG, Zurich, Switzer-
land, www.zurichmedtech.com) and a highly detailed
human head anatomical model (Iacono et al 2015).
Details about how MENPs and TMS coil were
modelled, about the brain regions considered, the
numerical methods used to estimate the E distribu-
tions and the analysis of results are reported in the
following.

2.1. Humanmodel
A multimodal imaging-based anatomical model,
named MIDA (Iacono et al 2015) (see figure 1), of
the head and neck of one healthy 29 years old female
volunteer, segmented and reconstructed from three
different magnetic resonance imaging (MRI) mod-
alities at a 500 µm isotropic resolution was used
in this study. The head model distinguishes a total
of 153 different regions, involving a high number
of brain structures. Since this study aims evaluating
the induced E amplitude distributions in the brain
regions of the limbic system involved in the reward-
related pathways, different structures, both cortical
and deep, were considered as target tissues, similarly
to the strategy followed by previous studies (Parazzini
et al 2017, Fiocchi et al 2018). As to the cortical
areas, the PFC, the dorsolateral PFC (DLPFC),medial
PFC (MPFC), cingulate cortex and insula regions
were identified by means of a brain atlas (Harnsber-
ger and Macdonald 2006) as they were not specific-
ally segmented in the model used (see figure 1(c)).
As to the deep structures, amygdala, hippocampus,
hypothalamus, mammillary body, nucleus accum-
bens and ventral tegmental area were considered (see
figure 1(d)). The E field distributions were analysed
in the left part of all the brain structures with a sym-
metry in the two hemispheres. The dielectric prop-
erties of each tissue have been assigned according to
literature data (IT’IS Foundation 2018) at theMENPs
AC field and TMS single pulse frequency, i.e. 140 Hz
(Kozielski et al 2021) and 5 kHz (Deng et al 2014),
respectively.

2.2. MENPs cluster model
MENPs, thanks to their chemical composition,
exhibit a strong coupling between magnetic and elec-
tric field, thus enabling to induce locally E fields when
wireless stimulated with low-amplitude magnetic

fields (Eerenstein et al 2006). This behaviour is
quantified by the magneto-electric coefficient α,
defined by:

α=
∆E

∆H
(1)

where E is induced electric field, andH is the applied
magnetic field.

According to literature, commonly experimental
values of particulatemagnetoelectric composites such
as MENPs are in the range of 0.01–0.1 V cm−1 Oe−1

(corresponding to 0.0125–0.125 V A−1) (Liu et al
2005, Devan and Chougule 2007, Grössinger et al
2008). To simulate the presence of MENPs as sources
of E fields for brain stimulation, they were modelled
as spherical agglomerates (in the following ‘clusters’)
with radius equal to 1 mm. This approach corres-
ponds to the experimental procedure of a recent study
(Kozielski et al 2021), in which the authors injec-
ted MENPs into the subthalamic region of mice and
determined that they occupied a volume comparable
to their rodent DBS electrodes. We hypothesized to
inject a single MENPs cluster in the centre of each tis-
sue here identified as target of the stimulation and
that it occupied a volume comparable to a human
DBS electrode. Table 1 shows the volume of each cor-
tical and deep region of interest, and the percentage
of the volume of the region occupied by one MENPs
cluster. Then, to assess the influence ofmultiple injec-
tion sites in each cortical region on the E field dis-
tributions, we also performed simulations with two
MENPs clusters and four MENPs clusters. The posi-
tions of the MENPs clusters inside each region were
defined assuring that each cluster was surrounded by
the tissue of interest and that the relative distance
between clusters was large enough to avoid recip-
rocal influence (i.e. the electric filed generated by each
cluster is close to 0 in correspondence with other
clusters). For the deep brain structures, due to their
smaller volume, only one single MENPs cluster and
two MENPs clusters were modelled. Their positions
were defined based on the same criteria established
for the cortical region clusters.

The ME effect, elicited in (Kozielski et al 2021)
by superimposing 220 mT DC and 3 mT AC mag-
netic fields at a frequency of 140 Hz, was here mod-
elled by assuming that the maximum magnetic field
produced by external DC and AC systems reached
the nanoparticles, wherever positioned, and then by
setting a uniform potential on the cluster surface.
This boundary condition has been chosen as the
most general and appropriate to mimic the macro-
scopic electric behaviour of a MENPs cluster when
the exact configuration of single MENPs inside the
cluster and of the B-field lines along which the
single MENPs align are not known, as in the present
study. Specifically, MENPs clusters were modelled
as spherical charged wireless electrodes with surface
potential tuned to obtain a maximum E amplitude

3
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Figure 1. Schematic view of (a) FoE TMS coils; (b) MENPs single cluster positioning over MIDA model; (c) cortical tissues and
(d) deep tissues of interest for this study.

equal to 100 V m−1 on the left PFC. This threshold
is commonly acknowledged, in TMS computational
studies, as the cortical motor threshold and then here
intended as the ‘neural activation threshold’ (Danner
et al 2012). This approach resulted in a potential of
amplitude equals to 92.7 mV on each cluster surface,
and a corresponding magneto-electric coefficient α
of 0.0155 V cm−1 Oe−1 (i.e. 0.0194 V A−1), which
is in the range of previously measured ME coeffi-
cients of similar CoFe2O4–BaTiO3 NP (i.e. from 0.01
to over 0.1 V cm−1 Oe−1) (Liu et al 2005, Devan
and Chougule 2007, Grössinger et al 2008, Kopyl et al
2021).

Also, in the case of simultaneous presence ofmore
than one cluster, the amplitude of the potential on
each cluster was imposed to be equal to 92.7 mV.

2.3. TMS coil model
The E amplitude distributions in the various brain
regions due to the MENPs have been compared with
the one induced by the classical FoE, which is the first
FDA-approved rTMS systems for the treatment of
major depressive disorder. This system allows a pre-
cise and focal stimulation of cortical regions, includ-
ing the main target for depressive disorders treatment
(i.e. PFC and DLPFC). Here (see figure 1(a)), it has
been modelled as two adjacent current paths, with
dimensions based on published data (Parazzini et al
2017, Fiocchi et al 2018). Specifically, it is composed
by two planar circular windings of 70 mm diameter,
placed tangentially to the head and pointing 45◦ away
from the anterior–posterior axis, as reported in exper-
imental studies (see, e.g. Roth et al 2007, Deng et al
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Table 1. Volume of each cortical and deep brain region of interest
and percentage of it occupied by one MENPs cluster.

Total volume
(cm3)

Percentage of
volume occupied

by MENPs

Cortical
regions

Cingulate
cortex

33.89 0.01

DLPFC 31.99 0.01
Insula 9.62 0.04
MPFC 54.37 0.01
PFC 62.93 0.01

Deep
regions

Amygdala 1.46 0.29
Hippocampus 2.49 0.17
Hypothalamus 0.99 0.43
Mammillary
body

0.15 2.83

Nucleus
accumbens

0.45 0.92

VTA 0.60 0.70

2013). The point where the two windings are in con-
tact was posed at 5 cm anteriorly to the motor cortex
region corresponding to the abductor pollicis brevis
of the hand, on the left hemisphere, for targeting the
left PFC. The minimum spacing between the coil and
the surface of the head model was about 10 mm to
account for the thickness of the coil insulation not
included in the model. The current flows in oppos-
ite directions in the two windings, at the fundamental
frequency of 5 kHz, which is representative of effi-
cient TMS pulses (Deng et al 2014). Following the
strategies of previous studies, the current intensity
delivered was set equal to about 8 kA to obtain on
the left PFC an E distribution with maximum amp-
litude equal to the neural activation threshold, i.e.
100 V m−1 (Danner et al 2012).

2.4. Numerical methods
Two different solvers implemented on the simula-
tion platform SIM4life (by ZMT Zurich Med Tech
AG, Zurich, Switzerland, www.zurichmedtech.com)
were used to quantify the E amplitude distributions
in tissues.

When simulating MENPs clusters, here modelled
as spherical electrodes working in the near-DC fre-
quency range (Kaushik et al 2017, Kozielski et al 2021,
Nguyen et al 2021), the ohmic quasi static approxima-
tion was used. The electric potential (φ) was obtained
by solving the Laplace equation through a finite ele-
ment method:

∇· (σ∇φ) = 0 (2)

where σ (S m−1) is the electrical conductivity of tis-
sues. In the low frequency approximation adopted,
ohmic currents dominate displacement currents and
capacitive effects are disregarded. The electric field

(E) distributions were obtained by means of the fol-
lowing relation:

E= −∇φ. (3)

When considering the FoE coil, the magneto quasi-
static approximation was used, which uses a Biot–
Savart solver based on the scalar potential finite
elementmethod. In the low frequency range themag-
netic vector potential A is decoupled from E. E can be
derived from the scalar potentialφ, which is given by:

−∇ ·σ∇φ= jω∇· (σA) (4)

where σ is the tissue conductivity andω is the angular
frequency of the field. In this approximation tissues
are considered as purely resistive, thus disregarding
their dielectric dispersion. A is calculated using the
Biot–Savart’s law whereas the finite element method
is used to solve for φ.

A non-uniform hexahedral mesh, with a min-
imum mesh step equals to 0.1 mm and 0.4 mm
for MENPs and FoE simulations, respectively, was
applied to the computational domain, thus allowing
to discretize the thinnest structures of the model.

2.5. Data analysis
The E distributions induced by MENPs and by the
FoE coil placed to target the PFC were evaluated both
in terms of spread and magnitude, when the amp-
litude of the potential imposed onMENPs surface and
the intensity of the current circulating in the coil were
high enough to obtain a maximum E field amplitude
of 100 V m−1 on the left PFC. The spread of the E
amplitude distributions in each of brain region target
of the stimulation was quantified as the volume per-
centage of these brain regions with an E amplitude
equals or greater than 1, 10, 50 and 70 Vm−1, corres-
ponding to 1%, 10%, 50% and 70% of the maximum
amplitude of E in the PFC. We will use V1, V10, V50
and V70 to identify these volume percentages. This
analysis quantifies the spread of the E amplitude dis-
tribution inside each brain region of interest, since
these parameters provide a quantification of the abil-
ity of the different sources to focalize specific E amp-
litude values in a small volume.

To describe the amplitude of the induced E fields,
the descriptive statistics of the E amplitude distri-
butions (i.e. min, 25th, 50th, 75th percentiles and
maximum of the distribution) were calculated in
each brain region of interest for the treatment of
depression.

A non-parametric Kruskal–Wallis test was
applied to test the influence of using different num-
ber of MENPs clusters or the FoE on the E amplitude
distribution extracted in each area of interest. Values
of p < 0.05 were considered as statistically significant.
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Figure 2. E field distribution on a frontal slice (sketched on the top row) of the PFC induced by the single MENPs clusters (left)
and by the FoE coil (right), both normalized to the identified neural activation threshold (i.e. 100 V m−1).

3. Results

The analysis of the results will be presented consider-
ing separately cortical and subcortical regions.

3.1. Electric field distribution on the brain cortex
Figure 2 shows, as an example, the E field amplitude, a
singleMENPs cluster (left) and by the FoE coil (right)
both normalized to the neural activation threshold
(i.e. E = 100 V m−1).

It can be noted that MENPs cluster can induce
over the left PFC a very focused distribution which
decays very sharply few millimetres away from the
cluster itself. On the contrary, FoE induces below its
centre a broad E field distribution, characterized by
values higher than 50Vm−1 (colourmap fromorange
to white) over a consistent portion of the shown cor-
tical section. These considerations are more precisely
quantified by figure 3, which shows the descript-
ive statistics (minimum, 25th, 50th, 75th and max-
imum) of the E amplitude distributions induced by
the three MENPs configurations and by the FoE coil
in the cortical regions of interest. From figures 3(a)–
(c) it can be observed that, whatever the MENPs
are positioned, they can stimulate the neural tis-
sue (top whiskers everywhere approach the activa-
tion threshold). However, a strong decay of the other
percentiles can be observed, with the 50th percent-
ile staying always below 1 V m−1, regardless the cor-
tical region considered and the number of clusters.
The number of clusters injected in each area influ-
ences the E amplitude distributions, with an increase
of the median values across the cortical areas when
increasing the number ofMENPs clusters.When con-
sidering figure 3(d), results show that FoE can induce

E fields close to the neural activation threshold only
in correspondence of the cortical area where is placed,
i.e. PFC andDLPFC, but can invest with E amplitudes
higher than few V m−1 more than the 75% of all the
target tissues.

The observed differences between the E amp-
litude distributions obtained by MENPs clusters and
FoE are confirmed as statistically significant by the
Kruskal–Wallis test.

Those differences in focusing capability are fur-
ther quantified by the Vx reported in table 2. FoE coil
can indeed induce very low levels of E field (up to
1% of the activation threshold equals to 1 V m−1) in
almost the entire volume of each tissue of interest and
can invest with E field up to 10 V m−1 a significant
volume of the DLPFC, with a low spatial resolution.
Conversely, MENPs are effective in stimulating only a
very small percentage of tissues volume, with a slight
increasing trend as increasing the number of MENPs
clusters, almost doubling the volumes activated when
the cluster number doubles.

That would also mean that the computed per-
centages can be enlarged through an accurate strategy
of MENPs positioning and by calibrating the admin-
istered dose to stimulate specific areas.

3.2. Electric field distribution on the deep tissue
Figure 4 shows, as an example, the E field distribution
on the surface of the target deep structures induced by
the single MENPs clusters (left) and by the FoE coil
(right).

Colourmaps maxima are limited, for the sake of
readability, to 10 V m−1. As expected, even in these
regions, MENPs generate E field at the neural activ-
ation threshold around the cluster and can invest a

6
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Figure 3. Descriptive statistics (top and bottom whiskers correspond to minimum and maximum, respectively, boxplots represent
the 25th, 50th and 75th percentile) of the E amplitude distributions induced by: (a) single MENPs cluster; (b) two MENPs
clusters; (c) three MENPs clusters; (d) FoE coil in all the considered cortical regions. Y-axis is in logarithmic scale, red dotted line
identifies the neural threshold.

Table 2. Percentage volume of each cortical region with E amplitude higher than 1%, 10%, 50% and 70% (V1, V10 V50, V70,
respectively) of the maximum amplitude of E in the PFC for each stimulation configuration.

Cingulate cortex DLPFC Insula MPFC PFC

1 Cluster V1 6.9 4.6 16.5 7.0 2.1
V10 0.2 0.2 0.9 0.1 0.1
V50 < 0.1 < 0.1 < 0.1 <0.1 < 0.1
V70 < 0.1 < 0.1 < 0.1 <0.1 < 0.1

2 Cluster V1 11.9 14.2 28.5 6.0 4.7
V10 0.4 0.2 1.4 0.3 0.2
V50 < 0.1 < 0.1 < 0.1 <0.1 < 0.1
V70 < 0.1 < 0.1 < 0.1 <0.1 < 0.1

4 Cluster V1 20.0 20.4 51.2 9.6 7.0
V10 0.5 0.3 2.0 0.3 0.3
V50 < 0.1 < 0.1 < 0.1 <0.1 < 0.1
V70 < 0.1 < 0.1 < 0.1 <0.1 < 0.1

FoE V1 97.5 99.7 90.8 100 98.7
V10 < 0.1 64.7 < 0.1 3.9 33.4
V50 < 0.1 0.3 < 0.1 <0.1 0.1
V70 < 0.1 < 0.1 < 0.1 <0.1 < 0.1

broad volume of the small cortical tissues withE fields
amplitudes higher than few V m−1.

Figure 5, similarly to previous figure 3, shows
the descriptive statistics of E field distributions in
subcortical tissues. It shows that in all the tissue
where the MENPs are positioned (figures 5(a) and
(b)), the maximum E field reaches the activation
threshold. Moreover, minima and 75th percentiles
are higher than 0.1 and 1 V m−1, respectively, while

the distribution shape is strongly correlated with the
volume of the tissues. Also in these deep structures,
an increasing number of MENPs clusters results in
increasing volume of stimulated tissue. Conversely,
FoE, as suggested by both the example of figure 4
and the descriptive statistics in figure 5(c), can induce
at most few V m−1 in the subcortical regions, mak-
ing rather difficult an effective stimulation of these
structures.
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Figure 4. E field distribution on the surface of the deep tissues of interest (shown for reference inside the brain cortex on the top
row) induced by the single MENPs clusters (left) and by the FoE coil (right). For the sake of readability, colourmap maximum is
fixed to 10 V m−1.

Figure 5. Descriptive statistics (top and bottom whiskers correspond to minimum and maximum, respectively, boxplots represent
the 25th, 50th and 75th percentile) of the E amplitude distributions induced by the two MENPs configurations and by the FoE
coil in all the considered subcortical regions. Y-axis is in logarithmic scale, red dotted line identifies the neural threshold.

However, median and 75th percentiles range
between 1 and 10 V m−1 in each tissue of interest,
with values depending not only on the tissue volume
but also on the distance from the stimulating coil.
Also for the deep brain regions, the observed differ-
ences between the E amplitude distributions obtained
by MENPs clusters and FoE are confirmed as statist-
ically significant by the Kruskal–Wallis test.

The different behaviour of the two stimulation
strategies are further suggested by the Vx reported in
table 3, showing that FoE can induce E fields up to
1 V m−1 over the 80% of the volume of all subcor-
tical tissues (except VTA) but cannot induce E field
higher than 1 Vm−1 in a volume larger than the 0.1%
of each tissue.On the contraryMENPs clusters show a
strong capability to produce high field levels in their
proximity, resulting in not negligible (>0.1%) likely
stimulated volumes, especially in the smallest tissues.

4. Discussion

In recent years, there has been a growing interest in
exploring novel principles as well as in optimizing
existent approaches for brain stimulation.

Among the latter, TMS has been acknowledged
as an effective and non-invasive tool for the treat-
ment of several neuropsychiatric disorders, for which
the pharmacological treatment is ineffective or bad
tolerated. In parallel, recent advancements in neuro-
psychology, biochemistry, neuroimaging, and exper-
imental studies have revealed that those neuropsy-
chiatric conditions are unlikely to be linked to a
single brain region disfunction (Sampath et al 2017).
Rather, the evolution of these diseases involves a
complex reward circuit alteration affecting integ-
rated pathways, namely the reward system (Russo and
Nestler 2013). The main component of this circuit is
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Table 3. Percentage volume of each subcortical tissue with E amplitude higher than 1%, 10%, 50% and 70% (V1, V10 V50, V70,
respectively) of the maximum amplitude of E in the PFC for each stimulation configuration. Legend: ‘Amy’: Amygdala; Hippo:
Hippocampus; Hypo: Hypothalamus; ‘MB’: Mammillary Body; ‘NA’: nucleus accumbens; ‘VTA’: Ventral Tegmental Area.

Amy Hippo Hypo MB NA VTA

1 Cluster V1 84.9 28.6 99.8 100 99.6 99.6
V10 5.8 3.2 6.0 57.8 21.3 19.6
V50 0.4 0.2 0.6 5.8 1.3 1.0
V70 < 0.1 < 0.1 0.2 2.0 0.2 0.2

2 Cluster V1 99.1 45.8 100 100 100 100
V10 8.3 4.0 9.8 79.3 19.4 25.3
V50 0.4 0.1 0.4 7.4 1.0 1.1
V70 < 0.1 < 0.1 <0.1 1.3 <0.1 <0.1

FoE V1 80.3 77.3 79.9 78.5 100 47.1
V10 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1
V50 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1
V70 < 0.1 < 0.1 <0.1 <0.1 <0.1 <0.1

themesolimbic dopaminergic pathway, which origin-
ates from the ventral tegmental area and projects to
PFC towards nucleus accumbens, amygdala, hippo-
campus, cingulate cortex (O’Reardon et al 2007).

Consequently, late efforts to optimize TMS treat-
ments are directed to adequately target these tissues.
In this context, computational studies represent an
efficient strategy to assess the electric field distribu-
tions induced by this technique, contributing also to
the interpretation of the therapeutic outcomes. In
this modelling study, the capability of traditional FoE
to produce a broad electric field distribution over
the PFC (see figures 2, 3(d) and table 2) has been
confirmed, for example inducing electric field levels
higher than tens V m−1 in a large part of the DLPFC.
As expected, due to the intrinsic physics behind TMS,
E field amplitude rapidly decays with the distance
from the peak in the cortex, resulting in a likely
reduced stimulation of insula and cingulated cortex
and a dramatic attenuation of E field amplitude in
the subcortical and deep tissues (see figures 4, 5(c)
and table 3). In order to reduce this decrease, spe-
cific deep TMS coils have been proposed (Roth et al
2002, Zangen et al 2005) and in parallel compar-
ative computational studies (Guadagnin et al 2016,
Parazzini et al 2017) have assessed their effective cap-
ability to induce E field levels up to 30 V m−1 in
the same tissues as here considered. These fields are
not far from the threshold of neural activation, and
are even more close to the threshold for the stim-
ulation of cortical neurons estimated by taking into
account the strength-duration curve (Kowalski et al
2002).Moreover, they have been proven as effective in
activating cortical neurons (Komssi et al 2007) as well
as hippocampal population of neurons (Jefferys 1981,
Ghai et al 2000) thus suggesting a possible explana-
tion to the positive outcomes of clinical studies which
used deep TMS coils. However, the scarce spatial res-
olution of traditional TMS and, even more, of deep
TMS, together with their scarce energy transmission
efficiency are still serious challenges to overcome.

The strategy based onMENPs administration and
activation here proposed, can be used to overcome
these constraints, having in principle an efficient
energy transfer and an elevated spatial resolution.
Results of this study show indeed the capability of
MENPs clusters, whatever their number, with an
induced surface potential of about 100 mV and a
ME coefficient α = 0.0155 V cm−1 Oe−1 to induce
electric field levels equals to the neuronal activa-
tion threshold (i.e. 100 V m−1) with a spatial res-
olution of 0.2–0.4 mm, in all the target tissues here
considered. This surface potential is close to what
measured in the few and recent studies which have
successfully used CoFe2O4–BaTiO3 MENPs agglom-
erates in biomedical applications (Betal et al 2016,
Kozielski et al 2021), where surface potential equals to
25–65 mV have been measured as a result of altern-
ating magnetic field of few mT. Consequently, by
slightly increasing the external magnetic field or by
improvingmaterials properties in line with the recent
claims of ME coefficient values above 1 V cm−1 Oe−1

(i.e. 1.25 V A−1) (Palneedi et al 2016, Wang et al
2020), E fields even two orders of magnitude higher
than the ones here reported can be expected.

In this regard, one should also consider differ-
ent factors still not completely understood and char-
acterized in the interaction between electric stim-
ulation and neural activity. It is known indeed as
neuron activation threshold is variable across cell
types and cortical layers (Komarov et al 2019) and
varies according to the temporal features of the stim-
ulus (i.e. the strength-duration curve (Tehovnik et al
2006)). Micro-stimulation and retina stimulation
studies (Matteucci et al 2013, Urdaneta et al 2021)
have shown that an effective spread of neural activa-
tion can be expressed as the square root of the current
injected in the electrode divided by the square root of
the excitability constant, i.e. r = (I/K)1/2, where I is
the current level (in µA) r is distance (inmillimetres),
andK is the excitability constant (in µAmm−2). This
last quantity in case of pyramidal neurons, that are the
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primary excitation units of most of tissues here con-
sidered (e.g. PFC, hippocampus, amygdala), is equal
to 1292 µA mm−2 and then, according to our estim-
ates (i.e. current density over the cluster surface cor-
respond to an injected current of 0.3 mA), produces
a spread of activation of about 0.5 mm in all tissues
considered. This resolution therefore agrees with our
analysis of results and suggests an improvement of
at least one order of magnitude over TMS resolu-
tion. This reinforces the potential advantages of using
MENPs rather than TMS, particularly for the stimu-
lation of deeper tissues. Moreover, the near-DC fre-
quency to which MENPs are characterized and used
could make them not only effective in electrically
modulating and stimulating neurons at lower elec-
tric intensities (Kowalski et al 2002), but also eventu-
ally lowering the risk of tissue damage and decreasing
energy consumption (Wang et al 2020).

Along with these considerations, it is import-
ant to note that in vivo studies in rodents already
suggested the absence of MENPs toxicity with no
any apparent inflammatory response in mice, both
when the nanoparticles are intravenously injected
and stereotactically administrated in deeper tissues
(Kaushik et al 2016, Kozielski et al 2021, Nguyen
et al 2021), thus paving the way towards their poten-
tial translation in humans. In line with these con-
siderations, our approximated evaluation of safety
issues performed according to both magnetic and
electric stimulation safety criterion suggests that the
use of MENPs not likely would cause tissue dam-
age. In particular, the Brezovich criterion (Brezovich
andMeredith 1989), which account for highmagnetic
field intensity applied for long time, is largely satisfied
for the magnetic stimulation protocol here hypothes-
ized (i.e. 140 Hz, <300 mT). Moreover, the eventual
local temperature increase due to Joule heating at the
MENPs implantation sites could eventually contrib-
ute to favour the heat mediated central nervous sys-
tem (CNS) activation (Odutola et al 2018).

As to the direct electric stimulation effects, we
have evaluated the charge per phase and the charge
density per phase over the MENPs cluster and proven
that the combination of these two quantities stays in
the area of non-damaging levels of electrical stimula-
tion delimited by Shannon equation (McCreery et al
1990).

Interestingly, the significant differences in the
E amplitude distributions (figures 3 and 5) here
observed varying the number ofMENPs clusters, sug-
gest a possible strategy to stimulate a specific tis-
sue volume, by properly tailoring the MENPs dose
and preventing the likely unnecessary and unwanted
implant of MENPs in multiple sites.

Moreover, the high spatial resolution of E
provided by the MENPs activation, as reported in
tables 2 and 3, suggests the possibility to design novel
electrostimulation selective patterns by opportunely
arranging their distributions in predefined target

locations. To this purpose it has recently shown
(Guduru et al 2018) as MENPs can be used for wire-
lessly monitor electric field activity of the brain at
the sub-neuronal level in real time. This, once guided
MENPs in deep tissue by specific timed and sequence
of magnetic field gradients (Nair et al 2013), open
the possibility to create a new strategy for mapping
impaired circuits and restore their activity at the same
time.

In line with this, future studies will be addressed
to investigate by computational techniques the pos-
sibility of using MENPs in stimulating neural net-
works involved in other neurological diseases, such
as Parkinson and Alzheimer disease, for which the
use of non-invasive approaches coupled with a high-
resolution stimulation technique, could offer a sub-
stantial improvement (Vissani et al 2020).

5. Conclusions

This study focused on the modelling of E amplitude
distributions induced by novel proposed MENPs for
brain stimulation. The results, in comparison to
the traditional non-invasive stimulation technique,
i.e. TMS, suggest the use of MENPs to stimulate
selectively cortical and subcortical tissues. MENPs
therefore could arguably be a promising nanostruc-
ture for applications inwhich a high spatial resolution
at cost of minimal invasiveness is required.
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