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Abstract
Objective. Electrochemically safe and efficient charge injection for neural stimulation necessitates
monitoring of polarization and enhanced charge injection capacity of the stimulating electrodes. In
this work, we present improved microstimulation capability by developing a custom-designed
multichannel portable neurostimulator with a fully programmable anodic bias circuitry and
voltage transient monitoring feature. Approach.We developed a 16-channel multichannel
neurostimulator system, compared charge injection capacities as a function of anodic bias
potentials, and demonstrated convenient control of the system by a custom-designed user interface
allowing bidirectional wireless data transmission of stimulation parameters and recorded voltage
transients. Charge injections were conducted in phosphate-buffered saline with silicon-based
iridium oxide microelectrodes.Main results. Under charge-balanced 200 µs cathodic first pulsing,
the charge injection capacities increased proportionally to the level of anodic bias applied, reaching
a maximum of ten-fold increase in current intensity from 10 µA (100 µC cm−2) to 100 µA
(1000 µC cm−2) with a 600 mV anodic bias. Our custom-designed and completely portable
16-channel neurostimulator enabled a significant increase in charge injection capacity in vitro.
Significance. Limited charge injection capacity has been a bottleneck in neural stimulation
applications, and our system may enable efficacious behavioral animal study involving chronic
microstimulation while ensuring electrochemical safety.

1. Introduction

Neural activation using microelectrodes such as in
intraspinal stimulation [1], cochlear nucleus auditory
prosthesis [2–4], and visual prosthesis [5, 6] requires
high charge injection capacity to obtain desired func-
tional and behavioral effects. Although themicroelec-
trodes, generally with geometric surface areas (GSAs)
of 500–10 000 µm2, are designed for high selectivity,
spatial resolution, and scalability in depolarizing large
ensembles of neurons, they may surpass safe electro-
chemical ranges before achieving neural activation
thresholds in vivo [7]. Thus, expanding the thera-
peutic window of neural activation while avoiding
electrode and tissue damage is paramount.

Previous efforts in enhancing charge injection
capacity primarily focused onnew electrodematerials

[8–11] and enlarging effective surface areas [12, 13].
However, improvements in vivo have been lagging.
For example, platinum (Pt) electrodes had approx-
imately nine times less charge injection capacity
in vivo than in vitro (with 200 µs pulse widths) [13].
Diamond [14] and graphene [15] also showed similar
or lower charge injection capacity than Pt [15].

An alternative technique to increase the charge
injection capacity of themicroelectrode is by applying
an anodic bias potential [16–20]. It is known that cer-
tain microelectrodes become more conductive when
their initial potential is elevated (mostly 0.4 V–0.8 V
vs. Ag|AgCl), and iridium oxide electrodes (IrOx) in
particular become more conductive by conditioning
Ir3+ into Ir4+ valence state [8]. Advantages of anodic
bias potential include: (a) it may work on multiple
types of electrode materials, (b) it does not require
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modifications on electrodes, (c) its bias levels can be
readily adjusted, (d) it facilitates control of voltage
transients in safe ranges, and (e) it enables a greater
swing in cathodic pulse intensity which is known to
excite neural tissues. The charge injection enhance-
ment with anodic bias has been validated using vari-
ousmaterials in both in vitro and in vivo experiments.
Cogan et al [16], in an in vitro study with activated
iridium oxide film (AIROF) microelectrodes, found
that a 0.6 V anodic bias voltage enhanced the mean
charge injection capacity of the electrode by 63%.
Deku et al reported enhancement of charge injec-
tion capacity of TiN using anodic bias [21]. Han
et al [22] and McCreery et al [23], and Troyk et al
[24] demonstrated in vivo effective charge injection
through electroplated IrOx and AIROF microelec-
trodes for stimulation of the cat brain and rat sciatic
nerve, respectively.

Previously, bias voltage was often set by operat-
ing an analog potentiometer with feedback circuitry
in the pulse generator to control an offset voltage
across the stimulating electrodes [17, 18]. However,
analog potentiometers with carbon-composition res-
istors (having an error tolerance of at least 1% [25])
and a rotatable contact with manual control have
low voltage adjustment precision. Therefore, digitally
programmable anodic bias control will provide bet-
ter accuracy and finer dosages which is important in
microstimulation. Moreover, a wireless bidirectional
mode (both transmission of stimulation waveforms
and reception of voltage transients) will be desired in
awake behaving animal experiments.

We have designed a novel, digitally controlled
neurostimulator system with commercially available
off-the-shelf components [26]. In this work, we
present an upgraded and fully-portable embedded
neurostimulation system that wirelessly delivers con-
stant current stimulation signals with or without
anodic bias to 16 channels and records voltage transi-
ents to monitor electrochemical safety. Validation of
the systemwas accomplished with a custom-designed
IrOx microelectrode probe [27] through extensive
in vitro experiments in which anodic bias was shown
to significantly enhance charge injection capacity
(Qinj).

2. Materials andmethods

2.1. Hardware
The schematic diagram of the neurostimulator is
shown in figure 1, and its main specifications are lis-
ted in table 1. The system consists of a user interface
in the personal computer and the neurostimulator
circuit consisting of six subblocks: microprocessor,
power supply and management, stimulation signal
generator, anodic bias potential controller, voltage
transient recorder, and a Bluetooth module.

2.1.1. User interface
An intuitive user interface system (figure 2) was
developed in MATLAB App Designer which can be
installed as a stand-alone executable program. The
interface allows setting stimulationwaveforms such as
amplitude, pulse width, interphase delay, frequency,
signal polarity, and anodic bias. Bluetooth Commu-
nication establishes a connection with the Bluetooth
module. Stimulation polarity specifies pulse phases.
Anodic Bias Potential conveniently sets bias levels.
Stimulation Channels selects either single channels or
multiples at once; Voltage Transient Channels select
which channels to acquire voltage transient data. Run
initiates transmission of command signals to the pro-
cessor and storing of voltage transients and battery
information in a raw 12-bit format in the PC. Read
converts the raw data to true voltage values which
then can be exported to different data processing soft-
ware.Plot, for convenience, displays voltage transients
in the interfacewindowas shown in figure 2 (left), and
updates Battery Status.

2.1.2. Neurostimulator circuit
A 32-bit ARM cortex M-7 microprocessor
(STM32F767 VI) processed binary data acquisi-
tion, saved the digitized data into its internal flash
memory, and implemented system logic. The micro-
processor and other chips (or integrated circuits
(ICs)) were powered by rechargeable batteries. A pack
of two lithium-polymer batteries in series (Akzytue
602 535), provided 500 mAh current capacity and
7.4 V (8.4 V when fully charged). To regulate the
battery output voltage into required voltage of sys-
tem’s circuitry, linear regulators were incorporated.
The low drop-out voltage regulators (LT1763-3.3
and LT1763-5) provide constant 3.3 V and 5 V
outputs with low noise. A stepdown voltage con-
verter (LM43601) inverts the battery outputs to
−5 V for feeding the rail-to-rail power inputs of the
operational amplifiers (op-amps), multiplexer, and
switches. At the power inputs of each ICon the circuit,
0.01 µF decoupling capacitors are kept close (within
0.5 inches of the IC [28]) to the ICs to smoothen high-
frequency changes in the power supply and provide
immediate electrical energy demands to maintain
stable voltage supply. When the battery level drops
below 2.75 V, the batteries are charged by an external
5 V DC power supply through a USB 2.0/3.0 cable
using the on-circuit highly-integrated switch-mode
battery charge management IC (BQ25886RGER) and
peripherals. Charging ports (GND and 5 V) were
designated within the Omnetics pins.

The microprocessor enables an external 12-bit
rail-to-rail digital-to-analog converter (DAC)
(DAC122S085) with an serial peripheral inter-
face (SPI) interface. The DAC can vary analog
voltage output up to 5 V and generates two separate
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Figure 1. The neurostimulator and in vitro test setup. (A) System-level block diagram of the neurostimulator electronics circuit
and the user interface. (B) Assembled and electrically tested neurostimulator with rechargeable batteries and microelectrode PCB
consisting of microelectrode array and Omnetics connector. (C) In vitro setup of the neurostimulator with the microelectrode
PCB in a Faraday cage. Abbreviations: Li-Poly: lithium polymer, DAC: digital-to-analog converter, SW: switch, UART: universal
asynchronous receiver-transmitter, SPI: serial peripheral interface, GPIO: general purpose input/output, Rx: reception of data,
Tx: transmission of data, µP: microprocessor, Pt: platinum, N.C: not connected, PBS: phosphate-buffered saline.

Table 1.Main specifications of the neurostimulator system.

Features Details

Batteries Two Li-Poly 3.7 V 500 mA cells (rechargeable)
Supply voltage 7.4 V
Programmable current level 1–160 µA
Stimulation channels 16
Voltage monitoring channels 16
Pulse pattern Monophasic/biphasic symmetric/asymmetric
Anodic bias control Programmable, 0–3.3 V
Pulse width 1–2000 µs (resolution 1 µs)
Pulse polarity Cathodic or anodic first
Data transmission Wirelessly with Bluetooth SPP module
Voltage compliance ±5 V
Dimensions 35.82 mm (width)× 59.06 mm (length)

Figure 2. A user interface was developed in MATLAB app designer. The interface allows setting stimulation waveforms parameters
such as amplitude, pulse widths, interphase delay, frequency, signal polarity, and anodic bias. It also plots voltage transients and
battery status, and handles data files.

step-function signals based on processor commands.
The microprocessor controls the two single-pole
single- throw (SPST) switches (S1 and S2) through

assigned general purpose input/output pins that con-
vert the step function signals to monophasic signals.
The monophasic signals represent the anodic and
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cathodic phases of a biphasic waveform. Op-amp-
based voltage subtractor circuit operates with a gain
of two to get a biphasic voltage signal from themono-
phasic pulses. Temporal parameters such as pulse
width, interphase delay, and frequency are set by the
duration of ON and OFF periods of the S1 and S2
switch operations.

The biphasic voltage signals are fed into the input
of the Howland current circuits via 16 separate SPST
switches (S3–S18) simultaneously. The remaining
SPST switches (S19–S34) are responsible for shorting
the Howland current pump outputs coupling capa-
citor (C1…16) to the system ground after the end of
each stimulation pulse. Connecting a coupling capa-
citor before charge injection to the electrodes blocks
any DC flow under system fault, corrects charge
imbalance, and limits excessive net charge delivery to
the tissues [29].

Anodic bias potential is applied through a high-
impedance current-limiting resistor (R1) connec-
ted directly to the electrode. The bias potential
is set through an SPI interfaced digital poten-
tiometer (MCP41100, Microchip Technology, USA).
The potentiometer voltage input has a constant of
3.3 V, and the output bias voltage is generated
depending on thewiper position of the potentiometer
which is updated by 8-bit (256 positions) poten-
tiometer’s data register from the microprocessor. The
digital potentiometer has 13.3 mV precision and can
generate output voltage between 0 V and 3.3 V.

Voltage transients during constant-current stim-
ulation are used to estimate the level of polariz-
ation on the electrode beyond which irreversible
electrochemical damage may occur. Transients are
obtained with a 16× 1 analog multiplexer and a non-
inverting level shifter which adjusts the raw voltage
values to 0–3.3 V range. An internal successive-
approximation register (SAR) analog-to-digital con-
verter (ADC) (12-bit, 2.4-MSpS) digitizes the voltage
transients with a 354 kSpS sampling rate and saves
them into the processor’s flash memory.

A Bluetooth module is interfaced with the micro-
processor through a serial communication port in
asynchronous mode. The baud rate of the module is
set at 9600, and is capable of up to 3 Mb s−1 data
transmission rate. Due to the serial communication
structure of the Bluetooth, while 16 stimulation chan-
nels can enable simultaneously, the voltage transients
are received sequentially using a 16× 1 multiplexer.

2.2. Firmware
The microprocessor is programmed to execute stim-
ulation and digitize recorded signals. A 96 MHz core
clock signal is configured using an external clock,
internal phase-locked loops, and frequency dividers,
generating a stimulation signal with a resolution of
1 µs. The programming is written in C language
using Keil µVision 5.26 IDE, and the processor’s
pins are designated with STM32CubeMX toolchains.

The embedded controller allows 1–160 µA current
injection and chooses pulse widths of 1–2000 µs with
a 1 µs resolution. Programming of the controller is
established through an ST-Link adapter. The front
end of the adapter is connected to a serial wire debug-
ging connector on the printed circuit board (PCB),
and the back end of the adapter is linked to a personal
computer via a USB port.

2.3. Cable and connector system
The neurostimulator system and the microelectrode
probe were connected to each other with a ribbon
cable that had two female Omnetics connectors at its
front and back end. Each row of the female Omnet-
ics connector had an 18-conductor cable with a low
resistance conductivity. The neurostimulator system
has a horizontal male Omnetics connector, and the
microelectrode probe PCBhas a verticalmaleOmnet-
ics connector. The connector type on the neurostim-
ulator system, microelectrode probe PCB, and jump-
ing cable is nanominiatureOmnetics and has 36 pins.
About 16 of the Omnetics connector pins on the
neurostimulator were designated for stimulation and
voltage transientmonitoring, four for returning paths
(GND), and two for USB 5 V and GND of the
on-circuit battery charger system, and the rest were
unused.

2.4. Validation
Bench-top electrical tests and in vitro experiments
were used to test the functions of the neurostim-
ulator system which was fabricated and assembled
on a 6-layer PCB. In the initial electrical tests,
10 kΩ, 20 kΩ, and 30 kΩ resistors were connected
to stimulation channels as a working electrode out-
put to ascertain the current conversion from biphasic
voltage transient waveforms. The working electrode
was a custom-designed activated IrOx microelectrode
probe with 2000 µm2 GSA [27].

An electrochemical impedance spectroscopy
measurement was taken in phosphate buffered saline
solution using Autolab PGSTAT128N (Metrohm AG,
Switzerland) with 10 mV-rms sinusoids. A three-
electrode configuration was used. The working elec-
trode was ourmicroelectrode probe, the counter elec-
trode was a platinum sheet electrode (Metrohm),
and the reference electrode was Ag|AgCl electrode
(FisherScientific, NH).

In the charge injection experiments, a two-
electrode configuration was used. The working elec-
trode was the microelectrodes connected to the stim-
ulation channels, and a Pt sheet counter electrode
connected to the system ground (figure 1(C)). Stim-
ulation current signals were charge-balanced biphasic
asymmetric signals with a cathodic-first polarity. The
pulse width ratio of the stimulus patterns was set at
1:4 cathodic- to-anodic, and their amplitudes were at
4:1. The biphasic signalswere set from1µA to 160µA,
and the bias potential was programmed from 100mV
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Figure 3. Voltage transients of 60 µA cathodic first biphasic asymmetric (1:4 cathodic-to-anodic pulse width ratio and 4:1
cathodic-to-anodic amplitude ratio) constant current stimulation. Three different intensity loads (10 kΩ–30 kΩ) were connected
as working electrode for validation of the current intensity output of the system.

to 600 mV, to determine improvements in charge
injection capacities. The interphase pulse widths of
the biphasic signals were 100 µs, and their pulse repe-
tition frequencies were set at 625 Hz.

3. Results

The neurostimulator circuit was composed of 344
surface mountable device components which were
soldered onto a 59.06 × 35.82 mm custom PCB
(figure 1(B)). Overall weight, including batteries, was
35.4 g. Electrical conductivity, mechanical strength,
and soldering quality tests of the assembled compon-
ents were completed before flashing the system. Once
stimulation parameters were received by the neur-
ostimulator circuit, the microprocessor went into the
workingmode, and transmitted converted data to the
PC (figure 2). Based on the plotted voltage transients
in the interface, the anodic bias voltage can be adjus-
ted to increase charge injection capacity. Voltage tran-
sient and battery monitoring results were saved in a
directory in the PC, and were plotted in the interface
as shown in figure 2.

Initial electrical tests of the neurostimulator sys-
tem using simple resistors were conducted to observe
signal generation while monitoring voltage transient
response on different loads. Biphasic 60 µA constant
current stimulation signals were injected, and voltage
transients in response to the stimulation signal were
monitored wirelessly (figure 3). The voltage transient
peaks for cathodic phases were recorded as −0.57 V,
−1.15 V, and−1.71 V, respectively.

In vitro voltage transients in response to the
biphasic asymmetric constant current stimulation
signals with and without anodic biases are shown
in figure 4(A). It is noted that the voltage transi-
ent consists of the initial sharp voltage drop called
ohmic drop and polarization. The former is also
known as the access voltage which results due to
resistance at the electrode-electrolyte interface, and
does not cause electrochemical damages [30]. First,
increasing current intensity resulted in greater ohmic
drops and polarization, thus greater peak cath-
odic voltages. This happened regardless of whether
anodic bias was applied (figure 4(A))-Left) or not

(figure 4(A))-Right), which was as expected. A key
difference was that without anodic bias potential
applied, the current was limited at 80 µA, since cath-
odic voltage transients extended to −1000 mV, of
which −626 mV is due to the interface polariza-
tion. However, with a 600 mV anodic bias poten-
tial, the current intensity was doubled to 160 µA
without being restricted by expanding polarization
voltages. Therefore, figure 4(B)) illustrates that apply-
ing a 600 mV anodic bias enhanced charge injection
greatly, even leaving additional capability to inject
more currents. Our stimulator’s maximum current
output of 160 µA is likely enough for most in vivo
microstimulation applications in terms of activating
neural tissues [7, 23, 31].

We studied the effect of varying levels of anodic
bias on electrode polarization. Figure 4(B) shows
that higher anodic bias resulted in less polarization,
enabling more current to be injected. For example, a
no-bias case reached its largest current at the earli-
est at 80 µA, 100 mV of anodic bias at 100 µA,
200 mV of anodic bias at 120 µA, 300 mV of anodic
bias at 130 µA, 400 mV of anodic bias at 150 µA,
500 mV of anodic bias at 160 µA, and 600 mV of
anodic bias also at 160 µA. Therefore, there was an
inverse relationship between the bias level and polar-
ization, and a direct relationship between the bias
level and current intensity. In other words, the use of
anodic bias allowed maximization of current injec-
tion while reducing polarization, thus safer electro-
chemical dynamics.

Stimulation parameters that resulted in approx-
imately the same values of peak cathodic voltages
are illustrated in figure 4(C). A no-bias 10 µA and
600 mV-biased 100 µA had similar peak cathodic
voltages. Thus, in this case, the current intensity was
increased by a factor of approximately ten (from
10 µA to 100 µA). Similarly, no-bias 20 µA and
600 mV-biased 120 µA had similar peak cathodic
voltages, thus a six-fold increase in the current intens-
ity; no-bias 30 µA and 600 mV-biased 130 µA had an
approximately four-fold increase; both no-bias 40 µA
and 600 mV-biased 150 µA and no-bias 50 µA and
600 mV-biased 160 µA had approximately three-fold
increases. Thus, the charge injection capacity of the
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Figure 4. Demonstration of charge injection enhancement using anodic bias applied through the neurostimulator circuit via
telemetry. (A) Comparison of voltage transients in response to constant current stimulations with a 600 mV bias potential (Left)
and without anodic bias potential (Right). Anodic bias helped inject twice the current intensity (160 µA vs. 80 µA). (B) Cathodic
polarization voltages in response to increasing current intensities and under varying anodic bias potentials. Anodic bias enabled
greater current injection. For instance, without anodic bias 80 µA was the maximum intensity, whereas with 500 mV or 600 mV
bias, the current injection limit was safely extended to 160 µA. (C) Pairing of current intensities by peak cathodic voltages shows
three to ten fold increases in charge injection with the use of 600 mV anodic bias. (D) Comparison of initial and after 4 million
cycles of continuous stimulation with 600 mV anodic bias voltage with 120 µA. After 4 million cycles, the voltage transient of the
IrOx electrode and anodic bias potential were stable which shows robustness of the neurostimulator. (E) An impedance
spectroscopy of an activated IrOx microelectrode, illustrating low impedance values and good electrochemical property.

AIROF microelectrodes was enhanced by a factor of
ten at the maximum and a factor of three at the min-
imum, depending on a range of the current intensity.
In all cases, the voltage transients did not exceed the
limits of the cathodic electrolysis.

The consistency of the neurostimulator and
property of the IrOx microelectrode array were
evaluated with 4 million continuous cycles of
pulses (figure 4(D)). The electrode was subjected
to continuous biphasic current pulsing at 600 mV
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anodic bias and 24 nC/phase (120 µA current intens-
ity, 200 µs cathodic phase pulse width; 100 µs
interphase pulse width; 800 µs anodic phase pulse
width; 500 µs off-period), at a frequency of 500
pulses per second for a total of approximately 33 min.
Voltage transients before and after 4 million cycles
were very similar which demonstrated the reliabil-
ity of the neurostimulator in continuous stimulation
mode. Figure 4(E) shows an AC impedance plot of
activated IrOx microelectrode. At 1 kHz, the imped-
ance value was 8.64 kΩ at 1 kHz which is very low,
illustrating a suitable electrochemical property.

4. Discussions

Our embedded neurostimulator system, designed
with discrete components, demonstrated a battery-
powered, low-cost, and wirelessly controlled mul-
tichannel electrical stimulation with programmable
charge injection enhancement in vitro.

Table 2 provides a comparison between our sys-
tem and other neurostimulators. Previous studies
used a non-programmable charge injection (manu-
ally with an analog potentiometer) on a single chan-
nel and external oscilloscope to monitor voltage
responses [17, 18]. Our system offers unique and
key combinations of features such as programmable
anodic bias control, multichannel constant-current
stimulations, and voltage transients monitoring with
a built-in wireless bidirectional data transmission.
These advantages may prove important for freely
behaving animal studies.

We can currently use the electronics in benchtop
or intraoperative settings, but a longer-term purpose
of implementing the Bluetooth interface would be for
use in freely-behaving small animals (although this
utility is not a main focus of this report). The current
physical dimension may be small and light enough
for the rats as a backpack-worn stimulator as sim-
ilarly done in a recent long-term stimulation safety
study in the cats [23]. There are several benefits of our
wireless system, including: (a) stimulation paramet-
erization and data transfer without restricting animal
mobility extracorporeally and risking connector fail-
ure after repeated mating, (b) reduced tethering of
animal’s body to the instrument which may intro-
duce less stress during long-term stimulation exper-
iments and, thus, enhance signal fidelity and repro-
ducibility, and (c) improved scalability of stimulation
channels without adding bulkiness to the cables and
connectors.

Having many features requires extensive hard-
ware and firmware designs. Existing neural inter-
face systems [32–34] have generally been designed
as either separated modules (neurostimulator and
hub system) or interconnected printed circuit boards.
Separated modules require individual power units,
microcontrollers, and connectors to link themodules.

Therefore, a compact design is desired for freely mov-
ing animal experiments, avoiding possible connec-
tion failures among PCBmodules, complex firmware
programming, and short battery life. We developed
a single printed circuit board-based neurostimulator
system that simplified such issues while allowing
for efficient stackup layer plan and crosstalk and
coupling elimination. Application-specific IC-based
neurostimulators can further miniaturize overall
form-factors [35–37].

We noticed that the access resistance, calcu-
lated from the ohmic voltage drop (R = V/I) of
figure 4(C), decreased as the anodic bias increased,
from 3.80 kΩ (R = 38 mV/10 µA) at 0 V to 3.36 kΩ
(R= 336 mV/100 µA) at 600 mV of anodic bias. This
supports our hypothesis that the anodic bias makes
the IrOx’ valence states more conductive, thus result-
ing in lower interfacial resistance.

In vivo charge injection enhancement with anodic
bias potential was validated by our group and oth-
ers previously [20, 22, 23]. They demonstrated that
electronics-based charge enhancement was efficient
and convenient in in vivo animal studies. Regard-
ing safety, during the off-duty period, a negligible
amount of external current flowed through the
microelectrode (<0.01 µA). This ensures that the sys-
tem avoids injecting extra net charge into the electro-
lyte or tissues, potentially resulting in tissue damage
in vivo. Our recent work involving a 400 mV-anodic
bias in a long-term in vivo study reported that intra-
cortical stimulation of feline pyramidal neurons for
20 d resulted in minimal damage compared to con-
trol tissue [23].

In the testing under this study, we applied the
anodic bias against Pt electrode. We measured an
approximately 270 mV of open circuit potential
for Pt vs. Ag|AgCl using AutoLab instrument, thus
we believe that among the anodic bias potentials
tested in this study (i.e. 100 mV, 200 mV, 300 mV,
400 mV, 500 mV, and 600 mV), 600 mV is likely
be an upper limit as the actual electrode potential
(600mV+ 270mV= 870mV) is at the onset of water
oxidation. While we may be underutilizing charges
in the cathodic region, IrOx is known for potential
damages beyond −0.6 V (vs. Ag|AgCl; Cogan 2008),
and we are already injecting a maximum cathodic-
first current intensity afforded by our stimulator
which is likely be adequate for neural activation as
noted.

In our preliminary study [38], we reported an
increase of charge injection capacities of the Black-
rock IrOx microelectrodes with 0.7 V anodic bias by
nine-fold. In the report, we enhanced our custom
multisite IrOxmicroelectrodes’ charge injection capa-
city with 0.6 V anodic bias by amaximum of ten-fold.
In both cases, we calculated the increases in current
injection using cathodic polarization voltages. In this
study, the enhancement, however, was reduced from
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Table 2. Comparison to other systems in the literature.

Features
Kölbl
et al [40]

Fluri
et al [41]

Kouzani
et al [42]

Adams
et al [43]

Elyahoodayan
et al [44] This Work

Anodic bias
potential

No No No No No Digital,
0–3.3 V

Stimulation Bilateral,
constant-
current

Single channel,
constant-
current

Single channel,
constant-
current

Single channel,
constant-
current

32 Channel,
constant-
current

16 Channel,
simultaneous
constant-
current

Built-in voltage
transient
monitoring

N/A No N/A No No Yes

Sampling rate N/A N/A N/A External device
with 50 MS s−1

External device
with
100 kS s−1

354 kS s−1

Pulse width 60 µs 60–500 µs 90 µs 20–155.7 µs 1–200 µs 1–2000 µs
Wireless data
transmission

No No Yes No No Yes

User interface No No No No No Yes
Current
intensity

15–1600 µA 10–500 µA 200 µA 0–200 µA 1–60 µA 1–160 µA

Battery Powerone
Zinc/air p675
1.45 v/650mAh

Single coin cell
1.55 V/20 mA

Single coin cell
3.7 V/250 mA

Single coin cell
3.7 V/220 mA

Two-coin cells
3.7 V/[N/A]
mA

Two Li-poly
batteries
3.7 V/550 mAh
and on-circuit
charging

ten-fold to approximately three-fold in larger current
intensity pairs (figure 4(C)). The data collectively,
however, illustrate that the improvement is inde-
pendent of device styles (single tip Blackrock elec-
trodes vs. multisite silicon array). In addition, charge
injection enhancement is not limited only to the
IrOx microelectrodes that were used in this study.
Other materials such as Pt/Ir [8], Ta/Ta2O5 [39], and
PEDOT [8] also respond to anodic bias, providing
improvement in charge injection capability. Repet-
itive anodic biased charge injection, for instance,
using 4 million cycles as done in this study or more,
may confirm their long-term suitability for chronic
microstimulation.

5. Conclusion

This study showed that charge enhancement of the
IrOx microelectrodes can be increased by a max-
imum of ten-fold with a digitally and wirelessly con-
trolled anodic bias potential using a custom-designed
multichannel neurostimulator system. In addition,
to assure stimulation signal charge injection safety,
the system can monitor and record voltage transient
responses of the stimulation signals using a custom
software interface. Enhancement of charge injection
with anodic bias voltages has been demonstrated in
vivo, in intracortical [23] and brainstem studies [22],
paving the way for in vivo validation of our neur-
ostimulator system.
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