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Abstract
Objective. In people with a cervical spinal cord injury (SCI) or degenerative diseases leading to
limited motor function, restoration of upper limbmovement has been a goal of the brain-computer
interface field for decades. Recently, research from our group investigated non-invasive and
real-time decoding of continuous movement in able-bodied participants from low-frequency brain
signals during a target-tracking task. To advance our setup towards motor-impaired end users, we
consequently chose a new paradigm based on attempted movement. Approach. Here, we present
the results of two studies. During the first study, data of ten able-bodied participants completing a
target-tracking/shape-tracing task on-screen were investigated in terms of improvements in
decoding performance due to user training. In a second study, a spinal cord injured participant
underwent the same tasks. To investigate the merit of employing attempted movement in end users
with SCI, data of the spinal cord injured participant were recorded twice; once within an
observation-only condition, and once while simultaneously attempting movement.Main results.
We observed mean correlations well above chance level for continuous motor decoding based on
attempted movement in able-bodied participants. Additionally, no global improvement over three
sessions within five days, both in sensor and in source space, could be observed across all
participants and movement parameters. In the participant with SCI, decoding performance well
above chance was found. Significance. No presence of a learning effect in continuous attempted
movement decoding in able-bodied participants could be observed. In contrast, non-significantly
varying decoding patterns may promote the use of source space decoding in terms of generalized
decoders utilizing transfer learning. Furthermore, above-chance correlations for attempted
movement decoding ranging between those of observation only and executed movement were seen
in one spinal cord injured participant, suggesting attempted movement decoding as a possible link
between feasibility studies in able-bodied and actual applications in motor impaired end users.

1. Introduction

High spinal cord lesions due to accidents or neur-
ological disorders leading to a deterioration of the
motoric abilities severely limit the motor function,
and thus, overall quality of life, of the person affected

(Charlifue et al 2012, Tulsky et al 2015). Ranging from
restricted hand or arm movement to actual tetraple-
gia, completing everyday tasks may pose an insur-
mountable obstacle, and offering these people pos-
sibilities to regain motor control has been a focus
of brain-computer interface (BCI) research for years
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(Pfurtscheller et al 2000, 2003,Müller-Putz et al 2005,
Rupp et al 2005, Rohm et al 2013).

Per definition, BCIs exclusively rely on invasively
or non-invasively acquired brain signals and offer a
range of possible outputs that enable the users to
interact with their environment without any prior
neuromuscular activity. Accordingly, BCIs intrinsic-
ally offer motor-impaired people the possibility of
operating an end-effector (e.g., robotic limb, neuro-
prosthesis, etc) solely based on their brain activity,
and thus provide an opportunity to regain independ-
ence (Rohm et al 2013).

Over the last decades, a broad range of tasks
has been devised to investigate the neural correlates
of specific movements non-invasively, ranging from
basic right-vs-left-hand or foot classification tasks to
increasingly complex paradigms in both able-bodied
and spinal cord injured participants (Pfurtscheller
et al 2000, 2009, Wolpaw and McFarland 2004, Shan
et al 2015, Meng et al 2016, Müller-Putz et al 2016).
However, the disparity between a mental task devised
for control and the intended task at hand oftenmakes
the operation of BCIs unintuitive, apart from intro-
ducing a mental workload that is disproportionate to
the intended action. As a result, recent research in the
field has turned to BCI solutions offering more nat-
ural control to the user; in particular, solutions which
allow unrestricted eye movements as can be expec-
ted also from everyday situations, as well as intuitive
paradigms that connect the task in a straight-forward
way with the intended goal (Ofner and Müller-Putz
2012, Müller-Putz et al 2016, 2018, 2022, Edelman
et al 2019, Mondini et al 2020).

As has been demonstrated, decoding coordinates
corresponding to intended movement via neural cor-
relates intracortically or epidurally is feasible (Black
et al 2003, Mulliken et al 2008, Hochberg et al 2012,
Hammer et al 2013); however, over the last dec-
ade, research from various groups confirmed that
kinematic information may also be inferred non-
invasively. Within center-out tasks, the feasibility of
decoding movement kinematics was shown both in
offline (Bradberry et al 2010, Antelis et al 2013,
Úbeda et al 2017) and online settings (Bradberry
et al 2011, Korik et al 2019). Recently, the feasibility
of decoding continuous movement within pursuit-
tracking tasks in an online setting has been shown in
a number of studies (Edelman et al 2019, Martínez-
Cagigal et al 2020, Mondini et al 2020, Kobler
et al 2020c). Devising specific 2D target-tracking
tasks that ensured decorrelation between the two
coordinates, our group recently reported correlations
well above chance level during continuous traject-
ory decoding from low-frequency electroencephalo-
graphic (EEG) signals for executedmovement in able-
bodied participants (for a review see (Müller-Putz
et al 2022)). Using partial least squares (PLS) regres-
sion followed by smoothing via unscented Kal-
man filter (UKF), correlations between depicted and

decoded trajectories of on average 0.42 could be
observed (Martínez-Cagigal et al 2020). In a sim-
ilar task, the participants were instructed to observe
the target only, leading to reduced, though still bet-
ter than random, correlations of on average 0.31
(Kobler et al 2020c).

The previously mentioned studies were tailored
to executed movement performed by able-bodied
participants. However, actual end users experien-
cing severely limited motor output would have been
unable to train the decoder by performing actual
upper limb movement. Consequently, the objective
of the current study was twofold. First, to cater the
setup to motor-impaired end users to render non-
invasive continuous movement decoding possible for
persons with severe limitations in motor output as
well. In this regard, we investigated a paradigm based
on attempted movement instead of executed move-
ment, similarly to (López-Larraz et al 2012, Ofner
et al 2019). As there has been evidence that motor
attempt (MA) tasks are perceived as more intuit-
ive compared to motor imagery (MI) tasks by the
participants (Müller-Putz et al 2019), in addition to
leading to significantly higher BCI accuracies when
classified against a rest condition (Chen et al 2021),
we specifically chose attempted movement over MI
e.g. employed in (Bradberry et al 2011, Korik et al
2018). A pilot study (Müller-Putz et al 2021) showed
that continuous decoding from attemptedmovement
is possible with above-chance correlations ranging
between observed and executed movement. Addi-
tionally, the perceived level of control over the BCI
at the beginning and at the end of the measurement
suggested a possible positive impact of user train-
ing on the decoding performance of the interface.
Thus, the second and final objective was to investigate
improvements of the overall decoding performance
over sessions.

As a result, in the current paper, we chose to
investigate attempted movement performed within
two different studies. First, the decoding performance
during attempted movement in 2D trajectory decod-
ing in ten able-bodied participants over three sessions
within five days was analyzed. Preliminary results,
limited to single-participant results exclusively evalu-
ated in sensor space, have been published in (Pulferer
et al 2021). The time frame of five days was chosen to
offer the participants the possibility of recuperating
from the mental workload imposed by the paradigm
fromone session to the next, while keeping the experi-
ence fresh in the participants’minds. During each ses-
sion, two different paradigms were presented, which
we evaluated in terms of changing decoding perform-
ance over time both in sensor space and in source
space. And second, the feasibility and decoding per-
formance in an spinal cord injury (SCI) participant
within two different sessions, comprising an observa-
tion and an attempted movement task, respectively,
were examined.
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Figure 1. Paradigms and experimental setup. (a) Snakeruns (tracking task): black screen with moving white target (snake).
(b) Freeruns (tracing task): static white shape (diagonal 1, diagonal 2 or circle) shown on screen to be traced at the participants’
own pace. In both paradigms, online feedback in the form of the partially (50% EEG feedback condition) or fully (100% EEG
feedback condition) EEG-decoded trajectory was delivered (green dot). (c) Experimental setup with the participant’s dominant
arm strapped to the arm rest during recording. Below, the measurement pipelines for able-bodied (d) and spinal cord injured
(e) participants are shown (E: eyerun, S: snakerun, F: freerun).

2. Methods

2.1. Participants
EEG signals of each ten able-bodied participants
(24 (mean) ± 5 (SD) years, five male) were recorded
within three sessions over five days. The participants
underwent a handedness test according to the Edin-
burghHandedness Inventory (Oldfield 1971) prior to
the first measurement, confirming right-handedness
in each participant. Among the participants, four had
previous experience regarding EEG measurements,
though all of them were naive BCI users in terms of
motor decoding. Additionally, each participant had
normal or corrected-to-normal vision. Data of an
eleventh participant (female) were excluded from fur-
ther analysis due to erroneousmarker-labeling during
session 1. Each of the participants gave their written
informed consent and received compensatory pay-
ment for participating in this study. The measure-
ments were conducted as a part of the ‘Feel Your
Reach’ project and as suchwere approved by the ethics
committee of the Medical University of Graz (votum
number 32–583 ex 19/20).

2.2. Data acquisition
During each measurement session, data were recor-
ded on 64 channels (actiCAP, Brain Products GmbH,
Gilching, Germany) consisting of a 60 channel
EEG located according to the international 10–10
system and four electrooculographic (EOG) elec-
trodes placed on the outer canthi of both eyes as
well as above and below the left eye (see figure
S1, supplementary material available online at
stacks.iop.org/JNE/19/036005/mmedia). To allocate
electrodes to the EOG, EEG channels at positions
Fp1, Fp2, FT9, FT10 were removed. Additionally,
the electrodes at TP9 and TP10 were relocated to
positions PPO1h and PPO2h according to the 10–5
system for increased signal density in the parieto-
occipital area, which has since been established to

be of paramount importance for motor decoding
(Wenderoth et al 2005, Mulliken et al 2008). Ground
and reference electrodes were placed at Fpz and on
the right mastoid for all participants. All data were
recorded and synchronized using lab streaming layer
(https://github.com/sccn/labstreaminglayer). The
paradigms, as devised in (Mondini et al 2020,Müller-
Putz et al 2021), were presented using a combination
of MATLAB scripts (MATLAB 2015b, MathWorks
Inc. USA) and Psychtoolbox (Brainard 1997, Pelli
1997, Kleiner et al 2007).

2.3. Paradigms
For each session, the participants were seated com-
fortably in front of a TV screen. To minimize the
participants’ range of motion and mimic attemp-
ted movement as demonstrated in primate studies
(Velliste et al 2008), the dominant arm was strapped
to the arm rest as shown in figure 1(c), largely
restricting the possible motor output (Ofner et al
2019). The participants were instructed to attempt
to move their lower arm as if wielding a computer
mouse. As such, forward and backward movement
of the arm was projected to upward and downward
movement on screen.However, any actualmotor out-
put in the form of overt movement was prevented
by the contraption encasing the limb. This approach
was chosen because it was perceived as more intu-
itive than e.g., MI tasks by participants (Chen et al
2021). Additionally, it closely mimics the limitations
in motor function which people with SCI experience:
even though actual movement is desired, the motor
output is eventually blocked.

Each session (see measurement pipeline in
figures 1(d) and (e)) consisted of an offline cal-
ibration part, covering data acquisition for fitting
the artifact removal (Kobler et al 2019, Kobler
et al 2020b) and decoder (Martínez-Cagigal et al
2020) algorithms, and an online part, during which
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feedback was provided in real time in two different
feedback conditions (cf section 2.4).

2.3.1. Snakeruns
During the snakeruns, presented in both the off-
line (cf section 2.3.3) and the online part of the
measurement, a white target (the snake) was shown
on the black screen for a duration of 23 s per
trial (figure 1(a)). As in (Mondini et al 2020), the
snake trajectories were designed specifically to ensure
decorrelation between x and y coordinates in order
to allow a clear directional distinction between the
decoded movement parameters. In addition to the
snake, a green dot corresponding to feedback was
depicted to provide the participants with immediate
information on their performance. The participants
were asked to track the snake with their gaze and
simultaneously attempt movement of their strapped
lower arm and hand as if wielding a computer mouse.
As both target and feedback were shown at the same
time, the participants had the opportunity to adjust
their focus to try and increase the decoding perform-
ance, allowing them to learn to interact with the BCI
in a constructive way.

2.3.2. Freeruns
In the freeruns, presented only in the online part
of the measurement, the participants were confron-
ted with one of three different white shapes on
the TV screen (diagonals, circle) for 23 s per trial
(figure 1(b)). The participants were instructed to
trace the appearing shape with their gaze, as well
as to attempt movement with their strapped limb
like during the snakeruns. Again, they were asked
to mainly focus on the target (in the case of the
freeruns, the static shapes), though to keep the once
again displayed green feedback dot in mind to adjust
their approach with the goal of increasing their
performance. To keep the task as intuitive and natural
as possible, no additional instruction on how to pro-
ceed was given, apart from the premise not to pause
at any point during the trial. Generally, the freeruns
were designed as a self-paced paradigm, allowing the
BCI users to freely operate the interface however they
saw fit.

2.3.3. Calibration
During the offline calibration part, two eyeruns
(38 trials, 8 s each) and four snakeruns (48 trials, 23 s
each)were recorded (figures 1(d) and (e)). Data of the
two eyeruns, corresponding to EEG and EOG signals
recorded during resting gaze (12 trials), blinks (10 tri-
als), horizontal and vertical eye movement (8 trials
each), were subsequently used to fit models for atten-
uating eye artifacts as well as pops and drifts in the
EEG channels during the following online part of
the session (cf section 2.5). Finally, EEG data of the
four snakeruns were used to fit the decoder model
(cf section 2.6).

2.4. Feedback conditions
As data were still being acquired during the calib-
ration phase, fake feedback (delayed snake) in the
form of the green feedback dot was provided in
the beginning. This followed the purpose of getting
the participants acquainted with the additional visual
information on screen from the start. After fitting the
decoder model with the calibration run data, two dif-
ferent conditions of online feedback were introduced.
First, the 50% EEG feedback condition was presen-
ted within three snakeruns (36 trials, 23 s each). Here,
the green dot was depicted as the arithmetic mean
of the target (snake) trajectory and the EEG-decoded
positions. As the real feedback could vary noticeably
from the depicted snake trajectory depending on the
decoder performance, the EEG information was only
weighted with 50% for the feedback at first to get
the participants acquainted to the deviation and to
avoid eliciting frustration. Afterwards, the 100% EEG
feedback condition was introduced, during which the
feedback dot position corresponded entirely to the
EEG-decoded positions. For the first participant (P1),
the 100% EEG feedback was exclusively delivered in
the formof three freeruns, which afterwards (P2-P10)
was expanded to three additional 100%EEG feedback
snakeruns between the 50% EEG feedback snake runs
and the 100% EEG feedback freeruns for additional
quantitative analysis (see figure 1(d)). In contrast to
the snakeruns that were completed prior, the freer-
uns were only presented in the 100% EEG feedback
condition (figures 1(d) and (e)).

2.5. Data processing
After digitalization at an initial sampling frequency of
200 Hz, an anti-aliasing filter (25 Hz) was applied,
and powerline noise was removed using a notch fil-
ter at 50 Hz. Subsequently, the signals were down-
sampled to 100 Hz and bad channels, identified by
visual inspection, were interpolated from the sig-
nals of the four nearest channels, weighted with their
inverse distance to the bad channel.With the acquired
eyerun data, an eye artifact subtraction model was
fitted for each participant using the SGEYESUB
algorithm (Kobler et al 2020b) based on subspace
subtraction to identify and attenuate the influence of
saccades and blinks on the EEG. To additionally obvi-
ate an impact of potential residual eye-related activity
on the EEG data, all channels within the most frontal
(AF) rowwere excluded from further processing. Sub-
sequently, the data were high-pass filtered at 0.18 Hz,
re-referenced to the common average reference, and
pops and drifts in the signals were attenuated using
the HEAR algorithm (Kobler et al 2019, Kobler et al
2020b). After low pass filtering at 3 Hz and further
downsampling to 20 Hz, the signals were fed to the
decoder (Martínez-Cagigal et al 2020, Müller-Putz
et al 2021), yielding the feedback output shown as a
green dot on screen during the online runs.
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2.6. Decoder
As in our previous studies (Martínez-Cagigal et al
2020, Mondini et al 2020, Kobler et al 2020c), the
movement parameters at each time point tk were
decoded from a set of data points, containing the
respective as well as six prior time points of EEG data
{tk−6, tk−5, …, tk−0} in each electrode (55 remain-
ing channels after removal of the AF row), sampled
at 20 Hz. As a result, a total of 7 × 55 = 385 tem-
poral features were used to decode the movement
parameters (position x, position y, velocity x, velo-
city y) at one single time point tk. After windowing
the data of the four calibration snakeruns (48 tri-
als, 23 s each) according to this feature structure, the
motor decoding was performed using a combination
of PLS regression and consecutive smoothing via an
UKF (Martínez-Cagigal et al 2020).

2.7. Analysis
2.7.1. Sensor space
Pearson’s correlation coefficient r was used as a
quantitative evaluation metric for the participant’s
performance levels in sensor space. As the decoder
model had to be fit anew with each session, inter-
session variances (varying impedance, slightly differ-
ent electrode positions etc) were removed by normal-
izing the correlations from the online trials (50% and
100% EEG feedback) with the mean correlation
achieved during the offline calibration snakeruns of
the respective session. For both paradigms, the chance
levels were calculated using a shuffling approach
as in (Mondini et al 2020). Specifically, EEG data
and corresponding snake trajectories from calibra-
tion were randomly interchanged for each session
to break all causal relations, and a new PLS model
was fitted on the shuffled data for 100 times. The
chance level of each session and movement para-
meter was then determined as the 95th percentile
of the absolute values of the chance correlations.
Significant differences in the respective movement
parameters between mean correlations and corres-
ponding chance levels and between mean correla-
tions of two distinct sessions (1↔2, 1↔3, 2↔3) in
the respective movement parameters were checked
using Wilcoxon’s signed rank test. We corrected for
multiple comparisons in a total of n = 30 tests (four
movement parameters × 3 sessions × 2 conditions
(50/100% EEG feedback snakeruns) + 2 movement
parameters × 3 sessions × 1 condition (freeruns))
by adjusting the significance level (α = 0.05) using
the false discovery rate (FDR). Offline analysis on
the data was conducted usingMATLAB and EEGLAB
(Delorme and Makeig 2004).

To overcome the limitations of Pearson’s correl-
ation coefficient in analyzing the actual deviation
between ground truth and decoded signal (Spuler
et al 2015), the normalized root mean square error
(NRMSE) was consulted. For the normalization of
the root mean square error, the side length of the

smallest square containing all depicted snake traject-
ories (960px) has been used. Additionally, to gain
insights on the scale of the decoded signals, the amp-
litude ratio was calculated as the ratio between the
variance of the decoded and the variance of the depic-
ted signal.

2.7.1.1. Snakeruns
For the online snakeruns, the normalized correla-
tions in all movement parameters between snake
position and EEG-decoded trajectory during each
single trial were calculated for each participant and
session. The average correlation per session was
then grand averaged across all participants for both
feedback conditions.

2.7.1.2. Freeruns
Because no dynamic information was depicted on
screen during the freeruns, a time series as a ground
truth to measure the correlation of the decoded tra-
jectories against was missing in this paradigm. As
a replacement, the target position on screen was
inferred via horizontal and vertical bipolar deriva-
tions of blink-cleaned, low-pass filtered (3 Hz) and
downsampled (20 Hz) EOG data. Specifically, for
the horizontal component, the difference between the
signals at the outer canthi of both eyes was calculated
and the correlation with the EEG-decoded position
x coordinate was determined. For the vertical com-
ponent, the signal difference between the EOG elec-
trodes above and below the left eye was determined
and the correlation with the EEG-decoded position y
component was calculated.

2.7.2. Source space
In addition to the detailed analysis of the decoding
performance in sensor space, a general analysis of the
decoding performance over sessions was gained by
investigating the decoder itself on the source level. As
mentioned before, PLS regression was used to find a
connection between our selected featuresX ∈ RT×385

(i.e., the windowed processed EEG data) and tar-
get variables Y ∈ RT×4 (i.e., the directional move-
ment parameters from the snake) in T time points. As
described in (Mondini et al 2020, Kobler et al 2020a),
this connection is found in the form of a weight mat-
rix W ∈ R385×4 fulfilling Y= XW. This corresponds
to a backward model, in which W is functioning as
a filter applying weights to the features according
to their importance. However, to identify the neural
correlate to each of the target movement parameters
within the PLS model, the respective forward model,
i.e. the activation pattern A= Cov(X)WCov(Y), is
required for meaningful interpretation (Haufe et al
2014).

For this reason, we calculated the activation pat-
terns corresponding to the online decoder model
for each movement parameter, participant, and ses-
sion. Because of inter-participant variations in the
amplitude of these activation patterns, we normalized

5
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the patterns of each participant with respect to the
mean global field power (GFP) across the patterns
corresponding to the 100 offline chance permuta-
tions that were used before for the chance level
estimation of the correlations in sensor space (cf
section 2.7.1). Specifically, we calculated the activa-
tion pattern to each of the chance models, evaluated
its standard deviation across all electrode channels at
lag zero, and finally took the mean across all mod-
els to find the GFP to all four movement paramet-
ers as done in (Mondini et al 2020). Data analysis
was performed with Brainstorm (Tadel et al 2011).
Within Brainstorm, we used OpenMEEG (Gramfort
et al 2010) to generate head models for each parti-
cipant and session. We co-registered the ICBM152
boundary element model (BEM) (Kybic et al 2006)
to the electrode positions that we recorded prior to
each session (ELPOS, Zebris Medical Gmbh, Ger-
many) using nasion and preauricular points as ana-
tomical landmarks. To control for deviations between
each participant’s head topology and the BEM, the
electrode positions were projected onto the tem-
plate head model’s surface. For the conductivities
within each of the three layers of the BEM model
(cortex, skull, scalp), we adjusted the default value
to (1, 0.008, 1) as in (Mondini et al 2020, Kobler
et al 2020a). Eyerun data of each session, function-
ing as resting state data, were cleaned of eye arti-
facts (Mondini et al 2020, Kobler et al 2020b), freed
of the AF channel row, re-referenced to the com-
mon average reference and finally cleaned of elec-
trode pops and drifts (Kobler et al 2019,Mondini et al
2020, Kobler et al 2020b) to calculate the noise covari-
ance matrix needed for generating the head model in
OpenMEEG. The corresponding inverse solution was
found via minimum norm imaging, using sLORETA
(Pascual-Marqui 2002) to calculate the current dens-
ity map. No limitations on the dipole orientations
were set, yielding three elemental (Cartesian) dipoles
in n = 15.000 vertices. These 3 n data points were
then flattened by taking the Euclidean norm of the
elemental dipoles in each voxel.

To estimate a baseline (chance level) activation
pattern for each of the normalized movement para-
meter patterns generated in this fashion, the patterns
corresponding to the 100 chance permutation mod-
els generated earlier to estimate the GFP were aver-
aged in source space for each movement parameter,
participant, and session. Next, we calculated the dif-
ference between the decoder pattern of themovement
parameters in the online model and their respect-
ive averaged baseline activation pattern. These differ-
ence patterns were then averaged across participants
for each movement parameter and session. For fur-
ther analysis, the difference patterns of all movement
parameters were each projected onto an atlas of 20
regions of interest (ROI) by taking the mean activ-
ation across all voxels per ROI. Taking into account
previous works (Mondini et al 2020, Kobler et al

2020c), the ROIwere defined as superior frontal gyrus
(SFG), pre- and postcentral gyri (PrG, PoG), super-
ior and inferior parietal lobules (SPL, IPL), occipital
gyrus (OcG), paracentral lobule (PCL), precuneus
and cuneus (PCun, Cun) and lingual gyrus on both
hemispheres, adapted from the Desikan-Killiany atlas
(Desikan et al 2006). The respective difference dis-
tributions across all participants for each movement
parameter, ROI and session were then calculated
and plotted.

In addition to the investigation of differences
between decoder pattern and baseline activation pat-
tern, a non-parametric permutation paired t-test
(Nichols and Holmes 2002, Maris and Oostenveld
2007) was consulted to check for significant activ-
ity differences between the decoder patterns of the
respective sessions, resulting in three pairwise com-
parisons (session 1 → 2, 1 → 3, 2 → 3) in the pre-
viously defined ROI. For 4 movement parameters,
7 time lags, 20 ROI and 3 comparisons, the total
number of tests amounted to 1680. We accounted
for these multiple comparisons using FDR to adjust
the p-values at 0.05 significance level (Benjamini and
Hochberg 1995, Yekutieli and Benjamini 1999).

2.8. Participant with SCI
To investigate the feasibility of attempted movement
decoding in potential end users, we invited a parti-
cipant (male, 35) with a cervical spinal cord lesion for
two measurements.

The participant received a traumatic complete
(AIS A, (Maynard et al 1997)) SCI at neurological
level of injury C2 in 2003 due to a motorbike acci-
dent. He is artificially ventilated (mobile device) and
can only move his eyes and face and generate very
little head movements. He has no sensory impression
below level C2 (neck downwards). For two measure-
ments he was traveling to the lab in Graz for approx-
imately one hour per direction, which he was com-
pensated for.

On both occasions, the participant with SCI was
faced with the identical paradigms and feedback con-
ditions presented to the able-bodied participants as
well (offline calibration, 50% and 100% EEG feed-
back snakeruns, and freeruns), however with two
instead of three runs each for 50% and 100% EEG
feedback snakeruns and freeruns in the online part
to shorten measurement time (see adjusted meas-
urement pipeline, figure 1(e)). In the first measure-
ment, we assessed the feasible decoding performance
in an observation condition (Kobler et al 2020c); spe-
cifically, the participant with SCI was asked to com-
plete the tracking and tracing tasks solely visually and
without attempting movement. During the second
measurement, in the attempted movement condition,
the same tasks were completed again, finally with
the same instructions as non-disabled participants by
involving attempted movement of his formerly dom-
inant right arm.
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In terms of offline analysis, for the sensor space,
the exact same procedures were conducted for both
able-bodied participants and the participant with SCI
(cf section 2.7.1). Likewise, the processing in source
space largely coincided (cf section 2.7.2), with the
only exception being the data used for the noise cov-
ariance matrix to calculate the head model. Due to
noisy eyerun data of the participant with SCI recor-
ded during session 2, the eye artifact attenuation
model of session 1 was used offline to generate an
additional offline decoder model for analysis, which
was then evaluated instead of the online model gen-
erated for online feedback during the measurement.
Additionally, as eyerun data were also used to calcu-
late the noise covariance matrix for the head model
in source space for the able-bodied participants, data
of the breaks between the single calibration snakerun
trials (4 s each) had to be used for the participant
with SCI instead. To ensure comparability between
both sessions of the participant with SCI, calibration
snakerun break data were used to infer the noise cov-
ariance matrix for session 1 as well.

3. Results

3.1. Sensor space analysis
3.1.1. Online snakeruns (50%–100% EEG feedback)
The normalized grand average correlations between
snake and EEG-decoded trajectories in each direc-
tional movement parameter (position x, position y,
velocity x, velocity y) and session are shown both for
the 50%EEG feedback condition (figure 2(a)) and the
100% EEG feedback condition (figure 2(b)). Grand
average correlations for each parameter, session
and feedback condition are observed significantly
(α = 0.05) above chance level at approximately 0.4–
0.5rc, with rc denoting the mean correlation achieved
during the calibration snakeruns of the respect-
ive session (table S2, supplementary material). Not-
ably, all single participant means (black dots), ran-
ging between 0.5–1.5rc, are found above chance level
already, except for position y during the 100% EEG
feedback snakeruns of session 1.

For quantitative evaluation of the decoding per-
formance without normalization to the mean correl-
ation achieved in the calibration runs of each respect-
ive session, median raw correlations can be found in
figure S3 (supplementary material); exemplary snake
trajectories and corresponding decoded trajectories
for participant P9, session 2, are shown in figure S4
(supplementary material). The NRMSE and amp-
litude ratios across all participants for calibration and
online snakeruns can be found in table 1. Regarding
both grand average NRMSE, as well as grand aver-
age amplitude ratio, a worsening with increasing per-
centual importance of the EEG for decoding can be
observed. While the NRMSE stays largely unaffected
(increase from on average 10% to on average 12% of
the used TV screen range from calibration to 100%

percent EEG feedback snakeruns over all sessions),
the amplitude ratio worsens noticeably in terms of
both grand average and standard deviation. However,
for these metrics as well, session 2 yields the best res-
ults over all paradigms regarding grand average and
standard deviation.

In terms of decoding performance, significant
improvement over sessions was only found from ses-
sion 1 to session 2 during the 100% EEG feedback
condition in the position x parameter. However, the
50% EEG feedback condition nonetheless exhibits a
notable increase in grand average correlations in each
movement parameter from session 1 to session 2,
followed by a consecutive performance degradation
from session 2 to session 3. A similar trend can
be observed regarding the movement parameters in
the x coordinate in the 100% EEG feedback condi-
tion, though decoding performance in the movement
parameters in the y coordinate is found to steadily
decrease across sessions in this condition. Addition-
ally, a general decrease in decoding performance with
respect to the mean calibration correlation can be
observed from the 50% to the 100% EEG feedback
condition.

When investigating the normalized single parti-
cipant correlation means, an increase in performance
can be observed for approximately half of the ten par-
ticipants (P1, P3, P7, P8–10) from session 1 to any
later session in most movement parameters and feed-
back conditions (see figure 3). Additionally, we noted
a personal affinity towards a preferred decoding dir-
ection (see figure 3); in most participants (P1, P4–6,
P8–10), a clear performance gap is visible between
the two coordinates. This effect is not observed in the
grand average (figure 2).

3.1.2. Freeruns
For the freeruns, the normalized grand average cor-
relations between EOG-inferred and EEG-decoded
trajectories were evaluated, as shown in figure 2(c).
Single participant means, ranging from 0.5 to 1.5rc,
are observed strictly above chance level in all paramet-
ers and sessions. Wilcoxon’s signed rank test revealed
significant differences between grand averages and
corresponding chance levels in all sessions for both
movement parameters.

As can be seen, lower correlations are observed
in the freeruns compared to the snakeruns com-
pleted prior. Additionally, no significant changes in
decoding performance from session to session were
observed. However, a similar increase in performance
from session 1 to session 2 with a consecutive degrad-
ation from session 2 to session 3 as seen in the snaker-
uns is seen in position x.

3.2. Source space analysis
Apart from analyzing the correlations of our decoded
trajectories with a given ground truth in sensor space,
we also investigated the intrinsic decoder properties
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Figure 2. Normalized correlations per movement parameter over sessions, online snakeruns and freeruns. Grand average
normalized correlations (dashed vertical lines) between depicted snake trajectory or EOG-inferred trajectory, respectively, and
EEG-decoded trajectory with standard deviations (dashed tails), median and 25th/75th percentiles (boxes), single participant
means (black dots) and median chance levels (horizontal solid lines below) for all movement parameters and sessions for (a) 50%
EEG feedback snakeruns, (b) 100% EEG feedback snakeruns and (c) freeruns. All data were normalized with respect to the mean
calibration correlation (rc) of each respective session. For all prerequisites, mean correlations are observed significantly above
chance level at approx. 0.4–0.5rc. Crosshair diamond and circle correspond to observation and attempted movement performance
of the participant with SCI.

Table 1. Normalized root mean square error (NRMSE) and amplitude ratio. Grand average (GA) NRMSE and amplitude ratio with
respective standard deviation (STD) between decoded and depicted trajectories for calibration and online snakeruns in all sessions,
averaged over all movement parameters.

NRMSE (GA+ STD) Amplitude ratio (GA+ STD)

Paradigm Session 1 Session 2 Session 3 Session 1 Session 2 Session 3

Calibration 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 1.01 (0.05) 1.01 (0.04) 1.01 (0.04)
50% EEG feedback
snakeruns

0.11 (0.01) 0.11 (0.01) 0.12 (0.01) 1.08 (0.17) 1.07 (0.11) 1.07 (0.14)

100% EEG feedback
snakeruns

0.13 (0.02) 0.11 (0.01) 0.12 (0.02) 1.15 (0.27) 1.04 (0.14) 1.09 (0.27)

over sessions in source space. The grand average activ-
ity difference per voxel between decoder activation
patterns and respective baseline activation patterns
for each movement parameter and session at time lag
0 is shown in figure 4(a).

Across the ten participants, we observed that these
grand average difference patterns become more dis-
tinct over sessions. Specifically, the activated sector in
the parieto-occipital region for the movement para-
meter velocity y steadily increases in size across ses-
sions, reaching upuntil the central region in session 3.
Similar increases in size of the activated regions are
also observed for position x, with increases from
occipital to parieto-occipital regions, and velocity x,
with increasing activation in the posterior parietal
cortex, from session 1 to session 2.

After downsampling to our predefined atlas of 20
ROI (figure 4(c)), no significant differences between
decoder patterns and baseline activation patterns
were found in any movement parameter, session, and
ROI for any of the seven time lags. The resulting dif-
ference distribution across the single participant dif-
ferences per movement parameter, ROI, and session
(lines), as well as the respective grand average (dots)
are shown in figure 4(b). As can be seen, the grand
average values increase over sessions in most move-
ment parameter and ROI combinations, with session
2 or session 3 yielding the most distinct differences

between decoder and baseline pattern in approxim-
ately 85% of the cases. In about 90% of the cases, an
average increase in difference from session 1 to any
later sessions is observed, of which 65% correspond
to a maximum difference seen during session 2.

In terms of ROI, irrespective of the movement
parameter, the highest activation (positive sign) com-
pared to baseline (figure 4(b)) is observed in the
parieto-occipital regions. For position x, all regions
apart from SFG, PrG and PoG are engaged in each
session, with the highest activations seen in the con-
tralateral hemisphere. In contrast, only the contralat-
eral IPL shows activation throughout all sessions in
movement parameter position y, coinciding with its
largely erratic difference patterns (figure 4(a)). Both
velocity parameters exhibit clear engagement of cent-
ral through occipital regions, with disengagement
only seen in the SFG in velocity x and velocity y, and
in the PrG in velocity y. The highest activations in the
velocity parameters are observed in the contralateral
SPL, PCL, PCun and Cun areas. In general, the velo-
city parameters showmore consistency than the posi-
tional parameters (see figure 4(a)) due to the irregular
pattern seen in position y.

Regarding the behavior of the difference patterns
across sessions, likewise to the comparison between
decoder patterns and baseline activation patterns,
no significant differences can be reported for any
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Figure 3. Normalized single participant correlation means across sessions, online runs. Normalized correlation means for each
able-bodied participant (blue shades) across all respective trials in 50% (light gray section) and 100% (medium gray section) EEG
feedback snakeruns and freeruns (dark gray section) over the three sessions (dark to light blue). For participant P1, 100% EEG
feedback snakerun data were not recorded. Equal information is plotted for the spinal cord injured participant S1 (brown shades)
during the observation (session 1) and the attempted movement (session 2) tasks (dark to light brown).

pairwise comparison (session 1→2, 1→3, 2→3) in
any movement parameter, ROI, and time lag.

3.3. Participant with SCI
Following our study on learning effects confirming
the feasibility of decoding from attempted movement
in able-bodied participants, we conducted two con-
secutive measurements involving a participant with
SCI to assess the decoding performance in potential
end users. The participant’s performance levels in two
separatemeasurements, evaluated in sensor space, are
shown as diamond (observation) and circle (attemp-
ted movement) in session 1 of figure 2. Because
these measurements involved two different condi-
tions (observation in session 1, attempted movement
in session 2, see section 2.8), a comparison was only
possible with results of session 1 in the able-bodied
participants. As can be seen, the disabled participant’s
correlations during observation in both the snaker-
uns and the freeruns are on par with top-performing
participants of the able-bodied attempted movement
group, with even the best performance in 40% of the
cases. As such, the decoding performance in the par-
ticipant with SCI was found well above chance level.
In contrast to the observation condition, however, a
notable decrease in correlations is shown during the
disabled participant’s attemptedmovement measure-
ment. The performance of the participant with SCI

dropped to average at best, lowest of all participants
in the worst case, though still well above chance
level.

As with the able-bodied participants, the SCI par-
ticipant’s decoder activation pattern was investigated
in source space as well (figure 5). The difference pat-
terns between decoder pattern and baseline activation
pattern for each movement parameter at lag 0 in the
observation and the attempted movement condition
are shown in figures 5(a) and (b). Here, dark red color
implies regions of higher, dark blue color regions of
lower activation than baseline activation. While clear
engagement of parieto-occipital regions is present in
position x and velocity x during attempted move-
ment, the patterns concerning observation do not
appear as distinct, also involving frontal activation
mostly observed in the contralateral hemisphere. For
both conditions, the difference patterns of position y
show parieto-occipital activation, though the activ-
ity appears attenuated during attempted movement.
The difference between both conditions is shown
in figure 5(c)., with bright red color corresponding
to regions of higher, bright blue color correspond-
ing to regions of lower activation during attempted
movement compared to observation. For both para-
meters in the x coordinate, additional activation is
seen in the parieto-occipital regions during attempted
movement, with weak activation also shown across
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Figure 4. Activity over sessions in source space. (a) Grand average difference activity per voxel between decoder model activation
pattern and baseline activation pattern in source space at lag 0 for all movement parameters. Red color indicates regions of higher
(activation), blue color indicates regions of lower activation than baseline (deactivation). (b) Density estimates and
corresponding grand averages of the activity difference across all participants per session, ROI, and movement parameter.
(c) Cortical representation of the 20 predefined regions of interest (ROI) comprising superior frontal gyrus (SFG), pre- and
postcentral gyri (PrG, PoG), superior and inferior parietal lobules (SPL, IPL), occipital gyrus (OcG), paracentral lobule (PCL),
precuneus and cuneus (PCun, Cun) and lingual gyrus (LgG) on both hemispheres.

the contralateral central regions (PoG, PrG) corres-
ponding to the sensorimotor areas in the positional
parameter. For the velocity y parameter, the highest
intensity of the difference in activation of both ses-
sions is seen in the contralateral central and parietal
regions (PoG, SPL).

4. Discussion

Cervical SCI or degenerative diseases leading to lim-
ited motor function necessitate the restoration of
upper limb movement by means of natural, con-
tinuous movement decoding to control a man-made
end effector (e.g. neuroprosthesis, robotic arm). Our

group recently reported better than random and con-
tinuous decoding of movement information from
EEG signals (Martínez-Cagigal et al 2020, Mondini
et al 2020, Kobler et al 2020c). However, taking into
consideration the actual target group for these types
of BCIs, i.e. people experiencing severe limitations
in motoric function, calibrating the decoder with
executed movement is not an option.

In this study, we therefore addressed two issues:
first, making the BCI accessible also for persons with
motor disabilities, and second, investigating changes
in the corresponding decoding performance over
time. To cater the decoder also to motor-impaired
BCI end users, we changed the setup from executed
movement to attemptedmovement (Ofner et al 2019,
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Figure 5. Activity in source space, spinal cord injured participant. Difference patterns between decoder model activation pattern
and baseline activation pattern during (a) session 1 (observation) and (b) session 2 (attempted movement) in the spinal cord
injured participant. Red color indicates regions of activation, blue color indicates regions deactivation compared to baseline.
(c) Difference patterns between (a) and (b); bright red color indicates activation; bright blue color indicates deactivation during
attempted movement compared to observation. The difference patterns for all movement parameters are shown at lag 0.

Müller-Putz et al 2021, Pulferer et al 2021). As a
means of dealing with the anticipated decline in
decoding performance compared to executed move-
ment decoding, driven by less engagement of the
motor areas during attempted movement, we fur-
ther investigated the effect of the users themselves
on the BCI. Over three sessions, we monitored the
respective decoding performance of ten able-bodied
participants during attempted movement with the
hypothesis that improvements may be facilitated by
employing task-specific user training. Our findings
can be summarized to three central results.

First, the decoding of attempted movement in
able-bodied participants is possible significantly
above chance as was seen for executed movement
before (Martínez-Cagigal et al 2020, Mondini et al
2020, Kobler et al 2020c). Second, depending on
the personal approach to the task respectively the
individual level of motivation of the participants,

approximately half of the participants experienced
increases in performance over multiple sessions,
which however were not found to be statistically sig-
nificant. Increasingly distinct decoder patterns seen in
source space suggest that user training can play a role
in continuousmotor decoding. However, the lack of a
significant difference in patterns over sessions rather
promotes the use of generalized decoding models
utilizing source space information, as the decod-
ing patterns, from a statistical point of view, appear
to remain stable over sessions. And third, decod-
ing attempted movement continuously and non-
invasively is possible above chance level not only in
able-bodied participants, but in persons with SCI as
well. Though sensor space analysis suggests decreas-
ing decoding performance with the additional mental
strain of attempting movement, distinct differences
in decoder patterns compared to the observation con-
dition imply the potential importance of movement
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information for decoding in source space, even in
participants who have not engaged their motor areas
for years.

4.1. Sensor space
Within this study, we report correlations well above
chance level for continuous decoding not only from
executed movement, but from attempted move-
ment as well, suggesting attempted movement as a
possibility to close the gap from non-disabled to
motor-impaired end users. For all feedback condi-
tions (50% and 100% EEG feedback), movement
parameters (position x, position y, velocity x, velo-
city y) and sessions (1–3), grand average correla-
tions across all participants significantly above chance
level were observed. During the target tracking tasks
(50% and 100% EEG feedback online snakeruns), we
obtained grand average correlations in sensor space
across all movement parameters of 0.31 (0.02 SD),
0.32 (0.02 SD), and 0.30 (0.02 SD) for sessions 1–3.
In terms of a general assessment of the decoding
performance related to attempted movement tasks,
and considering the standard deviations, this ranges
between the grand average correlations of 0.40 (0.06
SD) during executed movement and 0.31 (0.08 SD)
during observation described by (Kobler et al 2020c)
for a similar target tracking task of shorter dura-
tion (16 s), likewise using the PLS UKF decoder.
These findings confirm our hypothesis of decreasing
decoding performance from executed movement to
attempted movement, until the lowest performance
is reached during an observation only task, resulting
from declining engagement of the motor areas from
actual movement to a strictly visual task. While we
did observe a trend combining an increase in decod-
ing performance from session 1 to session 2 with a
consecutive degradation from session 2 to session 3
in the average correlations during the tracking tasks
(figure 2), as well as within approximately half of the
single participant means (figure 3), the existence of a
learning effect has not convincingly been found over
the limited amount of three sessions. As no question-
naires were offered in this study, a quantitative ana-
lysis of the respective motivation and engagement of
each participant over sessions as an influence for the
mentioned trend is missing. However, participants
generally felt motivated and assertive during the first
two sessions; themismatch in expectations and actual
improvements and a varying personal frustration tol-
erance may have led to a drop in performance during
the third session in most participants.

When investigating the general decoding per-
formance, favored decoding directions varying across
participants were observed. Approximately two thirds
of the participants (figure 3, P1, P3, P7-10) showed
clear differences in decoding performance between
x and y coordinates. As the exact same calibration
snakeruns were shown in the same order in each ses-
sion and in fact not randomized, this effect cannot be

attributed to different conditions during data acquis-
ition for fitting the decoder. Additionally, the trend
towards a preferred coordinate is not observed in the
grand average, confirming the assumption that this
effect is introduced by the participants themselves.

One of the main challenges concerning this study,
namely the generally high variances in decoding per-
formance from session to session as well as the inter-
participant variance, was addressed by normalizing
all correlation data with respect to the mean correl-
ation achieved during the calibration runs of the cor-
responding session. Taking this normalization into
account, a decrease in decoding performance can
be observed from the 50% to the 100% EEG feed-
back condition (figure 2.Grand averagesmove farther
below 1 =̂ rc over the course of the paradigms/-
conditions), which may be explained threefold. First,
going from a mixture of snake and EEG-decoded
trajectory (50%) to a solely EEG-decoded trajectory
(100%) inherently worsens the decoding perform-
ance. Second, the more time passes between calibra-
tion runs and online decoding, themore the perform-
ance diminishes. As the sequence during the online
part comprised three 50% EEG feedback snakeruns,
then three 100% EEG feedback snakeruns, and finally
the 100% EEG feedback freeruns, a decline in cor-
relations in this order is to be expected. And third,
individual motivation and engagement of each par-
ticipant vastly influence any BCI operation. With the
long measurement times (3–4 h), the inhomogeneity
of feedback conditions, as well as themonotony of the
tasks, may have led to fatigue and weariness, further
depressing the decoding performance over time dur-
ing as well as across sessions.

In the freeruns, a further performance drop com-
pared to the snakeruns was observed. As with the
snakeruns, this may be explained in part by the
increasing time span from calibration, in part by the
exclusively EEG-decoded trajectories that were used
in this paradigm. However, the lack of the snake as a
ground truth during the freeruns required the EOG-
inferred trajectories as a measure, which, compared
to the snake, trivially introduced more uncertain-
ties in the evaluation. Nonetheless, the spread of the
single participant means remained comparable with
the spread observed for the snakeruns, and grand
average correlations significantly above chance level
were observed also for the freeruns. In general, the
self-paced nature of the freerun (tracing) task was
perceived as more difficult.

4.2. Source space
Though a permutation paired t-test, corrected for
multiple comparisons, showed no significant differ-
ence between decoder and baseline patterns, distinct
regions of activation and deactivation for the decod-
ing of the respective movement parameters became
visible in the grand average difference between
decoder activation pattern and baseline activation
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pattern (figure 4(a)). For all parameters, except pos-
ition y, the grand average difference patterns largely
retained their qualitative appearance across sessions,
meaning no drastic changes were observed, and the
cortical origins for the decoding of each movement
parameter tended to remain stable, which might be
utilized in transfer learning approaches based on
source space decoding. In the case of position y,
the patterns changed noticeably over sessions. Most
likely, the cause of this effect lies in the measure-
ment setup itself; as the participants’ dominant arm
was strapped to the armrest, movement in y direc-
tion (corresponding to height on screen) could not
be understood in a straightforwardway, unlike the left
and rightmovements corresponding to the x coordin-
ate. As the participants were instructed to attempt
arm movement as if wielding a computer mouse,
moving the feedback dot upwards on screen corres-
ponded to a forward motion of the strapped limb.
This counterintuitive translation between movement
and perception may have led to a strong variation
in decoder patterns across participants and there-
fore diffuse grand average patterns. The activity dif-
ference distributions (figure 4(b)) in position y,
strongly centered around zero without a clear trend
regarding importance of ROI across sessions, confirm
this assumption.

In the remaining parameters (position x, velo-
city x, velocity y), mostly the parieto-occipital regions
were engaged,with additional importance of the cent-
ral regions above PrG and PoG in the velocity para-
meters. All three parameters share a high bilateral
focus of decoding importance in the PCun (BA 7),
which goes in agreement with findings of prior stud-
ies from our group (Mondini et al 2020, Kobler et al
2020c). From macaque studies, the PCun region was
found to share a connectionwith both the sensorimo-
tor region as well as the visual cortex (Margulies et al
2009). Precisely, its importance in shifting attention
between different visual inputs—as required in divid-
ing one’s attention between snake and feedback dot
in our experiment—is described in (Wenderoth et al
2005) and stands in agreementwith our findings. Fur-
ther, the session-to-session variation in activation of
this area may also be related to the user’s adaptation
to the BCI. Additionally, it has since been known that
the posterior parietal cortex (PPC) is tightly involved
in visuospatial perception, specifically, in defining
and commanding movement goals in intrinsic visual
coordinates (Fernandez-Ruiz et al 2007, Lindner et al
2010). Moving incrementally through the mental
workload processed in the PPC induced by the track-
ing task, the visual information shown on screen
would first need to be assessed in terms of priority
(parietal eye field, PEF) (Medendorp et al 2011), next
in terms of movement direction and speed (middle
temporal visual area, V5) (Born and Bradley 2005),
and finally, a clear reaching/pointing decision has

to be made (V6A resp. parietal reach region, PRR)
(Pitzalis et al 2013, 2015, Christopoulos et al 2015).
In our analysis (figure 4), activations above all regions
are seen, corresponding to contralateral engagement
of SPL, IPL as well as parts of the OcG.

In terms of a learning effect over sessions, activ-
ity difference patterns (figure 4(a)) and activity differ-
ence distributions across all participants (figure 4(b))
qualitatively hint at the possible existence of a learn-
ing effect induced by BCI user training. An increase
in average difference (decoder—baseline) from ses-
sion 1 to any later session was seen in 90% of the con-
ditions (4 parameters × 20 ROI). Specifically, 65%
of these improvements were observed during ses-
sion 2, confirming the results obtained by the cor-
relation analysis conducted in sensor space. Compar-
ing the difference patterns (figure 4(a)) of session 1
and session 2 in the movement parameters position
x, velocity x and velocity y, a trend to larger activa-
tions in the SPL and IPL, as well as additional activ-
ation in the central areas (PrG and PoG, PCL) can
be observed. These regions were reported as relev-
ant to motor skill learning during a goal-directed,
center-out movement task (Bédard and Sanes 2014).
Additionally, engagement of the bilateral IPLs dur-
ing motor skill learning was reviewed in (Seidler et al
2012), coinciding with our observations. However,
statistical tests revealed no significant differences in
the source space as well. As the limited number of
sessions prevents definite judgment on the presence
of a learning effect, the dimension of performance
improvement via user learning remains to be seen.
At this point, the non-significant changes in decoder
patterns over sessions may rather promote decoding
methods utilizing source space information for the
development of generalized classifiers.

4.3. Participant with SCI
In the participant with SCI, ambiguous results have
been found.On the one hand, the evaluation in sensor
space yielded top performance of the participant with
SCI in four of all ten movement parameters com-
prising snakeruns and freeruns during the observa-
tion task (figure 2), with a general performance level
on par with top-performing able-bodied participants
during attempted movement (figure 2, cross-haired
diamonds). This may be explained by an indisput-
able superiority of the participant with SCI over the
able-bodied participants regarding the level of atten-
tion during observation and the necessity to rely on
exact eye movement while being not able to turn his
head, resulting from years of living with severe lim-
itations in motor function. In contrast to this, a clear
decrease in performance in sensor spacewas seen dur-
ing the attempted movement task (figure 2, cross-
haired circles). This confronts initial assumptions,
based on the results of the able-bodied participants,
that any additional information stemming from the
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motor areas—as would be expected when switching
from a strictly observing condition to movement
attempts—would contribute constructively to the
decoding performance regarding continuous move-
ment tasks. Indeed, during simple classification tasks
based on event-related desynchronization/synchron-
ization in participants with SCI close to reaching
chronic state, it has been demonstrated that the
additional information during attempted movement
compared to simple MI may lead to increasing clas-
sification accuracies (López-Larraz et al 2012). A
recent study further confirmed significantly increased
accuracies in discriminating MAs from a resting con-
dition when compared to MI (Chen et al 2021).
Compared to these results, the continuous decoding
performance we have observed within this study in
the disabled participant, whose trauma dates back to
2003, worsened considerably compared to the obser-
vation task, most likely explained by the additional
mental strain introduced by the attempt to engage
areas that have not been employed in years.

Regarding the source space analysis conducted on
the data of both sessions, during attempted move-
ment (figure 5(b)), similar patterns to the grand
average of the able-bodied participants are observed
(figure 4(a)), whereas the patterns during observation
(figure 5(a)) exhibit no clear structure. In the differ-
ence patterns (figure 5(c)), the additional activation
during attempted movement compared to observa-
tion is depicted, indicating clear additional engage-
ment of the parieto-occipital areas in most of the
movement parameters. As such, even though the res-
ults in sensor space indicate the contrary, decoding in
source space may benefit considerably from the addi-
tional information above the motor areas compared
to a strictly visual task.

Disregarding the ambivalent results in sensor and
source space in the sessions conducted with the parti-
cipant with SCI, correlations well above chance level
have been found for either task (figure 2). Com-
pared to prior studies, already commending attemp-
ted movement employed in cue-based classification
tasks in participants with SCI (Ofner et al 2019, Chen
et al 2021), we were able to confirm that decod-
ing continuously (non-cue-based, trial duration 23 s)
and non-invasively from attempted movement is also
feasible in persons with severe limitations in motoric
abilities. This affirms attempted movement as a pos-
sible link connecting studies in able-bodied parti-
cipants with studies involving actual end users.

5. Limitations

The central limitations of this study may be summar-
ized to two major challenges, being first paradigm-
related and second user-related issues.

Long measurement times due to the extensive
calibration time, different experimental conditions

such as variances in the electrode montage, as well
as the ambiguous task that was presented, namely
the attempted cursor movement involving forward
and backward movement that is then translated to
upward and downward movement of the cursor on
screen, basically prompting an internal coordinate
transform in the participants, must be attributed to
the former, paradigm-related issues. As a possible
solution to the long calibration phase, transfer learn-
ing (intra-participant from session to session, or even
inter-participant) may be mentioned. Developing a
stable decoder needing only a minimum amount of
recent data may shorten the measurement times con-
siderably. The inter-session variances have success-
fully been addressed by normalizing the online per-
formance levels with respect to the mean achieved
calibration correlation of the respective session, how-
ever, for future works, a different taskmust be devised
to circumvent projecting depth to height informa-
tion. Additionally, it should be avoided to present
more than one paradigm (choosing either snakeruns
or freeruns) to deepen any individual progress.

Regarding the latter, user-related problems, two
major points should be addressed in further studies.
First, the monotony of the task needs to be minim-
ized to avoid triggering frustration and fatigue. This
can be achieved by actively involving the user bey-
ond offering visual online feedback, for example via
constructing the trials in the form of levels, allow-
ing the users to upgrade or gain merits by improving
their performance. And second, the different levels
of engagement and motivation in the participants
should be monitored carefully. This can be achieved
by presenting the userswith questionnaires both prior
to and after each session andwould additionally allow
an investigation on how to promote learning on an
individual level.

6. Conclusions

Previous non-invasive studies already indicated that
attempted movement may provide relevant inform-
ation during the classification of cue-based tasks in
spinal cord injured participants (López-Larraz et al
2012, Ofner et al 2019, Chen et al 2021). Here,
combining the results of two different studies, we
report that attemptedmovementmay also be decoded
online continuously well above chance level during
externally paced target-tracking tasks as well as self-
paced tracing tasks (23 s duration per trial), not
only in able-bodied participants, but also in a spinal
cord injured participant. We observed grand aver-
age decoding correlations in sensor space ranging
between observed and executed movement, indicat-
ing a clear benefit in employing attempted move-
ment over observation tasks to involve participants
experiencing severe limitations in motor output.
Additionally, we observed a distinguishable though
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non-significant difference in decoding performance
across sessions in the able-bodied participants, which,
eliminating the influence of inter-session variations,
may be contributed to a learning effect.

To summarize, our findings in source space,
in combination with the results in sensor space,
lead to three conclusions: first, the repetition of
a visuomotor task may have positive influence on
the decoding performance during attempted move-
ment tasks. Second, depending on the monotony of
the given task, motivation and engagement of the
participants may depress said improvements con-
siderably and should be handled with due cau-
tion in future continuous movement studies. And
third, and most importantly, continuous decoding
of attempted movement is feasible in an online set-
ting well above chance level in both able-bodied and
spinal cord injured participants and may thus func-
tion as a link between feasibility studies in able-
bodied participants to actual applications involving
end users
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