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Abstract
Objective. Brain–computer interfaces (BCIs) have the potential to bypass damaged neural pathways
and restore functionality lost due to injury or disease. Approaches to decoding kinematic
information are well documented; however, the decoding of kinetic information has received less
attention. Additionally, the possibility of using stereo-electroencephalography (SEEG) for kinetic
decoding during hand grasping tasks is still largely unknown. Thus, the objective of this paper is to
demonstrate kinetic parameter decoding using SEEG in patients performing a grasping task with
two different force levels under two different ascending rates. Approach. Temporal-spectral
representations were studied to investigate frequency modulation under different force tasks. Then,
force amplitude was decoded from SEEG recordings using multiple decoders, including a linear
model, a partial least squares model, an unscented Kalman filter, and three deep learning models
(shallow convolutional neural network, deep convolutional neural network and the proposed
CNN+RNN neural network).Main results. The current study showed that: (a) for some channel,
both low-frequency modulation (event-related desynchronization (ERD)) and high-frequency
modulation (event-related synchronization) were sustained during prolonged force holding
periods; (b) continuously changing grasp force can be decoded from the SEEG signals; (c) the
novel CNN+RNN deep learning model achieved the best decoding performance, with the
predicted force magnitude closely aligned to the ground truth under different force amplitudes and
changing rates. Significance. This work verified the possibility of decoding continuously changing
grasp force using SEEG recordings. The result presented in this study demonstrated the potential of
SEEG recordings for future BCI application.

1. Introduction

Brain–computer interfaces (BCIs) acquire, ana-
lyze, and translate electrical signals originating
from the brain into commands that can be used
to drive external actuators, independent of the
user’s physical abilities. To achieve this, both non-
invasive and invasive recording techniques have been
developed, including scalp electroencephalography

(EEG) (Wolpaw et al 2002), electrocorticography
(ECoG) (Schalk and Leuthardt 2011), stereo-
electroencephalography (SEEG) (Herff et al 2020),
and single neuron spiking recording (Orsborn et al
2015). However, the decision to employ either an
invasive or noninvasive recording method is non-
trivial, as both have inherent benefits and constraints
that must be considered. EEG records signals dir-
ectly from the surface of the scalp, and therefore
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have greater convenience and safety. However, signals
recorded using scalp EEG show lower spatial selectiv-
ity and signal-to-noise ratio than invasive approaches
in which the electrodes are placed directly on or in the
brain. For example, SEEGdepth electrodes can record
neural activity from both shallow and deep brain
structures, such as the hippocampus or basal ganglia,
which are generally not accessible with approaches
such as ECoG (attached to the surface of the cor-
tex subdurally or epidurally) or intracortical arrays
(1–1.5 mm beneath the cortex). A number of studies
have tested the preliminary performance of SEEG sig-
nals for BCI applications, such as kinematic decoding
(Li et al 2017,Wang et al 2020), kinetic decoding (Tan
et al 2013), spelling system using P300 (Huang et al
2021) and speech decoding (Meng et al 2021).

Of particular interest for the BCIs application
is the decoding of both continuous kinematic (e.g.
trajectories, velocity, and position) and kinetic (e.g.
force) parameters. Extensive studies have been under-
taken in kinematic decoding; for example, ECoG
has been used to decode continuous finger joint
angles and hand positions in both humans and rhesus
macaque monkeys (Flint et al 2017, Farrokhi and
Erfanian 2020), as well as being used in human
to achieve satisfactory reconstruction of hand and
arm trajectories (Chen et al 2013, Nakanishi et al
2013). Despite the progress made in decoding kin-
ematic information, there have been relatively few tri-
als demonstrating the decoding of kinetic inform-
ation, especially for continuously changing forces.
Among these few, one EEG-based study reported that
the lower beta-band frequencies in the centro-parietal
region were found to reflect an object’s shape and
size during the grasp pre-shaping stage, whereas dur-
ing the grasp finalization and holding stages, the mu
frequency band in the contralateral parietal region
reflected muscle activity (Sburlea and Müller-Putz
2018). Cassim et al demonstrated event-related syn-
chronization (ERS) and desynchronization (ERD)
modulation in the mu and beta bands during wrist
extension by studying recordings from eight healthy
participants using surface EEG; however, the power
in these bands returned to baseline within 4–5 s even
when the wrist position was maintained (Cassim et al
2000). In another EEG study, good classification per-
formance was achieved between three hand grasp
types within a reach-and-grasp paradigm (Schwarz
et al 2017), achieving a binary classification accur-
acy of 72.4% between grasp types. For invasive meth-
ods, ECoG has been applied to the left primary
motor cortex (M1) in Japanese macaques to decode
hand muscle activation (Shin et al 2012). In humans,
Flint et al used ECoG to decode continuous isomet-
ric pinch force from 10 human participants (Flint
et al 2014). The predicted signals explained 22%–88%
(60% on average) of the variance in the actual force,
with the high gamma frequency band being the most
informative feature.

On the other hand, kinetic information can also
be recorded from deep brain areas using SEEG elec-
trodes, and existing kinetic-based studies indicate the
possibility of decoding continuous force using SEEG.
For example, Murphy et al have shown that signals
from deep cortical areas, including the central sul-
cus and the insular cortex, contain useful informa-
tion to differentiate between the rest state and three
different levels of hand grasping (Murphy et al 2016).
Tan et al recorded nine participants with Parkinson-
ismperforming a grasping task at different force amp-
litudes (Tan et al 2013). They observed that the sub-
thalamic nucleus (STN) showed different ERS/ERD
at different hand grasping levels. Specifically, they
observed that beta and gamma modulations behaved
differently as grasping force increased: as the force
increased, beta suppression deepened, and then plat-
eaued; however, gamma and high-frequency power
(HFP) only increased. Furthermore, when force effort
was categorized into discrete levels (1–10), power
modulation in the beta band was the only independ-
ent predictor of force when effort levels <5, while an
increase in gamma band activity was the only inde-
pendent predictor when effort level ⩾5. In another
study, Fischer et al recorded signals from the STN
of eleven participants performing or imagining hand
grasping for 5 s at different amplitudes (Fischer et al
2017). They found that both beta and gamma activ-
ities changed in accordance with the level of force
throughout the grasping period.

Despite the kinetic information extracted from
SEEG, the pioneering studies by Tan et al and
Fischer et al did not evaluate sustained or pro-
longed force tasks, nor did they attempt to recon-
struct the continuous force applied, both of which
are critical requirements for BCIs in daily usage.
Thus, to advance this line of research, the possibil-
ity of continuous grasp force decoding was invest-
igated in the study using a prolonged grasping
paradigm.

A deep learning model was proposed for force
amplitude decoding in this paper. Five other meth-
odswere also tested to show the superior performance
of the proposed method. Deep learning has already
been demonstrated to be successful in BCI decod-
ing tasks both for EEG and ECoG recordings. Various
models have already been proposed for scalp EEG sig-
nal decoding tasks, such as TSception and EEGNet,
both of which are capable of extracting information
in temporal and spatial domains (Lawhern et al 2018,
Ding 2020). For invasive recordings, Du et al showed
that a combination of convolutional and recurrent
neural networks achieved superior results in a fin-
ger trajectory regression task (Du et al 2018). How-
ever, neither of these models were designed specific-
ally for SEEG, and they were not evaluated on SEEG
signal data. In this work, a novel deep learning model
was designed to decode the grasping force from SEEG
signals.
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Taken together, a continuous force control exper-
iment was designed, which comprised two force
increasing rates and two force amplitude targets over
a duration of 15 s, resulting in four combinations
(tasks): slow ascending light grasp; slow ascend-
ing hard grasp; fast ascending light grasp, and fast
ascending hard grasp. SEEG signals were recorded
during the experiment. Spectral responses for these
four tasks were analyzed, then force amplitude was
decoded using six methods, including a linear model,
a partial least squares (PLS) model, an unscented
Kalman Filter, and three deep learning models(two
CNN models used in previous EEG studies and
a CNN+RNN model proposed in this paper). By
comparing the decoding result obtained by differ-
ent methods, the novel deep learning architecture
referred to as CNN+RNN in this paper, achieved the
best decoding result.

2. Materials andmethods

2.1. Participants and data recording
Five human participants with intractable epilepsy
(referred to as a–e) were recruited in this study
with written consent (in the case of two child parti-
cipants, parental consent was granted). Participants
were implanted with SEEG electrodes for presurgical
assessment of seizure focus. All electrode parameters
were determined solely by clinical need as part of the
presurgical assessment. SEEG signals were acquired
using a clinical recording system (EEG-1200C, Nihon
Kohden, Irvine, CA) sampled at 2 kHz. The clinical
profile of all participants is shown in table 1.

This study was reviewed and approved by the
Ethical Committee of the University of Bath (Ethical
Approval Reference No.: EP 20/21 050) and the Ethics
Committee of Huashan Hospital (Shanghai, China)
(Ethical Approval Reference No.: KY2019518).

2.2. Experimental protocol
A dynamic force control experiment was designed, in
which the participants control their hand grasp force
to follow a pre-designed curve presented with an LCD
monitor. During the experiment, SEEG signals and
force data were recorded simultaneously. The force
data were sampled at 5 kHz using a force transducer
(Forza, OT Bioelettronica) and the recorded force
value was displayed to the participants in real-time
using a moving forward black dot (Y-axis: force level,
X-axis: time) on the screen. Before the experiment
started, participants rested on a bed, keeping still
and with their eyes fixed on the LCD monitor. Parti-
cipants were given time to practice with the protocol,
after which their MVCwasmeasured. They were then
asked to perform four tasks (i.e. 20% and 60% MVC
in slow and fast ascending rates, making four com-
binations in total: 20% MVC slow; 20% MVC fast;
60% MVC slow; and 60% MVC fast, as shown in
figure 1). There were four stages in each task: a 2 s

preparation stage, a 3/9/1/3 s force increasing stage
for tasks 1/2/3/4, a 2.5 s holding stage for all tasks,
and a 7.5/1.5/9.5/7.5 s releasing stage for tasks 1/2/3/4
respectively. In the preparation stage, participants
held the force transducer loosely without applying
any force. During the force increasing and holding
stage, participants were instructed to increase their
grasp force following a moving black dot and held for
2.5 s (holding stage). Then the participants released
the force transducer and relaxed for the remaining
time (release stage). The entire experiment consisted
of four sessions per participant, while each session
contained 40 trials, where each of the four tasks was
presented 10 times in random order. Overall, 160 tri-
als were collected and the whole experiment lasted
approximately 40 minutes for each participant.

2.3. Electrode localization
The participants had a total of 745 electrode con-
tacts (roundedmean± std: 149± 42 per participant)
implanted. Each electrode shaft was 0.8 mm in dia-
meter and contained 8–16 contacts (contact length
was 2 mm) with 3.5 mm center-to-center spacing.
In order to locate the electrodes, brain segmentation
was first performedusing pre-surgicalMRIwith Free-
surfer (Fischl 2012). Then the 3D coordinates and
the anatomical label of each electrode contact were
obtained by co-registering post-surgical CT images
with pre-surgical MRI using an open-source toolbox,
iEEGview (Li et al 2019). The resulting 3D location of
all electrode contacts is shown in figure 2.

2.4. Trial elimination
After data collection, each trial was evaluated by visual
inspection, and trials with significant noise in force
recording were rejected. Trials where the MSE (Mean
Squared Error) between actual force and force in the
experiment paradigm larger than 0.0084 (determined
by visual inspection) were eliminated: this left 145,
149, 151, 152, and 150 trials for participants a, b, c,
d and e respectively.

2.5. Signal preprocessing
Trials after elimination were further processed at this
stage before decoding. First, both the raw SEEG and
the force data were downsampled to 1 kHz. The SEEG
signals were then bandpass filtered from 0.5 Hz to
150 Hz using a 4th order Butterworth filter before
a Laplacian re-reference was applied (Li et al 2018).
Subsequently, a notch filter was used to eliminate the
50 Hz line noise and its harmonics. The resulting
SEEG data were used for further analyses, where the
baseline was defined as 1 s long, starting 0.5 s after
grip release for all trials.

2.6. Temporal-spectral representation
The temporal-spectral representation of the SEEG
signals was obtained by performing time-frequency
decomposition using the MNE toolbox (Gramfort
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Table 1. Anonymized clinical profiles of participants in the study.

Participant
ID EZ DH EH Gender Age RH EL NC SR(Hz)

a Right temporal lobe R L F 23 RH 10 130 2000
b Left temporal lobe R R F 42 LH 10 137 2000
c Left SMA R R M 15 LH 8 110 2000
d Right parietal lobe R L M 15 RH 7 102 2000
e Right motor area R L F 35 RH 10 217 2000

Abbreviations for this table: EZ, epileptogenic zone; RH, recording hemisphere; SR, sampling rate; SMA, supplementary motor area; EL,

number of electrode shafts; NC: number of contacts; DH, dominant hand; EH, experiment hand.

Figure 1. The experimental protocol. Participants began with a 2 s preparation stage for each task. For tasks 1 and 2, participants
increased their grip force to reach the predefined force level (20% maximum voluntary contraction (MVC) and 60%MVC)
following a moving-forward black dot for 3 and 9 s respectively, then held for 2.5 s before release. For tasks 3 and 4, participants
increased their grip force to reach the predefined force level (20%MVC and 60%MVC) for 1 and 3 s respectively, then held for
2.5 s before release.

Figure 2. The 3D locations of the SEEG electrodes are shown for each individual brain model. Participants a and d are shown on
the transverse plane, whereas participants b, c and e are shown on the coronal plane. The black dot indicates each SEEG contact.

et al 2013). In detail, FFT-based convolution using
Morlet wavelets with wavelet cycles exactly equal to
the frequency values were adopted to decompose data
in the time-frequency domain ranging from 2 Hz to
150 Hz with 1 Hz frequency resolution. The power
obtainedwas then normalized by first subtracting and
then dividing by the mean power in the baseline, as
illustrated in equation (1):

∆tf = 100 ×
activitytf − baselinef

baselinef
, (1)

where baselinef means the average power of frequency
f. ∆tf was then plotted to visualize the temporal-
spectral evolution during the task.

2.7. ERS/ERD
ERD in low-frequency bands (LFBs) and ERS
in high-frequency bands (HFBs) are well-known
indicators of neural modulation in relation to the
task. The possibility of discriminating tasks using
ERS/ERD was investigated in this work. ERS/ERD
was calculated in the same way as in Jiang et al

4
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(2020). A detailed calculation step is presented
below.

First, the signal (vci(t)) from each channel c
of trial i (i ∈ (1,N), where N is the trial num-
ber), was band-pass filtered into a LFB (0.5–30 Hz)
and a HFB (60–150 Hz) with a second-order But-
terworth IIR zero-phase filter. Then a Hilbert
transform was applied to the two bandpass-filtered
signals, which were then squared to acquire the low-
frequency power (LFP) and the HFP separately using
equations (2) and (3):

LFPc
i = (Hilbert(BP0.5−30 Hz(vc

i(t))))2, (2)

HFPc
i = (Hilbert(BP60−150 Hz(vc

i(t))))2, (3)

where t ∈ (0,15 s). The channel-wise power LFPc and
HFPc were then calculated by averaging LFPc

i and
HFPc

i across the N trials. Next, the power was nor-
malized against themeanpower of the baseline period
to generate a scalar ERD and ERS using equations (4)
and (5) respectively.

ERDLFP = 10 log

(∑
t∈Ttask

LFBc∑
t∈Tref

LFBc
×

Nref

Ntask

)
, (4)

ERSHFP = 10 log

(∑
t∈Ttask

HFBc∑
t∈Tref

HFBc
×

Nref

Ntask

)
, (5)

where Tref and Ttask are the baseline and task period.
One ERS/ERD pair was obtained for each trial under
each task. Then, the statistical significance was calcu-
lated between the ERS/ERD task pairs to evaluate if it
is possible to separate tasks using ERS/ERD.

Statistical testing was performed using Wilcoxon
rank-sum test without making assumptions of data
distribution. The critical value was set to 0.05 in this
paper.

2.8. Channel selection
The channel selection was performed before force
decoding in order to reduce the total number of
channels, thus reducing computational workload and
avoiding over-fitting. The channel selection was done
separately for each participant. First, all trials were
split into training, evaluation, and testing datasets
in a 70/10/20 manner for each participant. Then the
top activated channels were selected using the activ-
ation index (AI) calculated from the training dataset
(the same partitioning and channel were used in the
decoding step). The AIs were calculated per channel
using ERS/ERD according to equation (6):

AIc =
ERSHFP − ERDLFP

ERSHFP
. (6)

AIc is a value reflecting the modulation strength
caused by grasping tasks that incorporates both high

frequency and low-frequency information. Channels
with a higher AI are more reactive to the task and
were selected for subsequent frequency analysis and
model training and prediction. The reduced channel
number can also help to prevent overfitting, especially
for methods that are not good at handling high-
dimensional data. In this paper, channels with AI val-
ues>1.5 were chosen, leading to 9, 11, 14, 13, and 10
active contacts for participants a, b, c, d, and e respect-
ively. This channel selection approach is in keeping
with the previous hand gesture decoding study, which
used the most active channels that were measured by
the difference of frequency power between task and
rest stages (Wang et al 2020).

2.9. Feature extraction
For both traditional and deep learning methods,
frequency features in different bands were chosen
because they have been proved to contain rich
information about handmovement (Asher et al 2007,
Kellis et al 2012, Bleichner et al 2016, Li et al 2018,
Wang et al 2020). Further, high gamma and delta
band (e.g. 0.5–4 Hz) ranges produced superior per-
formance among the total ten frequency bands in a
hand gesture decoding task using SEEG signals (Li
et al 2022). Therefore, the power of five frequency
bands in 0.5–4 Hz, 4–13 Hz, 13–30 Hz, 30–60, and
60–150 Hz were used as input features for both tra-
ditional and deep learning methods. In detail, each
channel was band-pass filtered into five frequency
bands using a sixth-order Butterworth filter, then
power was computed by taking the squared value of
the Hilbert transform of the filtered signal. The same
features were extracted from the testing dataset to
obtain the final prediction.

2.10. Grasp force reconstruction
In the last step, the extracted features were used
to train six different decoding models, including
three traditional approaches and three deep learning
models.

Decoding and evaluation were performed sep-
arately for each decoding method and each parti-
cipant. To ensure the equal distribution of different
tasks among training, testing and validation datasets,
train_test_split from scikit-learn was used
to perform the partitioning (Pedregosa et al 2011).
For the linear, PLS, and Kalman methods, models
were trained on the training set and tested on the test-
ing set. For deep learning models, evaluation datasets
were used for hyperparameter tuning.

TheMSE between the true force and the predicted
results was used to evaluate the performance of each
decoder. One MSE value was obtained for each trial
using eachmethod. In the end,MSEs for each decoder
were obtained from testing trials, then the difference
significance between decoders was tested using Wil-
coxon rank-sum test as illustrated in section 2.7.
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2.11. Traditional decoding methods
Three traditional decoding methods, including a lin-
earmodel, a PLS, and anunscentedKalman filterwere
used in this study. The details of these methods are
shown below.

2.11.1. Linear and PLS models
LinearRegression and PLSRegression from
scikit-learn were used to implement the linear and
PLS models (Pedregosa et al 2011). The model was
trained on the training dataset before being tested on
the testing dataset.

2.11.2. Unscented Kalman filter
An unscented Kalman filter was used to model the
non-linearity relationship between force and neur-
onal signals by setting N = 1 for the Nth order
unscented Kalman filter from Luu (2016). In this
study, a quadratic equation (equation (7)) was used
to represent the neural tuning model:

Mt = ft−l + f ′t−l +
√
f 2t−l + f ′t−l

2, (7)

where ft−l and f ′t−l are the force amplitude and its first-
order derivative, and l= 100ms is the time delay. The
remaining implementation of the unscented Kalman
filter is the same as in the previous work (Luu 2016).

2.12. Deep learning methods
Three deep learning networks were implemented and
compared in this study. The first two networks were a
deep convolutional neural network (deepConv) and a
shallow convolutional neural network (shallowConv)
from Schirrmeister et al (2017), both of which have
been proved to be comparable or superior (at the time
of reporting) to state-of-the-art methods in EEG sig-
nal decoding tasks. The thirdmethod proposed in this
paper is a novel CNN+RNN model, consisting of a
temporal convolutional block, a spatial convolutional
block, and a recurrent convolutional block. In the
temporal and spatial convolutional blocks, multiple
1D convolutional layers were used to extract spectral-
spatial features, inspired by TSception (Ding 2020)
and EEGNet (Lawhern et al 2018). Then the extrac-
ted features were fed to a long-short-term memory
(LSTM) RNN layer to output a scalar value.

The following sub-sections will explain the pro-
posed novel CNN+RNN network in more detail.

2.12.1. Temporal convolutional block
The block consists of five 1D convolution layers. The
length of the kernels is determined by the sampling
rate of the SEEG data f s. Here SiT, the kernel size of
the ith level (i= 1, . . . ,5) from the temporal block in
figure 3, can be defined as:

SiT = (1,αi × fs)(i= 1, . . . ,5). (8)

To capture frequencies at 2Hz and higher, the first
kernel length was set to be half of the sampling rate

with α1 = 0.5, as in TSception and EEGNet. Simil-
arly, α2 was set to 0.25 to capture 4 Hz and above. For
the five layers, αi was set to (0.5, 0.25, 0.125, 0.0625,
0.03125). The input SEEG signal, X, for one batch is
defined as:

X= (x0,x1,x2 . . .xn),xi ∈ RL, (9)

where n is the total number of SEEG active channels
and L represents the sampling points for one epoch
trial and xi is the ith active channel. Then the output
of each temporal convolution layer (Z i

temoral) can be
defined as:

Z i
temoral = AvgPool(ReLU(Conv1D(X,S iT))), (10)

where i= [1, . . . ,5] and S iT is the kernel size
(equation (8)). Each temporal layer processes the
2-dimensional input into 3D data, then all five tem-
poral outputs are stacked along the kernel dimension.
This is further fed into the second component of the
network (the spatial layer).

2.12.2. Spatial convolutional block
As with the temporal layer, the spatial layer has three
1D convolutional layers with different kernel sizes. Let
the input to this layer be XT = XK×C×L, where K is
the number of concatenated features or plans,C is the
SEEGchannels number, andL is the length of one trial
of SEEG data. The output of this spatial layer Zi

cs is
then defined as:

Z i
spatial = AvgPool(ReLU(Conv1D(XK×C×L,S

i
S))),

(11)

where i= [1, . . . ,3] and S iS is the kernel size.

2.12.3. Recurrent convolutional block
After features were extracted from the previous lay-
ers, an LSTMRNNwas used to aggregate the inform-
ation from the window. Briefly, an LSTM updates a
storage state through an input gate and a forget gate.
An output gate then controls the information flowing
to the next unit (Sak et al 2014). By allowing SEEG
signal information to persist through time, the LSTM
layer can aggregate historical information in the slid-
ing window for the current prediction. ReLU (Agarap
2018) was used as the activation function in this
model.

2.12.4. Training the deep learning models
The training was performed on the training dataset
using back-propagation through time with MSE as
loss metric. L1 regularization was applied to the para-
meters to avoid over-fitting (Tartaglione et al 2018).
Together, the final loss function is defined as:

L(y, ŷ) =MSE(y, ŷ)+λ
∑

| θi |, (12)

where y denotes the ground truth and ŷ as the pre-
diction. θi represents the model parameters, and λ is

6
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Figure 3. The proposed CNN+RNN architecture. The network consists of three blocks: a temporal convolution block; a spatial
convolution block; and a recurrent convolution block (LSTM). A 2 s window with a 50 ms stride was used to slide through each
trial and produce a prediction at each step. In the first stage, each 1D convolution layer produced a cubic output, which was then
concatenated at the output layer. In the second stage, another set of 1D convolution layers was used to extract the spatial
information. In the last stage, an LSTM was implemented to aggregate the extracted features in the window.

the regularization hyper-parameter which was set to
1.0× 10−6 empirically.

During the training processes, a history 2 s slid-
ing window with a 50 ms step length was used to
generate a singular prediction value for each win-
dow at the current time point. Because history data
was used for prediction, the decoding process was
causal and therefore can be used for online test-
ing. Then, the difference between true force and the
prediction (loss) was used to update the network
parameters.

3. Results

3.1. Temporal-spectral representation
An example of temporal-spectral representation, cal-
culated as per section 2.6, of four tasks from par-
ticipant a is presented in figure 4. As can be seen,
there existed clear frequency modulations in dif-
ferent frequency ranges under different task stages.
As shown in the upper half of each subplot, there
were clear ERS and ERD in the high-frequency and
low-frequency ranges. More specifically, there was
a wider frequency range that showed ERS in the
holding stage compared to that in the preparation
and ascending stage. As shown in the lower half of
each subplot, there was a wide separation between
the mean ERS and ERD lines during the whole task
stage, before ERS and ERD merged in the resting
stage. This separation began around 1.5 s before
force onset and extended for 0.5 s after force off-
set. This indicated that both high-frequency and
low-frequency modulation recorded with the SEEG
device can be sustained in a prolonged task. Visual
inspection found no clear ERS/ERD in the resting
stage.

Although a clear ERS/ERD can be seen in the
example channel, visual inspection showed there was
only 15%, 11%, 9%, 11%, and 21% of the total chan-
nels exhibiting strong ERS/ERD for participants a, b,
c, d, and e respectively.

3.2. Significant difference in ERS/ERD
To investigate the discriminability of different tasks
using their frequency response, the ERS/ERD of trials
under two tasks were compared. ERS/ERD values
were calculated as described in equations (4) and (5),
and the statistical test procedure was performed using
Wilcoxon rank-sum test as described in section 2.7.
Bonferroni correction was applied to account for the
multiple comparisons conducted by ERS and ERD.

An example result is presented in figure 5, using
one example channel for each five participants. As
indicated in the plot, it is possible to discriminate
tasks using differences in frequency modulation. For
example, the timings were the same for task 1 and
task 4, while the maximum force level was higher
for task 4. Accordingly, a larger absolute value of
ERD was observed for task 4 compared to that of
task 1, as shown in all five subplots. However, no
consistent relationship was found between force level
and ERS/ERD when considering all electrodes. This
implies that it would be difficult (or that it may not
be an effective strategy) to categorize force by simply
mapping from ERS/ERD, which inspired us to use
more powerful methods for force prediction, as out-
lined in the subsequent sections.

3.3. Grasp force reconstruction
To decode force using SEEG signals, 6 different mod-
els were trained on the training dataset using the
methods described in sections 2.11 and 2.12, before
predictions were obtained by feeding the testing
dataset to the trained models. With the proposed
CNN+RNN model, a concatenation of the predic-
tions from 4 trials, taken from the 4 tasks for all
five participants, is presented in figure 6. The res-
ults demonstrate that the prolonged force amplitude
can be decoded from the SEEG recordings. Further,
the predictions successfully fit the ascending, hold-
ing, and descending phases of the ground truth (the
force that was actually applied); therefore, not only
was force onset and offset accurately decoded but also
the true force amplitude.

7
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Figure 4. Temporal-spectral representations under four tasks recorded by one typical SEEG contact from participant a. The three
vertical lines indicate the force onset, the start of the force holding stage, and the start of the release stage. The upper half of each
subplot is the time-frequency decomposition, where the color indicates the percentage change from the baseline as described in
section 2.6. The lower half of each subplot shows the time evolution for the average high-frequency power (HFP) (orange,
60–150 Hz) and low-frequency power (LFP) (blue, 0.5–30 Hz). The solid line and shaded area indicate the mean and standard
deviation.

Figure 5. Significance analysis of ERS/ERD from one example active electrode of five participants (a–e). The vertical bars denote
the mean ERD(red)/ERS(orange) value that averaged across all trials and the error bars denote the standard deviation. T1–T4
indicates the four different tasks. (∗∗∗: p< 0.0005, ∗∗: p< 0.005, ∗: p< 0.05, n.s. denotes no significant difference. Wilcoxon
rank-sum test.)

Predictions of all testing trials using all decoding
methods can be found in supplementary figures 2–6
(available online at stacks.iop.org/JNE/19/026047/
mmedia) in the appendix section. To evaluate the
decoding performance, a chance level predictionMSE
was calculated for each participant. The chance pre-
diction was defined as the mean true force aver-
aged across all trials of that participant. The MSEs of
chance prediction are 0.5544, 0.5566, 0.5889, 0.6023

and 0.6021 for participants a, b, c, d and e respect-
ively. For comparison: for participant e, the lin-
ear model, PLS, unscented Kalman, shallow net-
work, deep network, and the proposed CNN+RNN
achievedMSE losses of 0.15, 0.14, 0.19, 0.35, 0.30, and
0.05 respectively.

The mean decoding MSE error of six decod-
ing methods under the four tasks averaged across
participants is presented in figure 7(a). For the
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Figure 6. Force prediction for participants a–e using the CNN+RNNmodel. Each subplot was a concatenation of four trials
predictions taken from 4 different tasks where each task lasts for 15 s. For the sake of visualization, only one trial per task is
presented and concatenated for each participant. Complete predictions of all testing trials using all decoding methods can be
found in the supplementary section.

Figure 7. In subplot (a), the mean decoding MSE using six decoding methods is presented for each task averaged across
participants. The vertical bars denote the mean MSE averaged across trials and participants. The top and bottom of each error bar
are the 20th and 80th percentile, respectively. In subplot (b), the MSE decoding error using the CNN+RNN under the four tasks
with two different inputs for all five participants (a–e) is presented. The bars show the mean MSE averaged across trials for each
task. The blue bars represent MSE calculated using the extracted frequency features, while the green bars indicate the results
calculated using the raw signals only.

MSEs calculated for each individual participant,
please refer to supplementary figure 1. The res-
ults from the CNN+RNN network showed a lower
MSE compared with all other models tested under
all four tasks. To statistically test the difference,
a Wilcoxon rank-sum test was conducted. The
significance p-values between the linear/PLS/UK-
F/deepConv/shallowConv and CNN+RNN models
are 1.03× 10−03/1.04× 10−04/2.27× 10−03/4.97×
10−02/2.76× 10−03 respectively.

Additionally, to evaluate the ability of the pro-
posed deep learning model to learn from raw SEEG
signals, similar to the input of EEGNet (Lawhern et al
2018) andmany other EEG-based deep learning stud-
ies (Schirrmeister et al 2017, Mousavi 2019, Wu et al
2019, Rashid et al 2020), raw data was used to re-
train and test the CNN+RNN network. The com-
parison between MSEs using different inputs for all

five participants was presented in figure 7(b), which
indicated a comparable performance using different
inputs, demonstrating the feasibility of using deep
learning methods on raw SEEG recordings.

4. Discussion

This work has investigated the possibility of decod-
ing continuous grasping force using SEEG signals
for the first time by employing a novel paradigm
with two different increasing slopes and two force
levels. Additionally, the temporal-spectral represent-
ation of neural responses was investigated under dif-
ferent force control tasks. Furthermore, after evalu-
ation of the decoding performances using six different
decoders, a novel CNN+RNN architecture was pro-
posed in this work which produced the best decoding
performance for continuous force prediction.
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4.1. ERS/ERD
The temporal-spectral representation indicated that
there was a clear ERS/ERD throughout the task stage
which started around 2 s before force onset and 1 s
after force offset. Additionally, there was a persist-
ent ERS/ERD during the holding stage as shown in
figure 4 of an example electrode. However, different
behavior of ERS/ERD was observed from other elec-
trodes. For example, 12 out of all 102 electrodes from
subject d showed clear and sustained (not reduced)
ERD during the holding stage. For the other elec-
trodes which exhibited ERD, the strengthwas reduced
but never returned to baseline level. These 12 elec-
trodes were distributed in different areas, includ-
ing the parietal and cingulate cortex. On the other
hand, 3 out of 102 electrodes showed clear and sus-
tained ERS during the holding stage similar to ERS
in figure 4. These three electrodes were all located in
the supramarginal gyrus. The similar sustained ERD
can be found in all subjects, while sustained ERS
was only found in subjects d. This behavior is dif-
ferent from two previous ECoG-based studies which
showed that powermodulation failed to sustain while
the participants held their grasping force (Branco et al
2019, Jiang et al 2020). Jiang et al used a hand grasp
paradigm containing a force holding stage of 2–3 s
and found that ERS/ERD returned to baseline imme-
diately after force onset in a force holding paradigm
(Jiang et al 2020). They reported that the fluctuations
of ERS in the HFB primarily, and of ERD in the LFB
to a lesser extent, correlated with the time-course of
the first time-derivative of force (yank), rather than
with force itself. The same observation was found in
another ECoG study where a random 1–2 s hold-
ing stage was utilized in a hand grasping paradigm
(Branco et al 2019). They found that the HFB power
failed to exhibit a sustained response related to a
constant force, and a similar conclusion was reached
regarding the relationship between the force yank and
the HFB power. Another study using scalp EEG also
demonstrated that frequency modulation failed to
sustainwhen subjects held their hand gesture (Cassim
et al 2000). The different ERS/ERD behavior demon-
strated the advantage of SEEG in recording signals
fromdeep brain regions to reveal different response in
different locations. However, due to the limited data
in this paper, further study is needed to understand
this difference.

4.2. Channel selection
In this study, the active channels were chosen accord-
ing to their frequency response evaluated by the activ-
ation index (AI). The same channel selection pro-
cedure was used in other SEEG studies (Li et al
2017). Although a promising decoding result can be
obtained, it does not mean that the active channels
selected by the frequency response are optimal. Two
possible situations undermine this method. First, the
features were extracted and averaged from several

fixed frequency bands, which might overlook the
real informative feature in narrow bands. Second,
activated channels are not necessarily helpful for the
decoding task. For example, a channel might be activ-
ated in all task stages but show no discrimination
between high and low forces. Thus a future study that
investigates the optimal channel selection method in
SEEG-based BCIs would be beneficial.

4.3. Force prediction
To further test whether recordings made with SEEG
can be used for continuously changing force pre-
diction, or can only distinguish discrete low/high
force levels as demonstrated in other SEEG stud-
ies, this study designed a paradigm where the force
changed within a single task and between different
tasks. For tasks 1 and 4, the same experimental tim-
ings were followed across all stages except for the
target forces; regardless, the decoder is still able to
successfully predict two different force levels. This
shows that theCNN+RNNmodel is decoding the real
continuous force rather than a binary ‘low force’ or
‘high force’ condition. On the other hand, decoded
force using other methods showed rhythmic oscilla-
tions and failed to reflect the force targets under dif-
ferent tasks. Therefore, for these methods, it is the
force states (rest vs. grasping) that have been decoded
instead of the real force.

4.4. Varied decoding performance
Whilst grasp force can be decoded from SEEG sig-
nals, the results varied amongst the participants and
amongst different tasks for the same participants as
shown in figures 6 and 7(a). As the electrodes were
placed based on clinical needs, the performance dif-
ference may arise from the fact that the electrodes
were placed in different locations. For participant e,
the superior decoding performance might be because
that part of the selected electrode was located in the
left motor area which is a central area for movement
control. Grasp force can also be decoded partially
from participant d, possibly because two electrodes
were selected from the posterior parietal cortex (PPC)
which is part of the motor system and poses a funda-
mental role in visuomotor transformations (Fogassi
and Luppino 2005). Wang et al also proved that sig-
nals from the PPC are helpful for decoding in a hand
gesture classification task (Wang et al 2020). On the
other hand, the average MSEs under tasks 2 and 4
were higher than that of tasks 1 and 3, as presented
in figure 7(a). The worse performance (higher MSE)
may be due to the higher force target in tasks 2 and 4.
When taking into consideration another SEEG-based
force study (Tan et al 2013) which showed that beta
suppression deepened and then plateaued as the force
increased, both studies suggest difficulties in decod-
ing a high force, raising the question of whether there
exists an upper limit for which force can be decoded
using the SEEG recordings.
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4.5. Deep learning model
When using deep learning neural networks, previous
works have used raw data as the input (e.g. without
preprocessing or filtering) and postulated that the
convolution kernel will perform the feature extrac-
tion automatically by simulating spectral and spatial
filters. For example, in the TSception network, two
components—a spectral and a spatial learner—were
used to automatically learn the spectral and spatial fil-
ters simultaneously (Ding 2020). In order to improve
the overall performance, the authors designed convo-
lution kernels with different lengths to simulate dif-
ferent filters. To investigate whether such designs with
different kernel lengths can be used on SEEG data,
this work also used raw data as input (alongside re-
training the network). It showed that the decoding
accuracy when using raw data as the model input was
comparable to accuracy when using frequency band
features, as shown in figure 7(b). This result demon-
strated the ability of the deep learning model to learn
from raw SEEG recordings.

5. Conclusion

In this article, a grasping force control paradigm that
comprises two force targets and two force ascend-
ing rates was designed to investigate the possibility
of continuous force decoding using SEEG signals.
Temporal-spectral representation was first analyzed
which showed very different spectral modulation
in sustained grasping tasks compared with previous
ECoG or EEG studies. Next, using six decodingmeth-
ods, we demonstrated that prolonged grasping force
can be decodedwith high accuracy and aCNN+RNN
deep learning method achieved the best decoding
accuracy. The decoded force reflected the true ‘rest
or task’ status, as well as the continuously changing
amplitude under different ascending rates and force
targets. The result presented in this work will help
to better support the usage of SEEG signals for BCI
applications.
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