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Abstract
Objective. To provide a design analysis and guidance framework for the implementation of
concurrent stimulation and sensing during adaptive deep brain stimulation (aDBS) with particular
emphasis on artifact mitigations. Approach. We defined a general architecture of feedback-enabled
devices, identified key components in the signal chain which might result in unwanted artifacts and
proposed methods that might ultimately enable improved aDBS therapies. We gathered data from
research subjects chronically-implanted with an investigational aDBS system, Summit RC+ S, to
characterize and explore artifact mitigations arising from concurrent stimulation and sensing. We
then used a prototype investigational implantable device, DyNeuMo, and a bench-setup that
accounts for tissue–electrode properties, to confirm our observations and verify mitigations. The
strategies to reduce transient stimulation artifacts and improve performance during aDBS were
confirmed in a chronic implant using updated configuration settings.Main results.We derived and
validated a ‘checklist’ of configuration settings to improve system performance and areas for future
device improvement. Key considerations for the configuration include (a) active instead of passive
recharge, (b) sense-channel blanking in the amplifier, (c) high-pass filter settings, (d)
tissue–electrode impedance mismatch management, (e) time-frequency trade-offs in the classifier,
(f) algorithm blanking and transition rate limits. Without proper channel configuration, the aDBS
algorithm was susceptible to limit-cycles of oscillating stimulation independent of physiological
state. By applying the checklist, we could optimize each block’s performance characteristics within
the overall system. With system-level optimization, a ‘fast’ aDBS prototype algorithm was
demonstrated to be feasible without reentrant loops, and with noise performance suitable for
subcortical brain circuits. Significance. We present a framework to study sources and propose
mitigations of artifacts in devices that provide chronic aDBS. This work highlights the trade-offs in
performance as novel sensing devices translate to the clinic. Finding the appropriate balance of
constraints is imperative for successful translation of aDBS therapies.
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Clinical trial: Institutional Review Board and Investigational Device Exemption numbers:
NCT02649166/IRB201501021 (University of Florida), NCT04043403/IRB52548 (Stanford
University), NCT03582891/IRB1824454 (University of California San Francisco). IDE #180 097.

1. Introduction

Implantable devices for chronic neurostimulation are
rapidly evolving and several now incorporate a neural
sensing component as well as the capacity to utilize
neural signals for rapid modification of stimulation
parameters. This is often called ‘adaptive’ deep brain
stimulation (aDBS) (figure 1) [1–10]. However, tech-
nical challenges still limit the clinical applicability of
adaptive closed-loop deep brain stimulation (DBS)
[11, 12]. The small (microvolt level) magnitude of
neural signals in comparison with the size of artifacts
(millivolt level) challenges signal fidelity and detec-
tion algorithm accuracy [13–19].

While DBS has become a standard treatment for
mid-stage Parkinson’s disease (PD), there is great
interest in improving its efficacy using adaptive
algorithms. Some of the early promising algorithms
on aDBS [20–23] involved fast (∼0.5 s) switching
of stimulation to respond to (or to shorten) patho-
logical bursts of oscillatory activity. Duration and
amplitude of bursts in the beta frequency range
(13–30 Hz) correlate with severity of rigidity and
bradykinesia [24], are associated with freezing of
gait [25] and are modulated by medication cycle
[26]. Stimulating only at the onset of ‘pathologic’
beta bursts is technically demanding due to transi-
ent currents coupled in the sensing channel during
‘fast’ increase/decrease of stimulation amplitude [2,
27] (figure 2). Although this paradigm has shown
promise in patients with externalized DBS leads,
its technical viability in an embedded configuration
(without externalized leads or external computation)
requires further research. ‘Slower’ control algorithms
that adjust stimulation amplitude on a time scale
of minutes–hours [6, 28, 29] have been technically
easier to implement within implanted devices but
nevertheless also depend on careful management of
artifacts related to sensing during stimulation.

The application of sensing and feedback con-
trol algorithms might improve other therapies. DBS
in psychiatric disorders, epilepsy or chronic pain
currently apply a variety of stimulation and sens-
ing regimes [1, 8, 30–32]. For example, during ‘half
duplex’ aDBS, stimulation is turnedOFF during sens-
ing, and only turned ON for a prespecified duration
in response to detection of a predefined neural sig-
nal pattern. The responsive neurostimulator (RNS)
(NeuroPace, Inc.) utilizes this type of sensing and
stimulation paradigm, and it is approved by the US
Food and Drug Administration for the treatment of
some types of epilepsy [1]. While this (interrupted)
sensing/stimulation paradigm may be sufficient for

epilepsy and other paroxysmal disorders, it assumes
we do not need to know when to turn off stim, and
fixed pulse durations suffice. Our scope of application
is for use cases that require real-time (short latency)
tracking of biomarker fluctuations in the presence
of therapeutic stimulation, which we denote as ‘full
duplex’ paradigms. At this time, full-duplex commu-
nication is expected to be the method preferred for
most movement disorders [6, 20, 24, 33, 34]. Some
recent studies of closed-loop DBS for psychiatric dis-
orders [35, 36] and for refractory epilepsy [37, 38]
have also explored the use of full duplex paradigms.
Therefore, the pathophysiology of the disease under
study, such as minimum ranges of detectable neural
signals and acceptable time latencies between sens-
ing and stimulation responses set the key specifica-
tions for the device (supplementary material, table
1 available online at stacks.iop.org/JNE/19/026025/
mmedia). Of note is the dependence of signal level on
location of the electrode, even within the same dis-
ease state. In general, cortical signals (20–100 µVrms)
are a factor of ten larger than subcortical signals
(1–20 µVrms) from the basal ganglia or thalamus
(figure 1(b)).

Bi-directional neural interfaces that support sens-
ing and stimulation have common building blocks,
as illustrated in figure 3. An electrode at the neural
interface provides access to the biological environ-
ment and transduces between electron-based current
flow in the tissue and ionic-based current flow in the
device. The electrode properties set many key con-
straints for sensing and stimulation, which include
impedance, impedance mismatch between sensing
electrodes, polarization, and safe charge transfer (see
supplementary materials, background section). For
sensing physiological signals, a low noise preampli-
fier will condition the signal and typically extract a
differential measurement between an electrode and a
reference; the reference can be far-field, but is typ-
ically another local electrode in DBS applications to
improve specificity to the signal of interest, or to
reduce stimulation artifacts by recording symmetric-
ally around the stimulating contact. The amplified
signal is then passed to an analog-to-digital converter,
and the signal is processed with digital filters and clas-
sifiers (see supplementary material, figure S1).

Typical classifiers include spectral power in dis-
crete bands related to a physiological signature of the
disease process, which can be estimated with digital
bandpass filters or fast-Fourier-transforms (FFT).
The adaptive algorithm sets the control policy for
adjusting the system, and in many current systems
[2, 6, 23, 27] simply applies changes to stimulation
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Figure 1. Configurations of chronic implanted sensing pulse generators and sense electrodes. (A) Example of a skull implanted
internal pulse generator (IPG) (e.g. RNS, NeuroPace Inc.), (B) example of quadripolar ECoG and DBS leads and ranges of neural
signals (LFPs running a few microvolts and ECoG signals ranging a few tens of microvolts). (C) Example of an aDBS system that
is implanted in the cervical space (or chest cavity); in this example the Summit RC+ S (Medtronic) investigational system. The
heart anatomy is shown along with representation of ten cycles of the cardiac signal with amplitude range×1000 the neural
signals (millivolt instead of microvolt). Notice the close location of chest implanted IPGs (C) to the heart, which may influence
leakange of ECG artifacts into the neural signal. ECG artifact is avoided in skull mounted IPGs (a).

Figure 2. ‘Ideal’ versus ‘reentrant loop’ (or ‘self-triggering’) scenarios during ‘fast’ aDBS: (A) ‘Ideal’: stimulation is triggered by an
increase in amplitude or power of the predefined biomarker bandpass LFP signal. (B) ‘Reentrant loop’ or ‘self triggering’: the
onset of stimulation as response to the first detection of the biomarker signal results in a transient response due to the stimulation
ramp or stimulation transitions coupled in the sensed signal. The contaminated LFP signal increases detector power and, if not
mitigated, may result in false-detection and the detector will go into reentrant loop or ‘self-triggered’ stimulation, not responsive
to physiological changes.

amplitude based on a classification such as threshold
detection. More nuanced adaptive algorithms using
proportional-integral control or multiple thresholds
are also under investigation [39, 40]. The con-
trol policy of the algorithm then adjusts the stim-
ulator parameters, and the stimulation current is
delivered through an electrode pair. This model of the
bi-directional interface highlights the key constraints
and considerations for optimization of the signal

chain for concurrent sensing and stimulation. We
define the general architecture of feedback-enabled
devices (figure 3), propose key components in the sig-
nal chain which might result in unwanted artifacts
and propose methods that might ultimately enable
improved aDBS therapies (table 1).

Mitigation can be achieved by a combination of
optimized parameters: the analog sensing chain (ana-
log filters, amplifier common mode rejection and

3
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Figure 3. Signal chain diagram and summary of mitigation strategies of a generic aDBS system. (A) In the top row (light blue),
proposed mitigation strategies to artifact susceptibility through signal chain. In the middle row (orange) the block diagram of key
signal chain elements, with possible artifacts due to external triggers, such as ECG signal and movement artifacts; or due to
stimulation. (B) Stimulation regimes: constant stimulation (e.g. 2 mA and 130 Hz) or varying stimulation following biomarker
variations (aDBS). Rate of change in amplitude is defined by the stimulation ramp rate, with ‘slow’ ramps ranging 0.1–1 mA s−1

and ‘fast’ ramps from 1 to 10 mA s−1. Variable stimulation amplitude (red time-varying traces) results in transient step responses
contaminating the LFP in the neighborhood of the stimulation electrode (black time-varying traces). Examples of biomarker
signature (blue), stimulation artifact (green), and broadband artifact due to stimulation ramp (red) for a frequency-based
detector/classifier. (C) Sense blanking is part of the analog chain and is always synchronously applied following the stimulation
clock for a duration in the order of a few milliseconds (≫duration of stimulation pulse). By blanking the analog sense channel for
a duration of∼ms the artifact in the sense channel due to the stimulation pulse can be rejected while the LFP signal is not missed.
Typically the sense blanking duration falls in the order of the time between consecutive samples (1/sampling rate). Sense blanking
is applied continuously, during both constant stimulation and adaptive stimulation. (D) Algorithm blanking is part of the digital
chain and is synchronously applied to an algorithm detection event (e.g. biomarker input crosses predefined threshold Th).
Algorithm blanking is defined with a certain duration based on biomarker physiology time/frequency dynamics and device
specifications. By applying algorithm blanking to the input signal of the detector, the aDBS algorithm is blanked for that duration
(hundred milliseconds to few seconds; typically at least for the duration of the stimulation ramp). By selecting appropriate
algorithm blanking values, stimulation transition artifacts can be mitigated and detector performance improved. However, setting
algorithm blanking parameters may be challenging for ‘fast’ aDBS because the duration of stimulation transients and
time/frequency dynamics of the biomarker (e.g. beta band) converge at time scales of 1 s or less.
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Table 1. Checklist for artifact mitigation of aDBS system with concurrent sensing and stimulation.

Signal chain element Mitigation strategy and potential trade-offs (vs)

1 IPG location to reduce ECG artifact Right chest, cranial, use of active recharge stimulation vs power
consumption

2 DBS electrode impedance Minimize tissue electrode impedance mismatch, symmetric dipole
arrangement

3 Frontend sensing Leakage current, polarization management, use of active recharge
stimulation, stimulation pulse ‘sense blanking’

4 Digital signal processing Time vs frequency resolution trade-off in classifier, dynamic range
management vs resolution floor

5 Adaptive DBS algorithm Clock synchronization and ‘algorithm blanking’ (post-stim
lockout period)

6 Stimulation modulation Stimulation ramps and stimulation amplitude transitions vs
response time and dynamic range of adaptive stimulation
algorithm

‘sense blanking’), the digital signal processing (time
and frequency resolution filtering trade-offs and the
detector properties of the adaptive algorithm, e.g.
‘algorithm blanking’). Rapidly switching stimulation
ON–OFF (extreme case: open loop mA → 0 mA), if
not mitigated may result in broadband spectral arti-
facts and limit performance of aDBS algorithms. As
examples, the power spectrum of the sensed neural
signal (and artifact) are represented in the third
column of figure 3(B) for ‘slow’ and ‘fast’ aDBS
regimes. The effect of the broadband artifact on the
spectrum of the input detector signal is shown in the
most right column of figure 3(B). In themost extreme
scenario, ‘fast’ ON–OFF stimulation transitions, an
algorithm blanking of the order of the biomarker’s
time dynamics (e.g. beta bursts, 0.5 to ∼1 s) may
not be sufficient to mitigate transient effects resulting
in a classifier reentrant loop with the risk of missing
pathophysiological bursts.

The relative topology of stimulation and sense
electrodes influences the magnitude of common-
mode (CM) artifacts versus differential sense signal
(common mode refers to interference coupled in the
sense channel, such as stimulation, electrocardiogram
(ECG) or movement, with approximately equal con-
tribution in each of the sense electrodes). Using a
symmetric sensing configuration around the stim-
ulation electrode leverages the CM rejection of the
differential amplifier with the neural signal captured
as a differential dipole or local field potential (LFP
or subcortical neural signal measured via two neigh-
boring electrodes). This optimized symmetric sense/
stimulation configuration is sensitive to impedance
imbalances between electrodes and thusmay still cap-
ture CM artifacts. To further reduce common mode
artifacts and their impact during aDBS, sense elec-
trodes may be placed farther away from the stimu-
lation dipole (e.g. sensing in the motor cortex while
stimulating subcortically). Proof of concept imple-
mentations of embedded aDBS with a far-field sens-
ing topology have recently been demonstrated for
‘slow’ [6, 41] and ‘fast’ [34] paradigms. Furthermore,

the commonmode stimulation artifact in the LFP can
be used to drive another implantable device on the
contralateral hemisphere [42].

The design of the digital signal processing chain of
the aDBS algorithm also affects system performance.
aDBS algorithms that use power-threshold detection
regimes require the use of a bandpass filter, either
in the frequency (FFT) or in the time domain, to
select the frequency of interest. When designing such
a filter, there is a tradeoff between frequency spe-
cificity and time-domain operation. Figure 4 illus-
trates the time and frequency response difference for
two types of digital filters. In the event of any sud-
den large changes in the input signal (e.g. stimulation
transient response), the Butterworth filter which has
less frequency specificity, results in a shorter ringing
period. While an Elliptic filter with higher frequency
specificity, results in a longer ringing duration in the
time domain.

In this paper, we provide a framework to
describe ‘real-world’ neural signal artifacts in chronic
implanted sensing pulse generators in a translational
setting (human research). We aim to characterize
technical performance of neural interfaces to mitig-
ate these artifactual signals and assess performance
of ‘fast’ adaptive closed-loop DBS algorithms. We
provide a generic benchmodel that can help compare
different approaches and that mimics real-world per-
formance to allow rapid prototyping of algorithms
prior to human testing. We use these methods to
define a checklist of considerations for optimizing
the signal chain and validate its utility in a chronic
implant.

1.1. Characterization test methods (chronic,
in vivo devices)
In a series of movement disorder patients implanted
with an investigational sensing pulse generator, the
Summit RC + S (Medtronic) [2, 6, 37], neural field
potentials were recorded during supervised visits
with a variety of stimulation settings (supplementary
materials, table S2, NCT02649166/IRB201501021,
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Figure 4. Comparison between a 6th order Butterworth and elliptic bandpass filters, both with a bandwidth of 18–22 Hz (A)
1 mV Impulse response of the two bandpass filters to illustrate the difference in settling time and ringing of the filters in the time
domain. (B) Frequency response of the two bandpass filter to illustrate the difference in frequency specificity of the two filters.

NCT04043403/IRB52548, NCT03582891/IRB182
4454, IDE #180 097). All patients had DBS open loop
DBS settings clinically optimized based on stand-
ard monopolar review during the first month after
implantation. Sensing topology in the subcortical
DBS lead was a symmetric dipole (sandwiching)
around the stimulation electrode (figure 6(a)) with
monopolar stimulation referenced to the internal
neurostimulator. In a subset of subjects (all except
subject ID4), two additional sensing channels were
added to capture electrocortical (ECoG) signals from
the somatosensory andmotor cortical areas.We stud-
ied three possible types of artifacts during concurrent
stimulation and sensing: (a) ECG cardiac signal (Stim
ON ⩾ 0 mA), (b) transient responses in the sense
channel for different stimulation ramping speeds
(0.5–4mA s−1), (c) transient responses during a ‘fast’
aDBS for beta suppression.During (a) and (b) RC+ S
was configured in ‘distributed’ mode and without
adaptive stimulation since we were only interested
in artifact signals in the sense channel due to con-
current sense and stimulation. In (c), the RC + S
was configured in ‘embedded’ mode and with adapt-
ive stimulation to follow biomarker power threshold
transitions.

1.1.1. Tissue electrode impedance
To study the degree of impedance mismatch between
sense electrodes at the input of the analogue sig-
nal chain, lead impedances were recorded in a sub-
set of subjects at intermittent time points from

implantation date and beyond one year after ini-
tiation of DBS. The impedance values were recor-
ded by the sensing IPG system (Summit RC + S,
Medtronic) when interrogating it with the command
‘check lead integrity’. Monopolar, single contact elec-
trode impedances (e.g. C1 or electrode contact 1)
were measured referenced to the IPG case. Bipolar
impedances were defined as those created by pairing
subcortical electrodes providing a symmetric sense
dipole around a monopolar stimulation contact (i.e.
C0–C2 and C1–C3). Impedance mismatch of subcor-
tical electrode pairs was defined as the absolute differ-
ence of the impedance of each contact divided by the
mean value between them.

1.1.2. Cardiac artifact in deep leads with stimulation
ON
Subcortical stimulation and concurrent subcortical
and cortical sensing was performed using a four-
electrode subcortical lead (Medtronic model 3387)
targeted at the ventralis intermedius nucleus region
of the thalamus (VIM). Monopolar stimulation was
delivered between electrode contact 2 and the neur-
ostimulator (Summit RC + S, Medtronic) loc-
ated in the patient’s left chest cavity. Three bipolar
field potential channels were recorded during stim-
ulation: (Ch1) Subcortical sandwich configuration
(C1, C3) around the stimulation contact (C2).
(Ch2/Ch3) Cortical field potentials were recorded
from the primary motor and somatosensory cortex
using quadripolar cortical paddles (Medtronic model
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0913025). Stimulation settings included 0 mA (stim-
ulation engine on but not delivering stimulation) and
1.0 mA (clinical stimulation level), with a 90 µs pulse
width and a 135 Hz stimulating frequency. Two sep-
arate waveforms were tested: passive recharge, which
involves a square stimulation pulse followed by an
extended recovery in the opposite polarity using pass-
ive circuits for charge balance; and active recharge,
which sends two symmetric pulses sequentially for
both stimulation and recovery, allowing for charge
balance in a much shorter time frame. The following
settings were used for recording from the three chan-
nels: sampling rate 500 Hz, high pass filter at 0.85 Hz
and low pass filters at 100 and 100 Hz, with a sense
blanking value of 2.5 ms.

1.1.3. Ramp impacts on transient step responses
Stimulation was delivered subcortically while ramp-
ing artifacts were tested in both subcortical and cor-
tical channels using a variety of waveform and sense
blanking values. Two waveforms were tested; active
and passive recharge. Sense blanking, with the Sum-
mit RC+ S system, is a sliding value that can be set to
values ranging from 0.335 up to 2.505 ms (note that
‘sense blanking’ is a short blanking period at the ana-
log amplifier chain synchronizedwith the stimulation
pulse and prior to the ‘algorithm blanking’, which is
of a much larger duration (>50 ms) and takes place
as part of the detector/classifier algorithm, see sup-
plementary material figure S1). Here we tested the
default ‘amplifier sense blanking’ value of 0.335 ms,
as well as 1.005 ms and the maximum value pos-
sible of 2.505 ms. During this recording session, the
‘operative mode’ on the neurostimulator was activ-
ated. Different from ‘adaptive mode’, the ‘operat-
ive mode’ allows for manually switching between
states.

1.1.4. Duration of stimulation ramp transient step
response
We studied the duration of the transient step response
during and after stimulation ramping.Weused ramp-
ing rate datasets ranging from 0.5 to 4.0 mA s−1, col-
lected from patients with the RC+ S (subject IDs 1,2
see supplementary material, table S2). We character-
ized the transient response as a function of the ramp
rate, for two different stimulation amplitude excur-
sions (0–1 mA and 0–1.6 mA). Sensing settings were
the same as previously described. Constant stimula-
tion settings are 90 µs pulse widths and 135 Hz stim-
ulation frequency; the amplitude ranges from 0 mA
up to the clinical stimulation amplitude for each sub-
ject (1 or 1.6 mA), with the ramp rate varying based
on patient comfort (paresthesia occurring during
rapid ramp rates)t. The transient response duration
is defined from the time ramping begins until the sig-
nal returns to approximately the same baseline value
as prior to ramping (assuming return to baseline as
the optimal for best signal characterization).

1.1.5. Fast aDBS
In supervised sessions of PD subjects (ID8,10,12)
receiving open loop DBS for ∼1 year with bilateral
Summit RC + S implants, we tested ‘fast’ aDBS at
highest tolerable (no paresthesia) ramp rates (0mA to
open loop stim level in 200–300 ms). All subjects had
undergone bilateral placement of cylindrical quad-
ripolar deep brain stimulator leads into either STN
(subthalamic nucleus) (Medtronic model 3389) or
GP (globus pallidus) (Medtronic model 3387) and
bilateral placement of paddle-type quadripolar cor-
tical paddles into the subdural space over the motor
cortex (Medtronic model 0913025) [6]. Monopolar
stimulation was delivered between deep electrode
contacts 1 or 2 and the IPG. Three bipolar field
potential channels were recorded during stimulation:
(Ch1) Subcortical sandwich configuration (C0, C2)
or (C1, C3) around the stimulation contact C1 or
C2 respectively. (Ch2/Ch3) Cortical field potentials
recorded from primary motor and somatosensory
cortex (note: here we tested ‘fast aDBS’ using subcor-
tical concurrent sense/stimulation). Stimulation set-
tings included 0mA (low target) and the clinical stim-
ulation level (different for each subject), with a 60 µs
(in STN) or 90 µs (in GP) pulse width and a 130 Hz
(STN) or 150 Hz (GP) stimulating frequency. The
following settings were used for recording from the
three field potential channels previously mentioned:
sampling rate 500 Hz, high pass 0.85 Hz and low pass
100 Hz, sense blanking of 0.5 or 1 ms and ‘sense-
friendly’ stimulation frequency (closest stimulation
rate to the desired frequency value that is optimized
within the RC+ S sensing circuitry to coupleminimal
stimulation artifact).

The RC + S was configured for embedded (on
device) aDBS with the following settings: sampling
rate 500 Hz, FFT size 256, FFT update rate 100 ms,
FFT overlap 80%. Subject specific beta biomarker
frequency bands were defined as the area within
the canonical beta band with the largest peak while
turning DBS therapy OFF during 1–2 min. A single
algorithm detector threshold was defined as∼50% of
the biomarker power range during stimulation OFF.
To interface with the RC + S device during aDBS
parameter exploration and algorithm testing we used
our open-source Research Facing App software11.
Stimulation ramps were defined from 0 to maximum
stimulation (open loop clinical stimulation) within a
time window of 200–300 ms, after verifying no pares-
thesia reported by patient.

For off-line data visualization of the RC + S raw
data we used our open-source MATLAB library [43].
After ingesting the data, the raw time domain sig-
nal was bandpass filtered (Butter and Hilbert func-
tions, MATLAB) and centered at the predefined

11 https://github.com/openmind-consortium/App-aDBS-
ResearchFacingApp
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Figure 5. Subcortical impedances measured with the RC+ S system in a group of movement disorders patients (7 STN, 4 GP, 2
dystonia) represented as absolute unipolar and percentage difference mismatch between paired electrodes. (A) Distribution of
single measurement points of each subcortical electrode contact referenced to the IPG case, with a range of variability from 500 to
2500 ohms. (B) Impedance mismatch of a subcortical electrode pair defined as the absolute difference of the impedance of each
contact divided by the mean value between them. Electrode pairs are defined as those capable of providing a symmetric sense
dipole around a monopolar stimulation contact. With a quadripolar subcortical lead, this leads to stimulation contacts C1 or C2
with subsequently symmetric sense pair electrodes C0–C2 or C1–C3. By pairing electrodes in this manner, calculated impedance
mismatches were 20.2% (75th percentile 45.7%) for C0–C2 and 15.8% (75th percentile 26.9%) for C1–C3. Note that the outliers
observed in C0-C2 (panel (B)) could be due the large range of variability between C0 and C2 (panel (A)). This large variability
can be expected due to: (a) the different target electrode locations (STN or GP), (b) the use of different electrode lead models
(geometry of STN electrode lead differs from GP lead), and (c) the impedance variability of intrinsic anatomical target regions
due to different brain conductivity media (in the GP contact C2 is placed at the intersection of the GPe and GPi (gray and white
matter), see supplementary material figure S1).

(experimental) beta frequency band. Power spectrum
density (PSD) of representative 2 s time domain
segments were computed using pwelch (MATLAB)
with a window length of 400 ms and 50% overlap.
A resulting averaged PSD over the 2 s window was
plotted.

1.2. Characterization test results (chronic, in vivo
devices)
1.2.1. Impedance mismatch in subcortical sensing
electrodes
A total of 89 impedance measurement points were
collected in 14 different patients. After excluding
outliers (8/89 points) due to technical malfunction-
ing in the IPG-lead connection (high impedance
∼50 Kohm; issue in one side of two patients, resolved
on later cases by adding medical adhesive to the
IPG-lead connector), a total of 81 points were part
of the analysis. By pairing electrodes to allow for
optimal subcortical aDBS configuration, impedance
mismatches ranged 5%–45% (25th–75th percentile)
with median values ranging 15%–20% (see figure 5,
and similar figure from ET subjects in supplementary
material figure S2).

1.2.2. Active recharge reduces cardiac artifact from
deep leads
Stimulation with passive recharge results in larger
ECG residual artifact compared to active recharge at
the sensing electrodes proximal to the stimulation
electrode (figure 6). ECG artifact was seen as long
as the stimulation engine is turned on even with an
amplitude of 0 mA. During clinical stimulation, a
stimulation artifact at 135 Hz is seen superimposed

on the underlying signal, with the cardiac artifact
continuing to appear during passive recharge. Active
recharge not only reduced the cardiac artifact, but
also reduced the total power of the stimulation arti-
fact. The ECG artifact was clearly seen in two essen-
tial tremor (ET) subjects during passive recharge,
with one representative dataset shown here. There
was a significant reduction in the artifact during act-
ive recharge (figure 6(b) versus figure 6(c)). All sub-
sequent subjects were recorded during active recharge
at all times, which makes it difficult to say whether or
not the temporal fluctuations seen are ECG or not.
No artifact was observed in any configuration when
viewing the cortical channel (Ch2).

1.2.3. Sense blanking and active recharge reduces DBS
artifact
Ramping the stimulation (figure 7) while sensing res-
ults in both a high frequency stimulation artifact and
a direct current (DC) transient artifact at the near-
field sense electrodes (Ch1), while the same artifacts
do not appear at the far-field electrodes (Ch2). Note
that the electrode montage placement is the same
as figure 6(a). All permutations shown were recor-
ded from the same patient on the same day, with
the only differences being the sense blanking value
(0.335/1.005/2.505 ms) and the stimulation wave-
form (active/passive recharge). Higher sense blanking
values reduced the magnitude of the high-frequency
stimulation artifact in Ch1, but the DC transient arti-
fact reached approximately the same value no mat-
ter the configuration. Active recharge was better than
passive recharge at each sense blanking value, with
the added benefit that while using active recharge
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Figure 6. ECG and high frequency stimulation artifacts during concurrent stimulation and sensing with the bidirectional neural
interface (Sumit RC+ S, Medtronic) in a patient with ET. (a) Electrode placement within the VIM, and cortical strip placement
over the primary motor/somatosensory cortices (Ch1 subcortical channel and Ch2, Ch3 cortical channels). (b) Recording during
passive recharge at 0 mA and clinical stimulation levels, at Ch1 (subcortical channel) and Ch2 (cortical channel). Passive recharge
utilizes a square pulse followed by a long-term small-amplitude charge in the opposite polarity. (c) Recording during active
recharge using the same amplitudes and channels as (b). Active recharge sends sequential symmetric square pulses with opposite
polarities, balancing the charge in a shorter time period.

Figure 7. Comparison of the effect of waveform and sense blanking values on DC transient artifacts during ramping and high
frequency stimulation artifacts. Every combination of waveform/sense blanking values contains both a depth channel (Ch1) and a
cortical channel (Ch2) for comparison of near-field and far-field recording contacts, respectively. Each panel depicts the
time-domain signal as a black line, and the current amplitude of the device while ramping up in red.

the ECG artifact seen during passive recharge is also
reduced (also seen in figure 6(b)).

1.2.4. Duration of stimulation ramp transient step
response
Duration of the transient response was inversely cor-
related with both ramp rate and amplitude range,
where a slower ramp rate and a large amplitude range
led to the longest transient step response (figure 8).

Each waveform seen in figure 8 is unique, with a
convergence on the general shape occurring once the
ramp rate exceeds 3.0 mA s−1. The impedance mis-
match of each recording is recorded within each sub-
panel. The magnitude of the impedance mismatch
influenced the magnitude of the transient response
(see y-scale relative differences of cases with similar
ramp rates, e.g. panels (a)–(c) or panels (f)–(h)). The
duration of the transient response was not found to

9



J. Neural Eng. 19 (2022) 026025 J Ansó et al

Figure 8. Duration of transient response as a function of ramp rate and amplitude range from in vivo testing (subjects ID1,2,
supplementary materials table S2). The center panel shows the total time from the start of the ramping period until the signal
returns to a steady state. The range of the amplitude (from the minimum value to the maximum value) is denoted by the size of
the marker. (A)–(H) Sub-panels surrounding the central panel are ordered based on their ramp rate. The gray box highlights
when the ramping starts, on the left edge, and when the signal returns to approximately steady state, on the right edge. Within
each sub-panel is displayed the ramp rate of the run, the total range the amplitude oscillates between, and the measured
impedance mismatch between the bipolar recording channels as a percentage.

correlate with impedance mismatch (i.e. dominated
by time properties of high-pass filter at the input
of analog chain). Figures 8(d) and (h) both show
shorter duration of the transient response times (or
relaxation time) than the surrounding ramp rates,
potentially due to the smaller range that the amp-
litude has to transition across (0–1 mA instead of
0–1.6 mA). Here we show a mix of both rising
and falling ramp rates, with no differences found
in the transient response timing between compar-
able rise/fall ramp speeds, allowing for comparison
between the two directionalities. At even slower ramp
rates (0.1 mA s−1) the ramping artifact (DC transi-
ent) occurs once within the 1 s time interval between
stimulation amplitude steps of 0.1 mA (supplement-
ary material, figures S4). The time-domain signal is
returning to baseline within 0.5 s, with the spectral-
domain showing broadband power increases during
each ramping event. As the stimulation amplitude
increases (relative change is constant 0.1 mA), the
broadband power is diminishing; while still present,
it is not as visually distinctive at higher amplitudes.

1.2.5. Transient response during ‘fast’ adaptive DBS
A representative case of DBS OFF, DBS ON and ‘fast’
aDBS is shown in figure 9. In this subject, a reduction
of beta band activity in the frequency range 16–30 Hz
when turningDBSONwas found (figure 9(b)).When
turning DBS ON, high frequency stimulation arti-
facts appeared in the raw time domain signal. By
turning DBS ON a reduction of amplitude of bursts
(figure 9(b) middle panel) and biomarker power
band (figure 9(b) bottom panel) was observed. Dur-
ing ‘fast aDBS’ testing, the detector power band chan-
nel oscillated at the rate of consecutive stimulation

ramps (re-entrant loop or self-triggering). This was
consistent among all subjects tested with stimulation
amplitude going from 0 mA to constant DBS ther-
apy value. The stimulation ramp created a reentrant
transient, overlapping the band of interest, greater
than 50 µV (>a factor of 10 of the magnitude of the
physiological oscillation). The large transient coupled
to the detection algorithm after FFT resulted in detec-
ted bursts that were confounded with physiological
bursts. The confounding bursts were observed during
the off-line analysis by applying the band-pass filters
to the raw LFP signal (see middle panels figure 9(c)).

The power spectrum shows an increase of base-
line power, which is most significant in the low
frequency range of the spectrum (<30 Hz), going
above the expected biomarker power (bottom pan-
els figures 9(a)–(c)). For mitigation of the re-entrant
loop issue, a detector blanking in the classification
algorithm of 700 ms or higher was used, which
resulted in the patient not being sufficiently stim-
ulated at the appearance of a next pathophysiolo-
gical burst. Additional examples showing how the
re-entrant loop affected the aDBS algorithm can be
found in supplementary materials figure S4. To verify
the sources of the stimulation transients in the signal
chain we turned to benchtop testing.

1.3. Verification: simulation and on-bench
assessment of transient response during
stimulation transitions
1.3.1. Simulation and benchtop methods
In-vivo measurements in humans can limit the
degrees of freedom to exploring design sensitivity
and relative trade-offs. In addition, we wished to
identify fundamental issues for artifact resolution,
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Figure 9. Step response artifact on LFP signal during ‘fast’ stim ramping at 10 mA s−1. A 2 s segment of subcortical LFP recorded
from pallidum of a PD patient for three different DBS settings: (A) DBS OFF, (B) DBS ON, and (C): ‘fast aDBS’. For each DBS
state (column), the top row is the LFP time domain, middle row the band pass filtered signal and the bottom row is the PSD of the
2 s segment. Sandwiched sense configuration (C1 and C3 around stim contact C2). Stimulation 0–3 mA in 300 ms (ramp
up= ramp down), 150 Hz frequency, 90 us. (A) DBS OFF: no neural stimulation which results in maximal amplitude of
biomarker oscillation,∼10 microvolts peak (top (A) panel). (B) DBS ON: therapeutic open-loop stimulation (cathodic
monopolar stim in C2 relative to IPG in chest, 3 mA, 149.3 Hz, 90 µs). (C) ‘Fast’ aDBS algorithm: top panel shows a time segment
of raw LFP signal aligned with a time-varying stimulation amplitude (stimulation ramp 0–3 mA and 3–0 mA in 300 ms).

versus assessing the issues arising from a specific
device design. This motivated the use of computa-
tional circuit simulations and benchtop experiments,
as well as relative comparisons with another investig-
ational device in development (Picostim-DyNeuMo-
2) [5, 7] with modified approaches to implementing
the canonical signal chain. To replicate the slow tran-
sient response measured in patients implanted with
Summit RC+ S during ON–OFF stimulation regime,
a resistive and capacitive (RC-R) tissue electrode star
load model was proposed. The RC-R tissue electrode
interfacemodel is based on the architectures shown in
the literature by [27, 44–46]. This test setup is a simple
way to mimic the interaction network of the sensing
electrodes with stimulation electrodes in monopolar
stimulationmode in the sandwich configuration usu-
ally used with patients.

(a) Electrical simulation

An electric circuit simulation was performed of
the different capacitor mismatch values in the tissue–
electrode star network using LTSpice XVII (Analog
Devices, Wilmington MA, USA). We aimed to show
the effect of switching stimulation ON–OFF on the
sensing channels for the DyNeuMo-2 and RC + S
sensing circuits, and how these results compared
to the data recorded from patients implanted with
the RC + S. The spice simulation of the RC + S
and DyNeuMo-2 front-end sensing circuits was per-
formed with the assumption of an ideal amplifier

for both devices. The same values of tissue electrode
interface impedances were used to test the sensing cir-
cuits of the two devices. From the simulations, a range
of typical tissue–electrode interface capacitor values
were identified (660 nF–2.2 µF). These capacitor val-
ues match the values reported from DBS implanted
electrodes [45, 47, 48].

(b) Benchtop testing

To test and validate the results from the simula-
tions, a benchtop setup was created and attached to
one of the devices, theDyNeuMo-2. The details on the
benchtop model, hardware setup design and specific-
ation see supplementary material, Benchtop Model
and Setup, figures S5–S7 and table S3. The benchtop
test used the RC-R tissue electrode interface network
and values derived from the Spice simulation. Dur-
ing the benchtop tests we assessed the DyNeuMo-
2 sensing circuit response to capacitance mismatch
in the tissue electrode interface, and how this would
affect the system’s ability to perform ‘fast’ adaptive
algorithms. To test a standardized worst-case scen-
ario of the stimulationON–OFF transients, we set the
stimulation to have the same configuration through-
out all the tests (3 mA active recharge stim, at 125 Hz
in monopolar setup (electrode E3 back to case), and
with stimulation ramping disabled). In most patients
ramping is required for the stimulation setup, to
avoid any paresthesia. However, as we focused on the
worst-case scenario, we chose the instant switching of
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stimulation for a set period of time (1.6 s ON, 2.4 s
OFF) throughout the tests.

(c) Saline testing

Saline solution usually has a homogeneous
impedance throughout, so it is difficult to replicate
and control the impedance mismatch as in the RC-R
benchtop test. Therefore, we proposed to test, (a) the
0.9% saline baseline impedance mismatch, (b) the
worst-case scenarios of ⩾100% capacitor impedance
mismatch in saline. The ⩾100% capacitance imped-
ance mismatch was achieved by shorting electrodes
E1–E2 as the positive amplifier sense (+) input and
using E4 for negative amplifier sense (−) input, while
stimulating with the same settings as the benchtop
tests from E3 to case. By doubling the surface area of
one of the sensing electrodes this should theoretically
double the capacitance mismatch between the two
sensing channels.

(d) Classifier characterization

To validate the effect of the slow transient
responses of the different capacitor mismatches on
the fast aDBS mode in the DyNeuMo-2. An optim-
ized version of the fast adaptive algorithm first intro-
duced by [20] was implemented in DyNeuMo-2. The
DyNeuMo-2 digital signal processing chain contains
a high pass filter set to remove the DC offset and slow
transient response signals, and then the data is fed
through a 4th order bandpass filter set to detect a Beta
signal at 20 Hz with a cut off frequency of 18–22 Hz.
Then the data is rectified and smoothed to detect the
power within the frequency band of interest (supple-
mentary material figure S8).

1.3.2. Simulation results
TheDyNeuMo-2 and the RC+ S sensing circuits with
tissue electrode interface capacitor mismatches of
680 nF–1.47 µF and 1–2.2 µF (supplementary mater-
ial, table S3 tests 2,3) showed a similar slow transient
response profile during stimulation switching ON–
OFF. The values of the selected capacitors resulted
in a settling time of about 1000–1200 ms for both
sensing circuits, with differences in the maximum
amplitude of the signal (about two times larger in
DyNeuMo than in RC+ S) (supplementary material,
figure S9). Moreover, the transient response of capa-
citor values 680 nF–1.47 µF and 1–2.2 µF, is very sim-
ilar to the majority of transient responses observed in
patient recordings with the RC+ S (figure 8). The test
with capacitor values of 150–330 nF (supplementary
material, table S3 tests 1) resulted in a different transi-
ent response to what was observed in patient record-
ings, with a much faster settling time of 200–300 ms.
This suggests that these capacitor values are unlikely
to be encountered in the DBS tissue–electrode inter-
face in vivo.

1.3.3. Benchtop RC-R interface and saline test results
The transient response of the DyNeuMo-2 IPG for
the different pairs of tissue electrode interface capa-
citance is illustrated in (figure 10). A stimulationON–
OFF transient response with a settling time between
700 and 1000 ms was measured (figures 10(A)–(D)).
This is similar to the results observed in the Spice
simulation with slightly faster settling time periods.
The benchtop and saline tests transient responses are
similar to the patient data recorded with the RC + S
illustrated in figure 8. Furthermore, from the spec-
trogram of the raw data illustrated in figure 10(row
3), we see that the slow transient response results in
an increase in power across the frequency range when
stimulation switchesON–OFF. This increase in power
only lasts for about 250–350 ms. The output from the
DyNeuMo-2 power band classifier for the different
impedance mismatches is illustrated in figure 10(row
2). The stimulation ON–OFF transients causes the
bandpass filter stage to ring in all cases (similar to the
DC transients observed in data fromRC+ S subjects).
The ringing of the bandpass filter lasts for approxim-
ately 250–350 ms, which is the settling time of the 4th
order Butterworth filter. The envelope power detec-
tion signal shown in orange in row 2, settles down
to the baseline noise within 1000 ms from the stim-
ulation ON–OFF, this is due to the 400 ms moving
average smoothing filter, which is implemented as a
1Hz 2nd order lowpass filter. The results also demon-
strate that even in a homogeneous saline solution
there is a small capacitance mismatch in the saline-
electrode interface, which results in a slow transient
response. Moreover, the different capacitor mismatch
values affect the maximum amplitude of the ringing
in filtered data more than the duration (similar to
RC+ S subjects, figure 8). The benchtop and simula-
tion test results identified the limitation of the sens-
ing channels of implanted aDBS devices during stim-
ulation ON–OFF transitions, and how it would affect
the operation of a fast aDBS algorithm. Identifying
and characterizing these limitationswould inform the
hardware and software tuning required in implanted
aDBS devices to perform fast aDBS algorithms.

1.4. Checklist validation: ‘fast’ aDBS
implementation with RC+ S (in vivo)
After verification of the sources and mitigations of
the stimulation transient, we were able to imple-
ment ‘fast’ aDBS in which stimulation was success-
fully adjusted based on underlying physiology rather
than ramp artifact. In a PD-STN patient (72 year-old
man, 8 years history of PD), we studied if trade-offs
in the analog chain and the time/frequency classifier
could reduce stimulation transients and mitigate its
effect in algorithm performance (e.g. reducing false
detections or reentrant loops). We did so by applying
the checklist defined in figure 3 and table 1 (note the
setting values in the bullet list below are tailored to the
example described herein):
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Figure 10. DyNeuMo-2 benchtop and saline test results. (A) Transient response results of RC-R network with 680 nF–1.47 µF
capacitor mismatch. (B) Transient response results of RC-R network with 1–2.2 µF capacitor mismatch. (C) Saline test transient
response with 1:1 electrode no surface area mismatch. (D) Saline test transient response with 2:1 electrode surface area mismatch.

(a) Analog Sense. High-pass filter corner of 8.6 Hz
instead of 0.85 Hz, reducing the duration of
the transient response due to stimulation trans-
itions yet ensuring sufficient spectral bandwidth
to detect beta band power.

(b) Digital Signal Processing. Reducing FFT time
window (64 points, 256 ms) and interval
(50 ms), still keeping enough frequency resol-
ution (∼4 Hz). Note this is similar to time/fre-
quency trade/offs derived from the simulation
filter/classifier analysis with the DyNeuMo (see
figures 4 and 12).

(c) aDBS Detector/Classifier. Choosing detector
blanking (550 ms) with sufficient duration to
avoid reentrant loop due to transient during
stimulation ramp up/down (250 ms), while not
blanking so long so as to miss the next burst
(in STN-PD next bursts may appear within
∼500 ms). Other detector/classifier settings:
100 ms update rate (average of two consecut-
ive power band values, i.e. increasing signal to
noise ratio (SNR) yet keeping overall detection
duration at∼500 ms).

(d) Stimulation modulation. Minimizing the stim-
ulation transition range (2→2.6 mA) to reduce
magnitude of transient during a 250 ms stim-
ulation ramp duration. We started at a non-
zero amplitude level to avoid under-stimulation

and increased amplitude to the maximum level
tolerable by the patient. As shown in previous
sections (e.g. figure 8, supplementary material
figure S3), a lower range of stimulation trans-
itions leads to reduced stimulation transients.

A representative 10 s segment of the ‘fast’ aDBS
detector using the settings above is shown in figure 11.
The appearance of the stimulation ramp or trans-
itions does not result in reentrant loops. The raw LFP
signal did not show large DC transients during stim-
ulation transitions (data not shown here), this was
likely because of the combination of reduced stimula-
tion range and use of a higher corner of the high pass
filter (HPF). The appearance of detector state changes
and consequently the delivery of adaptive stimulation
and its duration varied with time (figure 11), sug-
gesting that stimulation is triggered by physiological
changes and not driven by the transient artifact after
switching.

2. Discussion

Here we evaluate technical challenges in the imple-
mentation of chronic aDBS paradigms in an embed-
ded (fully implanted) configuration. We focus on
continuous (real-time) sensing during stimulation
of the disease-or-symptom specific neural biomarker
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Figure 11. Implementation of ‘fast’ aDBS in a chronically implanted patient with RC+ S using optimal settings. (A) Input power
feature to detector (blue trace) and corresponding transitions of stimulation current (orange trace) following power threshold
crossing (dashed black line). (B) The linear discriminant LD0 (blue trace) is the averaged output of the power (blue trace is the
average of 2 FFT power values in (A)). The algorithm blanking segment (lockout period) of 550 ms at the onset of a threshold
cross (states 0–2 and 2–0) is depicted with a red rectangle. The detection state (orange trace) changes value with threshold crosses
of LD0, with state 2 indicating a detector increase, state 1 (‘hold’) indicating LD0 within thresholds (in case upper and lower
threshold) and state 0 indicating a detector decrease below threshold event. Note: after second 8, the sudden stimulation
transition from high to low creates a prominent increase in power, with algorithm blanking of 550 ms or shorter (e.g. 250 ms,
duration of the ramp) sufficing to avoid reentrant loop.

(full duplex configuration), in particular, technically
demanding ‘burst trimming’ algorithms that oper-
ate on fast time scales (e.g.<1 s; trimming bursts as
they occur). Fast algorithms are particularly sens-
itive to false detections due to the susceptibility
for reentrant loops and limit cycles. We argue this
is due to the interaction of the stimulation wave-
form with the DBS electrode-tissue interface and
the step response properties of a high-pass filter at
the front-end of the sensing IPG analog chain. To
illustrate this phenomenon, we used patient data
recorded with one of the most sophisticated aDBS
devices, Summit RC + S (Medtronic), available only
under investigator-initiated research protocols. We
also developed an electrical model that mimics ‘real
world’ considerations of the patient-electrode-tissue
interface and analog high pass filter characteristics.

2.1. Active versus passive recharge
A stimulation pulse can be applied with an act-
ive (active recharge) or a passive (passive recharge)
anodic phase. In both ‘active recharge’ and ‘passive

recharge’, the cathodic stimulation phase returns to
zero reference immediately after pulse width duration
[49]. Passive recharge pulsed stimulation provides an
exponential decay from anodic peak amplitude to
zero reference. A passive recharge stimulation scen-
ario is beneficial to reduce battery power consump-
tion, as no active electronics are required to drive the
recovery. Passive recharge is often the only mode of
operation available on primary cell neurostimulators
such as Activa PC + S or Percept PC. While stim-
ulation is being delivered, stimulation and sensing
engines are referenced to the same electrical ground,
the implant case. The net result is a longer time seg-
mentwhere both the stimulation artifact is recovering
on the recharge pulse which must be rejected by the
pre-amplifier, and increased exposure to physiolo-
gical artifacts that can couple through the IPG such
as the ECG signal.

2.2. Cardiac artifact
In addition to stimulation artifacts, cardiac artifacts
may preclude application of adaptive stimulation
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algorithms by corrupting signal spectral information
in the low frequency biomarker bands [50, 51]. The
presence of an ECG artifact is only observed in the
subcortical channels, and is not present in cortical
channels. This may be due to a number of factors,
for example signal-to-noise ratio, where cortical sig-
nals are ∼10 larger than subcortical signals helping
to obscure the ECG/Stim artifacts, or use of differ-
ent input bores on the RC + S (i.e. depth channels
are placed in Bore 0, and cortical channels are placed
in Bore 1, physically separating the stimulating elec-
trodewire from the cortical recordingwire). Themost
likely explanation is the relative size of the signal, as
the common mode rejection can be compromised
enough to allow ECG feedthrough of cortical signals,
such as in the extreme case where the IPG case is one
input of the differential chain [52]. The use of active
recharge can reduce the magnitude of the ECG arti-
fact. However, active recharge requires higher power
to deliver the same amount of stimulation energy and
thus is most applicable to rechargeable pulse generat-
ors. Another mitigation to reduce ECG artifacts is to
place the sensing pulse generator further away from
the heart. Neumann et al [50] present results of a
multicenter study demonstrating considerable reduc-
tion of ECG artifact with devices placed on the right
chest of patients. Other studies have opted for pulse
generators placed farther away from the chest, for
example skull based implants [1, 5, 7, 30]. A mitig-
ation strategy during ‘off-line’ (post processing) has
been proposed by [51] using template-based extrac-
tion, but this implementation is not applicable to
closed-loop (real-time) DBS.

2.3. Sense blanking
The high frequency stimulation artifact can be man-
aged by increasing the sense-blanking value while
simultaneously using active recharge; the largest amp-
litude artifact from stimulation for the Summit
RC+ S occurs using passive recharge with a 0.335 ms
blanking value (the shortest possible value). In con-
trast, the DC transient artifact during ramping is
relatively unaffected by any of the combination of
settings used, suggesting this is related to overall
redistribution of charge from changes in stimula-
tion state versus a single pulse-related source. The
net effect of the stimulation transient is a broadband
power increase during stimulation changes, which
may interfere with power-based discriminators. Note
that for the Summit RC + S and Activa PC + S, the
high-pass filter corner (0.85, 1.2, 3.3 or 8.6 Hz) is
on the same order as ramp-transitions for stimula-
tion with time step increments from 100 ms (fastest)
to 1000 ms (slowest). To minimize extended arti-
fact effects, the high-pass filter corner should be set
to as high a corner as possible without comprom-
ising the physiological biomarker of interest, or the
input impedance of the sensing chain. For a fixed
input coupling capacitor, a higher filter corner lowers

the input resistance proportionately. To avoid this
impact, an additional filter might also be implemen-
ted in the digital processing chain to avoid comprom-
ising the front-end impedance characteristics.

2.4. Transient response: avoiding limit cycles with
algorithm blanking
The transient response observed in patients had a
shorter duration with increased ramp rate (mA s−1)
until reaching a minimum steady level (from ∼1.0
up to 4 mA s−1) when comparable amplitude ranges
were evaluated (figure 8). While the magnitude of
the transient artifact can be reduced by reducing dif-
ference between low and high stimulation amplitude
limits, the overall duration is dominated by the time
constant of the capacitive elements of the input ana-
log sensing circuitry. To reduce the time constant of
the transient response in the RC + S, the high-pass
filter corner can be adjusted depending on the bio-
marker band of interest (HP corners: 0.85, 1.2, 3.3
and 8.6 Hz). Note that the degree of impedance mis-
match influenced the magnitude of the transient step
response (larger mismatch, larger amplitude of the
DC transient) but not the duration (see figure 8 sim-
ilar ramp rates (e.g. (a)–(c)) and figure 10 middle
panels). This is likely due to the time properties of
the analog high-pass filter at the input of the amplifier
chain dominating over a shorter time constant of the
tissue electrode impedance mismatch. In the RC+ S,
‘algorithm or detector blanking’, can be applied to
mitigate the effect of the transients during stimula-
tion amplitude adjustments. In general, a blanking
duration higher than the duration of the ramp is
required to let the sense amplifier signal settle back to
baseline. In ‘slow’ aDBS algorithms with biomarker
state changes on the order of minutes to hours (e.g.
medication fluctuations in PD or onset of seizures in
epilepsy), mitigation of the transient response is pos-
sible using blanking periods of the duration of the
ramp [6, 37, 53].

2.5. ‘Fast’ aDBS—considering classifier
time-frequency trade-offs
The potential clinical benefit of fast aDBS was first
demonstrated in brief perioperative studies with
externalized DBS leads [20, 24]. In those proof
of concept (perioperative) studies with externalized
leads, an external bioamplifier (TMSI Porti 7) was
used without analog input high-pass filters or addi-
tional input sense channel safety capacitors, thus
a minimal transient step response during stimula-
tion transitions. This type of external instrumenta-
tion comes with a higher dynamic range and does
not require analog input high pass filters to ensure
a trade-off between signal resolution and dynamic
range. The ‘fast’ adaptive stimulation algorithm to
shorten beta bursts in PD has not yet been clinic-
ally assessed in a fully embedded configuration due
to the observed reentrant loop during concurrent
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stimulation and sensing. The risk of limit cycles is
critical to consider when attempting to implement
faster aDBS. To mitigate the technical implication
of artifact-driven limit cycles during aDBS, attention
needs to be paid to trade-offs in the analog chain
(e.g. increase HP filter corner to reduce duration of
transient), time/frequency resolution of classifier and
careful choice of algorithm blanking duration. For
example, by reducing the length of the FFT buffer,
the impact of a transient response that could obscure
detection of beta activity may be reduced with a reas-
onable detriment of frequency resolution. Finally,
choosing an optimal value of algorithm blanking is
key, it should be long enough to avoid reentrant loop
but not too long to avoid missing the next patho-
physiologic burst (e.g. 550 ms for the beta algorithm
in figure 11). Here, we utilized these methods to
demonstrate technically successful ‘fast’ aDBS in a
patient with PD, without reentrant loops.

It should be noted that these observations are
guided in part by the choice of signal chain architec-
ture [54], and alternative methods for artifact sup-
pression are under investigation. For example, the
designer can use a ‘weak’ auxiliary stimulation signal
sensed by the recording system [55] or apply an irreg-
ular sampling rate [56].

2.6. Considerations for next generation aDBS
devices
2.6.1. Optimizing management of the tissue–electrode
interface
The observed stimulation ON–OFF transient
response is a result of the high-pass filter in the
front-end sensing circuit for the DyNeuMo-2 and
RC+ S. The use of a passive high pass filter on preci-
sion instrumentation amplifiers is not recommended
as it degrades the common mode rejection ratio of
the amplifier and reduces the input impedance (two
main features and advantages of using instrumenta-
tion amplifiers). However, in implanted IPG systems
the use of a passive high-pass filter is enforced as part
of the single fault safety design for the stimulation
channels. As IPGs include a large DC decoupling
capacitor for the stimulation electrodes to ensure net
zero DC current flowing through the DBS electrodes,
using a passive high-pass filter in the front-end res-
ults in reducing the total input impedance to the
value of the high-pass filter resistor. This also reduces
the common mode rejection ratio of the sensing cir-
cuit. Furthermore, as illustrated in the simulation
results supplementary in figure S9, the most domin-
ant factor in the tissue–electrode interface impedance
is the capacitor. The tissue–electrode interface capa-
citance is shown to be in the order of a few micro-
farads [45, 47, 48]. A mismatch in the capacitive ele-
ment of the tissue electrode interface will result in a
slightly different high-pass filter cut off frequency set
on the positive and negative terminals of the sensing
channels. This would result in each channel having

a slightly different settling time on each terminal in
the event of a step response i.e. stimulation switching
ON–OFF. Hence, this would result in a slow transient
response signal showing as a differential input to the
amplifier. This issue can be mitigated by, (a) increas-
ing the high pass filter resistor value to increase the
input impedance, (b) reducing the value of the high
pass capacitor to reduce the loading from the tissue
electrode interface, as illustrated in supplementary
figure S10.

2.6.2. Time-frequency trade-offs in aDBS
An increase in ringing duration during digital signal
filtering before the classifier could cause the algorithm
to have a higher rate of false triggers (false detec-
tions due to reentrant loop effect). For this reason,
the beta filter used in the DyNeuMo-2 is set as But-
terworth 4th order with a bandwidth of 18–22 Hz
(figure 4), which results in a reasonable frequency
specificity and a reduced time domain ringing dura-
tion. Also, the power envelope smoothing filter needs
to be designed carefully, as a slow smoothing filter
designed to respond to beta bursts of 250–350 ms,
will filter out shorter bursts and noise, which will pre-
vent false triggers. Meanwhile, a burst of 250–350 ms
such as the ringing caused by the stimulation ON–
OFF transient response will result in the smoothing
filter staying above baseline noise for about 1000 ms
as illustrated in figure 12. This in turnwill increase the
required blanking period and limit how fast the aDBS
algorithm can perform. However, this can be mitig-
ated by reducing the smoothing filter window, with
the compromise that this might lead to the classifier
responding to shorter bursts of the signal of interest
as illustrated in figure 12. Similarly, a shorter FFT
window size in the RC + S detector combined with
detector power averaging and optimal blanking could
lead to a trade-off in frequency and time resolution,
targeting burst activity and avoiding reentrant loop
without missing subsequent pathophysiologic bursts
(figure 11).

Although we have focused on applications based
onDBS, ECoGbased prosthetic systemswould poten-
tially benefit from the techniques described, espe-
cially those incorporating sensory feedback which
might provide artifacts in the proximity of the sens-
ing electrode. For example, a memory prosthesis
described by Kahana [57–59] and closed-loop spinal
cord stimulation to treat chronic pain [60] also rely
on state-dependent, field-potential based algorithms
and stimulation, where the bi-directional elements
are required. Similarly for neuropsychiatry, a neur-
omodulation depression system might also bene-
fit from a full-duplex approach [35, 36]. In sum-
mary, the methods and results described here are
useful for a broader range of applications than clas-
sical DBS for movement disorders, where field poten-
tials might be useful as the input. Ultimately, suc-
cessful implementation of aDBS therapies in any
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Figure 12. 1 mV impulse response of a 6th order Butterworth with 1 and 5 Hz envelope detection filter.

application will require a deeper understanding of
long-term, symptom-related biomarker dynamics [6,
61], as well as patient-specific control strategies that
can be embedded in the implant device [23, 27, 62].

3. Conclusion

Artifacts during concurrent stimulation and sens-
ing should be carefully studied in any applications
of adaptive closed-loop DBS. When stimulating and
sensing with electrodes in the same DBS lead dur-
ing ‘fast’ (<1 s) aDBS, impedance mismatch of the
sensing electrodes and filter properties of the ana-
log chain need to be considered. Careful choice and
optimization of analog and digital filter parameters
in the detector engine and use of detector blanking
strategies is then key to mitigate the effect of stim-
ulation transients in the classifier performance. In
closed-loop DBS applications with slower biomarker
latencies, setting a detector blanking of at least the
duration of the stimulation ramp may be sufficient
to avoid algorithm reentrant loops during adaptive
stimulation. In the future, the properties of the analog
chain should include mechanisms to reduce the step
transient responses during adaptive stimulation, and
to to detect these reentrant loops and enable switch-
ing to constant (open loop) stimulation therapy to
mitigate adverse clinical effects.
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