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Abstract
Objective: Neurons communicate with each other by sending action potentials (APs) through their
axons. The velocity of axonal signal propagation describes how fast electrical APs can travel. This
velocity can be affected in a human brain by several pathologies, including multiple sclerosis,
traumatic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs)
provide unprecedented spatio-temporal resolution to extracellularly record neural electrical
activity. The high density of the recording electrodes enables to image the activity of individual
neurons down to subcellular resolution, which includes the propagation of axonal signals.
However, axon reconstruction, to date, mainly relies on manual approaches to select the electrodes
and channels that seemingly record the signals along a specific axon, while an automated approach
to track multiple axonal branches in extracellular action-potential recordings is still missing.
Approach: In this article, we propose a fully automated approach to reconstruct axons from
extracellular electrical-potential landscapes, so-called ‘electrical footprints’ of neurons. After an
initial electrode and channel selection, the proposed method first constructs a graph based on the
voltage signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal
branches. Finally, the axonal branches are pruned, and axonal action-potential propagation
velocities are computed.Main results:We first validate our method using simulated data from
detailed reconstructions of neurons, showing that our approach is capable of accurately
reconstructing axonal branches. We then apply the reconstruction algorithm to experimental
recordings of HD-MEAs and show that it can be used to determine axonal morphologies and
signal-propagation velocities at high throughput. Significance:We introduce a fully automated
method to reconstruct axonal branches and estimate axonal action-potential propagation velocities
using HD-MEA recordings. Our method yields highly reliable and reproducible velocity
estimations, which constitute an important electrophysiological feature of neuronal preparations.

1. Introduction

Axons are assumed to be faithful conductors of action
potentials (APs) that encode and transmit informa-
tion between individual neurons. Traditionally, axons
are often considered as simple transmission cables,
whose role is the reliable conveyance of APs to the
presynaptic terminals of synaptically connected neur-
ons [1]. Owing to recent technology advancements,

such reductionist view of the role of the axon is
being challenged. A growing body of evidence sug-
gests that axons may provide important contribu-
tions to neuronal information processing [2, 3]. For
example, the waveform of APs has been shown to
be modulated during axonal conduction, which facil-
itated synaptic transmission to postsynaptic neur-
ons [4]. Moreover, studies using two-photon ima-
ging have found that structural changes of axonal
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arbors are involved in circuit-level mechanisms of
perceptual learning [5]. Therefore, a precise tracking
of axonal arbors, including the length of the axonal
branches, number of branching points, and AP con-
duction velocities, will help to shed light onto mech-
anisms involved in axonal growth during develop-
ment, axonal-AP modulation and their impact on
neuronal signaling.

Due to the small diameters of axons of around
200 nm, the tracking of complete axonal arbors
is challenging. Several classical electrophysiological
techniques have been used for measurements and
detection of AP propagation along axonal arbors.
Whole-cell patch clamp, for example, has been used
to measure the fidelity of AP propagation using dual
patching at the soma and axonal blebs [6] or using
cell-attached extracellular recordings in unmyelin-
ated axons [7]. However, due to limitations in simul-
taneously recording from multiple sites along axons,
the patch-clamp technique cannot be used to map
axonal arbors. Alternatively, morphological informa-
tion about neurons, including their axonal arbors, can
be obtainedwith high-resolution imaging techniques.
Recent advancements in imaging techniques, such as
high-content imaging (HCI) [8, 9], have enhanced
spatial resolution of acquired images. Together with
the advances in image processing techniques [10–12],
the reliability and throughput of such imaging meth-
ods allow for automatic tracing of neurites and their
interconnections [12]. Yet, the use of imaging tech-
niques requires fluorescent labels [13, 14], that may
alter the physiological properties of the cells [15]
through phototoxicity and photobleaching. In addi-
tion, it is difficult to extract axon morphologies in
high-density cultures from imaging data, where axons
form bundles. HCI after post-hoc immunostaining
ensures high spatial resolution, but axonal properties
can only be investigated in live neurons.

High-density microelectrode arrays (HD-MEAs)
have also been used to acquire electrophysiological
signals of neurons at high temporal and spatial
resolution [16]. Previous studies demonstrated the
possibility to extract detailed representations of the
extracellular electrical-potential landscape, so called
‘electrical footprints’ of individual neurons fromHD-
MEA recordings by applying spike sorting and spike-
triggered-averaging techniques [17–19]. These elec-
trical footprints reflect the neurons’ morphology, so
that researchers can use them for tracking neurite
outgrowths of single neurons. However, the num-
ber of axonal arbors that could be extracted in the
above-mentioned studies was limited to a few tens of
cells in each sample due to tedious manual proced-
ures to select and assign axonal signals. To date, no
automatized method for extraction of morphological
and functional information from large-scale electro-
physiological HD-MEA data is available.

Building upon ideas and concepts of recent pre-
vious work [20, 21], we developed a novel, fully

automated method to accurately reconstruct axonal
arbors from functional electrophysiological HD-
MEA recordings. Ourmethod relies on a graph-based
approach to reconstruct axonal branches and estim-
ate AP conduction velocities. The proposed auto-
maticmethod for reconstruction of axonal arbors and
determining the corresponding AP conduction velo-
cities from large-scale HD-MEA recordings opens up
new possibilities to use axonal properties as elec-
trophysiological biomarkers for studying compound
efficacy and neural development as well as for drug
screening and disease modeling.

2. Methods

In this section, we first introduce the biophysical sim-
ulation framework that we used as development test
bench and for validation. Next, we describe in detail
the implementation of the axonal tracking algorithm.
Finally, we describe the protocols and procedures for
experimental validation of our method.

2.1. Biophysical simulations
In order to develop and validate our axonal tracking
approach, we initially used biophysical simulations. A
simulation environment allowed us to explore com-
plexities in the extracellular APs in a controlled man-
ner, and to refine our method to deal with different
cases. The simulations were carried out using LFPy
2.2.1 [22, 23] and NEURON 7.8.2 [24].

2.1.1. Cell morphologies
We used morphological reconstructions of human
pyramidal neurons from the Allen Institute of Brain
Science cell-type database [25]. The cell models were
downloaded from theNeuromorpho.org website [26]
and included four samples (NeuroMorpho IDs: Cell 1
- NMO_86990—figure 1(A), Cell 2 - NMO_86976—
figure 1(B), Cell 3 - NMO_86965—figure 1(C), Cell
4 - NMO_87042—figure 1(D). Since axonal tracking
will be performed for cells cultured on a flat MEA
substrate [19], the morphology of which extends
principally in two dimensions, we modified the mor-
phologies by setting all z-values to 0µm, i.e. generated
planar morphologies.

2.1.2. Cell biophysics
For all cell models, biophysical properties were added
in order to obtain realistic AP generation and axonal
AP propagation. The membrane capacitance was set
to 1 µF cm−2 for all compartments. Dendritic trees
were defined to feature only passive membrane prop-
erties, with a membrane resistance of 150 kΩ and
a reversal potential of −85 mV. The somatic com-
partments featured sodium and potassium Kv1 chan-
nels [27], with maximum conductances of 500 and
100 S cm−2, respectively. The axonal tracts also fea-
tured sodium- and potassium-channel conduction
mechanisms, with maximum conductances of 500
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Figure 1. Neuron morphologies for biophysical simulations. Realistic morphologies from the Allen Institute of Brain Science
cell-type database: Cell 1 (NMO_86990)—A, Cell 2 (NMO_860976)—B, Cell 3 (NMO_86965)—C, and Cell 4
(NMO_87042)—D. The axonal arbors are colored in green, while dendrites are in grey.

and 400 S cm−2, respectively. The reversal potential
for the sodium channel was set to 55 mV, and for
the Kv1 channel to −98 mV [27]. The axial resist-
ance was set to 80 Ωcm and the temperature to 33◦

C. The resting potential was set to −85 mV, and we
simulated the cell model for 100 ms. The time step
for the simulations was set to 0.03125 ms, yielding
a sampling frequency of 32 kHz. In order to induce
a single AP, we stimulated the cell with two to five
consecutive synaptic inputs (ExpSyn mechanism—
1 ms between inputs) directly to the soma of the
neuron.

2.1.3. Modeling of extracellular signals
Extracellular potentials were modeled with a well-
established forward-modeling scheme using the LFPy
software [23]. Assuming a quasi-static, linear, iso-
tropic, homogeneous, and infinite medium, the con-
tribution of a neuronal transmembrane current Ii(t),
distributed over a line source (line-source model),
centered at a point ri to the potential ϕi(rj, t), meas-
ured by an electrode at position rj, can be computed
as:

ϕi(rj, t) =
1

4πσ
Ii(t)

ˆ
dri∥∥rj − ri

∥∥ , (1)

where σ is the extracellular conductivity (0.3 S/m).
While the assumption of an infinite and
homogeneous milieu is clearly violated in the pres-
ence of a highly insulating HD-MEA surface [28, 29],
we did not apply any correction, e.g. by using the
method of images [28]. A correction would only
change the signal amplitudes but not alter signal tim-
ing and the relative signal amplitude distribution
across the electrodes, which are pivotal for applying
the proposed tracking algorithm.

The HD-MEA device was simulated using the
MEAutility package [30], which is integrated in
LFPy (version ≥ 2.1). A 100× 100 electrode grid
(10 000 electrodes in total) featuring a pitch of
17.5µm,which represents the state-of-the-art ofHD-
MEA devices [31–33], was placed on the x–y plane at
a vertical distance of 10 µm below the neuronal-cell
plane. To represent the spatial extension of the elec-
trodes, they were modeled as squares with a 5 µm
side length. The recorded electrical potential was com-
puted as the average over 10 points randomly posi-
tionedwithin the electrode surface using the so-called
disk-approximation [22].

Figure 2(A) shows a visualization of the Cell 1
(NMO_86 990) in black on top of the electrode grid
of the HD-MEA. Displayed is the complete morpho-
logy including axons and dendrites. The extracellular

3
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Figure 2. Simulation of extracellular signals. (A) Representation of the HD-MEA and the Cell 1 neuron located on top of the
MEA. (B) Amplitude map (in log scale) of the extracellular action potentials. Several axonal branches are clearly visible.
(C) Membrane potentials (Vm—top) and extracellular signals (V ext—bottom) for the four points, indicated in color, along the
longest axon in panel B. The vertical grey dotted line indicates the time of occurrence of the signal peak on the electrode featuring
the largest AP amplitude.

electrical-potential amplitude map, referred to as the
footprint (channel-wise peak-to-peak amplitude on a
log scale), is shown in figure 2(B), while the insets
of figure 2(C), display the aligned intracellular and
extracellular signals, showing the axonal propagation
from the proximal part of the longest axon (blue, bot-
tom) to the distal end (red, top).

2.2. Graph-based algorithm
In this section, we describe the proposed algorithm,
the application of which includes four main steps: (1)
channel selection, (2) graph construction, (3) axonal-
branch reconstruction, and (4) axonal-arbor prun-
ing and velocity estimation. The method originated
fromprevious ideas and concepts [20, 34], which have
been organized, modified, validated, and assembled
to obtain a coherent and fully functional method for
axonal-arbor reconstruction. In section 4 we com-
pare the presented newmethod to the previously used
approaches.

The method assumes that the raw extracellular
data have been spike-sorted and that the templates,
i.e. the average extracellular waveforms have been

computed for each individual unit. Each unit and its
extracellular template are analyzed separately by the
algorithm.

2.2.1. Channel selection
In order to track axonal branches, first, a subset of
electrodes/channels needs to be selected that can be
used for axonal tracking. Four filters, based on signal
amplitudes, kurtosis, peak time standard deviations,
and initial signal delays are available. An appropri-
ate channel selection depends on many factors, such
as the probe geometry and the noise level; there-
fore, the proposed method gives freedom to the
user to modify the filter configuration to maxim-
ize tracking performance. In the following section,
we briefly describe how the different filters operate
and we display, in figure 3, the channel selection for
a real neuronal footprint, which was obtained in an
HD-MEA recording using ∼20 000 channels [20].
The footprint is shown in figure 3(A), the channel
selection for each available filter in figures 3(B)–
(E) and the selection using all four filters in
figure 3(F).
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Figure 3. Channel selection procedure. (A) Amplitude map (log scale) of a neuron footprint. (B)–(E) Selected (black) and
excluded (grey) channels after filtering for amplitude (B), kurtosis (C), peak time standard deviation (D) and initial delay (E).
Selected (black) channels after combining all filters.

2.2.1.1. Amplitude filter
The first available filter is a detection filter based on
the amplitude of the recorded signal. Only channels
with a peak-to-peak amplitude larger than a detection
threshold are kept for further processing. The detec-
tion threshold can be defined relative to the largest
signal amplitude of the recording (default) or as an
absolute value in µV, and the default setting is 0.01
(1%). Figure 3(B) shows all available channels in grey
and the selected channels after applying the detection
filter in black.

2.2.1.2. Kurtosis filter
Second, a filter based on kurtosis can be used in order
to ignore channels that may contain only noise. A
noisy channel, in fact, may pass the detection fil-
ter unnoticed. However, if a channel features signal
spikes, its kurtosis should be above zero, i.e. it should
exhibit a supergaussian distribution. The default set-
ting of the kurtosis filter is 0.3, and all channels with
a kurtosis value below this threshold are removed.
Figure 3(C) shows all available channels in grey, and
the selected channels after application of the kurtosis
filter in black.

2.2.1.3. Peak time standard deviation filter
A third available filter relies on the standard devi-
ation of the occurrence time of the signal peaks.
After computing the peak time for each channel
(the time at which the maximum negative signal
occurs), we compute the standard deviation of these

values over neighboring channels (channels within
30 µm distance are selected per default) [18]. A low
standard deviation indicates that the peak times of
neighboring channels are coherent, i.e. they carry sig-
nal. Conversely, a large peak time standard deviation
suggests that channels mostly contain noise, which
renders the peak time more random. The recom-
mended threshold for this filter is 1 ms, and the
channel selection based on this filter is shown in
figure 3(D).

2.2.1.4. Initial delay filter
Since our aim is to track axons, the fourth and final
available filter is targeted at finding channels with an
axonal signal. Assuming the largest-amplitude chan-
nel (termed initial channel) being in proximity to the
axon initial segment [35], the filter removes all chan-
nels whose signal peaks occur before the initial chan-
nel peak time plus an additional delay (set to 0.1ms by
default). This removal is done to wait until electrical-
signal propagation has entered the axonal branches.
Figure 3(E) shows all available channels in grey, and
the selected channels after using the initial-delay filter
in black.

All selection filters are applied separately, and the
final channels selected correspond to the intersec-
tion of the channels selected by each individual fil-
ter (figure 3(F)). Finally, isolated channels (selected
channels without a neighbor within 100 µm distance)
are removed from the selection.
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2.2.2. Construction of the graph
After the channel selection, the remaining channels
are used as the nodes of a graph. Prior to the graph
construction, however, the selected channels are sor-
ted based on the following heuristic:

hinit = αinit · an +(1−αinit) · pn, (2)

where an are the normalized amplitude values, pn are
the normalized peak latencies of the selected chan-
nels, and αinit is a scalar that weighs the contri-
butions of amplitude and peak latency. The nor-
malization step is performed to be able to combine
two very different units (µm for amplitudes and
ms for peak latencies). The channel sorting will influ-
ence the order of initial channels chosen to construct
axonal branches. By default, αinit is set to 0.2, so that
the channels with signal-amplitude peaks that occur
comparably late are favored, and among those, the
channels featuring the largest amplitudes.

When selected channels are sorted, they are used
as nodes to populate a directed graph. The graph is
built using the NetworkX Python package [36]. Next,
edges are added to the graph. For each node, at most
n_neighbors edges (default: 3) can connect to other
candidate nodes if: (1) the candidate node has a sig-
nal peak occurring earlier in time, and (2) the can-
didate node is within a maximum distance (default:
100 µm). Among the candidate nodes that satisfy
these two requirements (there can be more than
n_neighbors depending on the electrode density of
the MEA), the channels featuring the largest amp-
litudes and the lowest distances are favored. Channels
for which there is no other channel with an earlier
peak occurrence (excluding the initial channel) are
connected to the initial channel if they are within a
defined spatial range (default: 200µmdistance). Each
edge is added to the graph and it is weighted by the
average amplitude of its parent and child nodes (edge
amplitude). After all edges have been added to the
graph, all edge amplitudes are retrieved and normal-
ized between 0 and 1. Then, their values are reversed
so that the largest amplitude has a value of 0, and
the smallest one is assigned a value of 1. We denote
these normalized edge amplitudes as hedge, since they
are used as a heuristic to find axonal branches. For all
edges connecting to the initial channel, the hedge value
is set to 2.

The graph nodes for the model of Cell 1 are
shown in figure 4(A). The nodes are colored accord-
ing to hinit values. Figure 4(B) shows the edges colored
according to hedge values for the same cell model.
It becomes evident that the hinit values exhibit local
maxima at the axon ends and that lower values of hedge

nicely coincide with axonal paths.

2.2.3. Axonal branch reconstruction
The two heuristic functions (hinit and hedge) are used
to reconstruct axonal branches. The goal of this step

is to find possible paths that coincide with axonal
branches. Since graph nodes are already sorted by
hinit , this procedure loops through the nodes and
attempts to find paths P towards the initial channel
while minimizing the edge heuristic hedge. A path is
searched between a node and the initial channel only
if the node is a local maximum in the hinit space, i.e. it
has the largest value of hinit compared to other chan-
nels within a fixed distance (default: 100 µm). This
approach ensures that only a small number of paths
is reconstructed and improves the efficiency of the
method. The nodes indicated as yellow diamonds in
figure 4(A) represent the local maxima that have been
identified as starting nodes for axonal branches.

For each starting node, the shortest path is
obtained using the A∗ method [37], which is an
optimal-path-search algorithm to find the shortest
path in a graph by minimizing a cost function (we
used the astar_path() function of the NetworkX
Python package). Themethod can also consider a dis-
tance function between nodes, that we defined as:

dn =

[
d−min(d)

max(d)−min(d)

]e
, (3)

where d is the distance between two nodes that are
connected by an edge and e is the configurable expo-
nential (2 by default). The value of the exponent e
is chosen to be larger than 1 to minimize long jumps
between nodes, as large distances will be more penal-
ized in the super-linear space. To summarize, the A∗

method finds the path that minimizes:

argmin
P

∑
p∈P

(
hedgep + dnp

)
, (4)

where p is a single node, and P is the set of nodes that
makes up a path.

When a path is found, the channels within the
neighborhood of each channel in the path (by default,
within 100 µm) are appended to the neighbor chan-
nels set. If a newly identified path includes channels
that are already in the neighbor channels set (i.e. it is
neighboring an already existing path), all new chan-
nels in this neighbor channel set are removed from the
new path. The channel with the earliest peak time in
the new path is then connected to the closest node
of the already identified closest path. In this case, the
respective node becomes a branching point. After all
paths and all branching points have been found, paths
are pruned and merged. A path is pruned if a portion
of it extending from a branching point does not have
at least three points by default (this value is adjustable
by the user). Finally, pairs of paths that, after prun-
ing, share a branching point which corresponds to the
last channel of one path and the first channel of the
other path are merged. After pruning and merging,
a path is stored as a raw axonal branch if two condi-
tions aremet: (1) the length of the path is larger than a
path length threshold (default: 100 µm), and (2) the
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Figure 4. Axonal reconstruction method. (A) Graph nodes colored according to hinit values for the Cell 1 neuron. The nodes
marked with a yellow diamond indicate nodes for which a path towards the initial channel has been searched for. (B) Graph edges
colored according to hedge values. (C) Identified raw axonal paths. The dark grey dots are the selected channels. The colored nodes
around an identified path are the neighbor nodes for that path, which have been removed for further searches. The yellow circles
indicate the branching points. (D) Robust velocity estimation. For each reconstructed branch, a robust estimator was used to fit
the axonal AP propagation velocity. The blue and pink diamonds at the bottom left show detected outliers from branch 0 (blue)
and branch 2 (pink) respectively, which were removed from the cleaned paths.

path contains at least a minimum number of points
(default: 5). Once a path has been accepted, all the
channels of the path and the ones within a neighbor
radius (default: 50µm) of any of its nodes are stored
in the memory and excluded from further searches.
This step ensures that no duplicate paths are found
for the same axonal branch.

The identified branches for the Cell 1 model are
shown in figure 4(C). In this case, three raw branches
were found (blue, red, pink). The grey dots are
the selected channels and the shaded nodes around
each path (with the same color) indicate the chan-
nel neighbors, which were removed from further path
searches. The yellow circles represent the branching
points.

The full algorithm to estimate raw branches is
described in algorithm 1 in appendix A.

2.2.4. Path cleaning and velocity estimation
After obtaining the set of paths, axonal velocities can
be estimated. Peak times are computed as the differ-
ence between the occurrence time of the signal peak
at each node and the peak time occurrence of the first
node in the path (which is the one featuring the earli-
est signal peak by definition). Cumulative distances
are calculated by integrating the distances between the
channels along the path.

Once peak times and distances have been com-
puted, a robust linear fit using the Theil-Sen regressor
(using scikit-learn [38]) is used to reduce con-
tributions of possible outliers. The velocity estimate
is derived from the slope of the regression line. We
use a non-parametric and robust approach to identify
and remove possible outliers from the path. We first
compute the prediction error for each channel. We
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then identify outliers as nodes with a prediction error
aboveN times the median absolute deviation (MAD)
of the error distribution (N is 8 by default) and above
a fixed threshold (30µmby default). Outliers are then
removed from the axonal branches, and a new linear
fit is computed.

In some cases, it could happen that a path presents
a shortcut either between different branches or within
the same branch with an undetected axonal section.
In this case, a jump in the peak times is observed.
In order to correct for this unwanted behavior, the
method attempts to split the path when jumps in the
peak times are detected (>1 ms by default), and to fit
the splitted sub-paths separately. If the average R2 of
the sub-paths is larger than theR2 of the original path,
the path is split and the sub-paths are considered as
separate branches. Finally, axonal branches with an
R2 value below a user-defined threshold (default 0.9)
are discarded.

Figure 4(D) shows the peak latencies (x-axis),
cumulative distances (y-axis), and the fitted AP
propagation velocities (dashed lines) for the raw
branches displayed in figure 4(C) for theCell 1model.
The linear fit achieves a very high R2 value, partially
owing to the removal of outliers of the blue and pink
branches, depicted as diamond shapes.

2.3. Software implementation and code availability
The implementation of the above-described
algorithm is available as an open-source Python
package called axon_velocity on GitHub
(https://github.com/alejoe91/axon_velocity) and on
PyPi (https://pypi.org/project/axon-velocity/). All
the code needed to reproduce figures in this article
can be found in the figure_notebooks folder of the
GitHub repo, while the required data are available at
Zenodo (https://doi.org/10.5281/zenodo.4896745).

The graph-based algorithm takes the elec-
trode array template (a numpy array with dimen-
sions num_channels x num_samples), the x–y elec-
trode locations (a numpy array with dimensions
num_channels x 2), and the sampling frequency
as required arguments. Additionally, all algorithm-
specific parameters can be passed as extra arguments:

importaxon_velocityasav
params = av.get_default_graph_velocity_
params()
gtr = av.compute_graph_propagation_
velocity(template, locations, sampling_
frequency, ∗∗params)

The returned gtr object is a GraphAxonTracing
object, which contains the following fields:

• branches: list of dictionaries for the detected
axonal branches. Each dictionary contains the fol-
lowing fields.
∗ channels: selected channels in the path

∗ velocity: velocity estimate in mm/s
∗ offset: offset (intercept) of velocity estimate
∗ r2: r2 of the AP velocity fit
∗ error: standard error of the linear fit
∗ pval: p-value of the linear fit
∗ distances: array with cumulative distances
computed along the branch

∗ peak_times: array with signal peak occurrence
time differences to initial channel

• selected_channels: list of selected channels
used for axonal tracking

• graph: the NetworkX graph used to find axonal
branches

In table 2 of appendix B we list and describe the
additional parameters (∗∗params), their default val-
ues, their types, and a brief description of their role.

2.4. Experimental procedures
2.4.1. High-density microelectrode arrays
To validate the tracking algorithm with experimental
recordings, we used data from two types of HD-
MEA chips: the first device features 26’400 electrodes
with a center-to-center electrode distance of 17.5 µm
and can record from up to 1024 channels simultan-
eously at 20 kHz [31, 32] (referred to as MEA1k);
the second device is a dual-mode HD-MEA includ-
ing switch-matrix and active-pixel readout schemes
for electrodes [20, 39] (referred to as DualMode). It
features a full-frame readout of 19 594 electrodes at a
sampling rate of 11.6 kHz; the center-to-center elec-
trode distance is 18 µm.

2.4.2. Cell cultures and plating
Rat primary neurons were obtained from dissociated
cortices of Wistar rats at embryonic day 18, using the
protocol described in Ronchi et al [21].

Prior to cell plating, HD-MEA chips were steril-
ized using 70% ethanol for 30 minutes. Ethanol was
then removed, and the chips were rinsed three times
with sterile tissue-culture-grade water. The HD-MEA
chips were coated with a layer of 0.05% polyethyl-
enimine (Sigma) in borate buffer to render the sur-
face more hydrophilic. On the plating day, a layer of
laminin (Sigma, 0.02 mg/ml) in Neurobasal medium
(Thermo Fisher Scientific) was added on the array
and incubated for 30 min at 37 ◦C to promote cell
adhesion. We dissociated cortices of E-18 Wistar rat
enzymatically in trypsin with 0.25% EDTA (Gibco),
followed by trituration. Cell suspensions of 15 000–
20 000 cells in 7 µL were then seeded on top of the
electrode arrays. The plated chips were incubated
at 37 ◦C for 30 min before adding 2 ml of plating
medium. The plating medium consisted of Neuro-
basal, supplemented with 10% horse serum (HyC-
lone, Thermo Fisher Scientific), 0.5 mM Glutamax
(Invitrogen), and 2% B-27 (Invitrogen). After 3 days,
50%of the platingmediumwere replaced by a growth
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medium, which consisted of D-MEM (Invitrogen),
supplemented with 10% horse serum, 2% B27, and
0.5 mMGlutamax. The procedure was repeated twice
a week. The chips were kept inside an incubator at
37 ◦C and 5% CO2. All experiments were conducted
between days in vitro (DIVs) 10 and 28.

2.4.3. Extracellular recordings and analysis
For the MEA1k system, only 1024 channels of the
array’s 26’400 electrodes can be recorded simultan-
eously, therefore an axon scan assay was performed:
we sequentially recorded 33 different configurations
of randomly placed electrodes in order to cover the
entire chip area, while the 200 electrodes showing the
highest spontaneous activity were fixed. Each config-
uration was recorded for 120 s. The recorded data
were analyzed using SpikeInterface [40]: the signals
from the fixed electrodes were concatenated in time
and spike-sorted using Kilosort2 [41]. The spike sort-
ing output was automatically curated by removing
units with a firing rate lower than 0.1 Hz, an ISI viol-
ation threshold [42] higher than 0.3, and a signal-
to-noise ratio lower than 5. Afterwards, the automat-
ically curated data was exported to Phy [43, 44] for
visual inspection and manual curation. The manu-
ally curated data were then used to extract full tem-
plates across the entire array: first, the spike trains
were categorized depending on the start and end time
of the different configurations; second, the template
for each configurationwas computed as themedian of
all extracted waveforms; finally, templates extracted
from different configurations were averaged to obtain
the final full template.

For the DualMode system, we analyzed a short
full-frame recording of ∼285 s. As most spike sort-
ers do not handle more than∼1000 channels, we first
computed the spike rate of each channel using a spike
detection based on 5 times theMAD.We then selected
the 1024 most active channels and spike sorted them
using Kilosort2 and the same automatic curation as
for the MEA1k recordings. A final manual curation
step using Phy was performed, and templates were
extracted by combining spike times and the full-frame
recording.

After spike sorting and the computation of tem-
plates for each sorted unit, the proposed axon-
reconstruction method was applied to the templates
of each sorted unit separately.

2.5. Evaluation of the tracking performance
In order to evaluate the performance of the proposed
axon-tracking algorithm, we used the simulated data
as ground truth. The ground-truth branches of the
cell models were matched to the estimated axonal
branches using a many-to-one strategy (since the
estimated branch could span over one or more

ground-truth branches). The matching was per-
formed by computing the median distance of each
ground-truth path to each estimated path. We con-
sidered possible matches if the median distance
between the ground-truth and the estimated paths
was below 40 µm. Among the ground-truth branches
matched to the same estimated branch, overlapping
ground-truth branches were discarded. Overlapping
branches were defined as ground-truth branches with
more than 20%of their segments being locatedwithin
a distance of 15 µm. In case overlapping ground-
truth branches were found, the shortest ones were
removed.

After thematching procedure, tracking errors and
AP propagation velocities were computed for each
estimated branch. The tracking errors were computed
as the distance between each channel of an estim-
ated branch and the closest segment of the matched
ground-truth branches. Tracking errors were repor-
ted as mean± standard deviation in table 1. In case
of velocities, we also computed the absolute velo-
city error (abs(vgt − vest)) and the relative velocity
error (abs(vgt − vest)/vgt). Here vgt is the ground-truth
velocity—computed as the weighted average of the
branch AP propagation velocity with respect to the
branch length—and vest is the estimated branch AP
propagation velocity.

3. Results

3.1. Algorithm performance on realistic, simulated
morphologies
In order to validate and assess the performance
of the proposed method, we analyzed the axonal
reconstructions and velocity estimations of simulated
extracellular APs using the realistic morphologies
from the Allen Institute database (figure 1). Already
from the morphologies, one can appreciate that the
first three neuronal models (Cell 1, Cell 2, Cell 3) dis-
played well separated axonal branches, while Cell 4
(figure 1(D)) showed a much more intricate axonal
arborization.

We ran the graph-based algorithm with default
parameters (listed in table 2) and evaluated the track-
ing results against ground-truth information of the
model cells. Figure 5 shows the estimated branches as
dots and thematched ground-truth branches as lines.
The estimated and corresponding matched ground-
truth branches are plotted in the same color. Qual-
itatively, the developed method correctly identifies
the main axonal branches of all tested model cells
and shows good performance even for Cell 4, despite
the multitude of axonal branches crossing each other.
Table 1 shows the ground-truth and estimated velo-
city, the absolute and relative velocity errors, and the
mean and standard deviation of the tracking errors
for all estimated branches of the four model cells. In
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Table 1. Performance on simulated data of model cells. Each entry of the table reports the Cell model (1, 2, 3, 4), the branch IDs
(corresponding to figure 5), the ground-truth and estimated velocities, the absolute velocity error (in mm s−1) and the relative error
(in %). The last column displays the mean and standard deviation of the tracking error in µm.

Model ID Branch ID
Velocity GT
(mm s−1)

Velocity est.
(mm s−1)

Abs. Vel. error
(mm s−1)

Rel. vel.
error (%)

Tracking
error (µm)

Cell 1 0 218 219 1 0.5 8.8± 13.6
1 224 220 4 1.6 7.7± 7.2
2 246 235 11 4.2 50.3± 56.6

Cell 2 0 287 216 71 24.7 12.5± 9.6
1 260 225 35 13.6 7.3± 3.7
2 278 250 28 10.2 18.2± 26.9
3 279 256 23 8.2 12.5± 8.1
4 257 259 2 0.8 8.7± 4.2

Cell 3 0 223 213 10 4.7 8.7± 8.6
1 221 223 2 0.7 11.3± 23.5
2 218 216 2 0.8 37.4± 37.8
3 220 151 69 31.5 29.9± 42.4
4 241 215 26 10.9 15.1± 13.4

Cell 4 0 210 209 1 0.5 9.9± 13.1
1 258 250 8 2.9 14.5± 9.9
2 216 225 9 3.9 6.4± 2.5
3 194 181 13 6.7 20.6± 29.1
4 220 210 10 4.7 64.5± 79.9
5 218 219 1 0.4 4.8± 2.0
6 163 175 12 7.3 48.8± 45.3
7 235 195 40 16.8 77.5± 84.2
8 215 205 10 4.7 16.0± 27.0
9 222 204 18 7.9 12.9± 19.6
10 222 160 62 27.8 20.6± 23.7
11 216 214 2 0.8 13.8± 18.8
12 220 201 19 8.8 68.9± 87.0

most cases (19 out of 26 axonal branches) the relat-
ive error is below 10 %. Higher velocity and tracking
errors can be due to a partial match to the ground-
truth branch (e.g. branch 0 in figure 5(B) and branch
3 in figure 5(C). Nevertheless, the proposed track-
ing algorithm is capable of correctly reconstructing
large portions of the axonal arborization of all model
cells.

We also looked at the effect of different MEA spa-
tial resolutions on the axonal reconstruction. To do
so, we simulated Cell 1 on different MEA models,
with increasing pitches of 17.5, 35, 70, and 140 µm
(keeping the same electrode size of 8 µm). Figure 6
show the results of the axonal reconstruction. Panel A
shows the neuron morphology on top of the respect-
ive MEA, panel B the amplitude maps, and panel C
the algorithm reconstruction (in this case we only
changed the neighbor_radius parameter to 2 times
the pitch). From panel B, it is evident how the lar-
ger pitch affects the electrical image of the neuron,
which is reflected in the capability of the reconstruc-
tion algorithm to find axonal branches. Already at a
pitch of 35 µm, the pink axon branch at the bottom
of the cell cannot be traced, while only the main blue
branch is found upon further increasing the pitch,
which can be only roughly reconstructed in the case
of the 140 µm pitch.

3.2. Application to HD-MEA recordings
After validating the tracking performance of the pro-
posed algorithm on simulated data, we analyzed
experimental data from recording sessions of two dif-
ferent HD-MEAs, a MEA1k and a DualMode record-
ing. In both cases, we ran the proposed tracking
algorithm using a detection threshold of 1%, a kur-
tosis threshold of 0.1, a standard deviation threshold
of the signal peak occurrence time of 0.8 ms, and
an initial delay of 0.2 ms. For the MEA1k data-
set, the spike-sorting procedure after manual cura-
tion yielded 77 isolated units. Out of these, 67 units
had detectable axonal branches. The algorithm found
a total of 249 axonal branches, with velocities of
386.03± 250.7 mm s−1, path lengths of 458.07±
257.03µmandR2 values of 0.94± 0.05. In figure 7(A)
we show all reconstructed axonal branches with a
visualization of the MEA1k device with 26’400 elec-
trodes in the background. Figure 7(B) shows a repres-
entative neuron of figure 7(A) (marked in blue). The
amplitude map of the template (top left), the peak
latency map (top right), the reconstructed branches
(bottom left), and the fitted velocities (bottom right)
are shown. For this neuron, the channel selection yiel-
ded 1252 channels, featuring 8 axonal branches with
path lengths of 486.77± 151.15µm, AP propagation
velocities of 417.57± 116.65 mm s−1, peak-to-peak
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Figure 5. Axonal reconstruction on realistic neuron morphologies. Morphological reconstructions of Cell 1 (A), Cell 2 (B),
Cell3 (C) and Cell 4 D). Colored lines display ground-truth branches that have been matched to the reconstructed branches
(colored circles). The morphology of the cell is shown in the background.

extracellular amplitude of 69 µV, and R2 values of
0.93± 0.05.

In the DualMode recording, we found 58 units
after spike-sorting and curation. Out of these, 51 had
detectable axonal branches (shown in figure 7(C),
and a total of 191 branches have been found
(velocities: 368.88± 203.33 mm s−1, path lengths:
504.18± 317.15µm, R2 values: 0.95± 0.05). Similar
to figure 7(B) for the MEA1k neuron, figure 7(D)
shows detailed plots for one representative neuron
displayed in blue in figure 7(C). For this unit, the
channel selection yielded 2819 channels, where 14
axonal branches were traced featuring path lengths
of 627.8± 426.24µm, AP propagation velocities of
448.53± 173.33 mm s−1, peak-to-peak extracellular
amplitude of 103.2 µV, and R2 values of 0.96± 0.03.

We showed that the application of the proposed
axonal reconstruction algorithm to spike-sorted data
of HD-MEAs yields a high-throughput detection and
assessment of axonal properties. The algorithm can
potentially provide valuable information on axonal
properties under physiological and pathological
conditions.

4. Discussion

In this article, we introduce a novel, fully automated
algorithm for reconstruction and AP-propagation
velocity estimation of axons using HD-MEAs. The
algorithm uses an efficient graph-based approach to
reconstruct multiple axonal branches from extracel-
lular electrical potential recordings. After detailing
the different steps of the method, we assessed its per-
formance using biophysical simulations. Afterwards,
we validated our approach with experimental data
recorded from two different HD-MEA devices—
MEA1k and DualMode. We successfully recon-
structed over 400 axonal branches and estimated
the corresponding AP propagation velocities in
two recording datasets. The developed algorithm
and method can be used with all commercially
available CMOS-based HD-MEAs. Moreover, we
provide an open-source Python package avail-
able on GitHub (https://github.com/alejoe91/axon_
velocity) and on PyPi (https://pypi.org/project/
axon-velocity/) to facilitate the adoption of the
method.
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Figure 6. Effect of different MEA electrode pitches on the axon reconstruction performance. Each column represents a different
pitch, increasing from left to right. (A) Neuron morphology of Cell 1 on top of the MEAs. (B) Amplitude map of the extracellular
signal. (C) Reconstructed branches.

4.1. Comparison with previous work
The presented algorithm builds upon previous
approaches to automatically reconstruct axonal
arbors from HD-MEA extracellular signals. In
Yuan et al [20], the authors introduced an axon-
reconstruction method developed for the DualMode
device. A basic idea of this approach that we also util-
ized for themethod presented here, is to start the axon
reconstruction backwards, i.e. from electrodes featur-
ing late signal peak occurrences, which aremost likely
at the end of the respective axonal branches. However,
a main limitation of this approach is that the search
for axonal paths is local, i.e. that, in each step, the
algorithm selects the next channel in the path only
based on local signal amplitudes under the condition
that the signal peak occurrence is earlier. This local
search can result in zig-zag paths, as the algorithm has
no information on the global structure of the signal
landscape. To overcome this limitation, Ronchi et al
[34] introduced a very first version of a graph-based
algorithm. From there, we made several improve-
ments that were facilitated by the model-based valid-
ation that we present here. First, we extended the list
of available filters for channel selection; in [34] only
detection and kurtosis filters were used; second, we
changed the interrogation of the graph to find axonal
branches from using only the distance criterion, i.e.

shortest distance (which could result in shortcuts and
undetected axonal segments) to using a combination
of distance and amplitude (hedge) criteria with the
A∗ method; third, we changed the strategy to avoid
duplicates in the path: instead of looking for and
removing duplicate paths a-posteriori, we here util-
ized the set of neighboring channels to existing paths
to avoid finding duplicates a-priori, which also res-
ulted in a more efficient implementation. Finally, we
added pruning, merging, and splitting steps that were
not implemented in [34], which arguably provide a
better estimation of the axon branches.

4.2. Limitations
While the proposed method is, to the best of our
knowledge, the first attempt of axonal tracing using
HD-MEA signals in a fully-automated way and at
high throughput, some limitations remain. Given
the two-dimensional geometry of the recording elec-
trode array, the method can only capture features
in 2D and ignores modulations in the third dimen-
sion. A modulation in the z-distance of an axon to
the MEA surface will result in a distorted estimate
of axonal AP propagation velocity, as the distance
traveled by the AP along a path in 3D will be differ-
ent from its 2D projection onto the electrode plane.
However, most neuronal preparations in vitro are 2D,
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Figure 7. Application to HD-MEA recordings. (A) Axonal arbors on a MEA1k device. All 67 units with detectable axon branches
are displayed with a representation of the MEA (26’400 channels) in the background. (B) Amplitude map (top left), peak latency
map (top right—blue: 0 ms, yellow: 6 ms), reconstructed branches (bottom left), and velocity fits (bottom right) of the ‘MEA1k
neuron’ shown in blue in panel A. (C) Axonal arbors on a DualMode device (51 units with detectable axon branches). (D)
Amplitude map (top left), peak latency map (top right—blue: 0 ms, yellow: 4 ms)), reconstructed branches (bottom left), and
velocity fits (bottom right) of the ‘DualMode neuron’ shown in blue in panel (C).

at least most primary neuronal and organotypic cul-
tures, where neurons and their neurites extend across
a planar electrode array. Moreover, estimating the
z-coordinate (the height above the electrode plane) in
addition to the x–y coordinates of an axon is a com-
plicated inverse problem. While the amplitude of the
recorded axonal signal is known to depend on the
position relative to the recording electrode, various
other biophysical factors, such as ion-channel densit-
ies and kinetics, membrane capacitances, axial resist-
ances, and axon geometries, can influence axonal AP
conduction velocities in unmyelinated axons [45–50].
In order to use the signal amplitude to correct for
z-modulation, one would need to make assumptions
about these other biophysical factors. A modulation
of the z-distance could also result in undetectable
axonal segments, for example, due to an axon passing
over a glia cell or another neuron along its way. This
z-distance change could result in a jump in the peak
latency. A similar situation could occur when axonal
branches cross each other. Clearly, such a situation
represents a complication for any method attempting
to track single axonal branches and itmight also cause
a jump from one branch to another. While we have
not explicitly addressed the problem of undetected
segments or crossing axons, our path splitting proced-
ure should be able to cope with these issues, since it
tries to split branches with jumps in latency and con-
siders them as separate axonal branches.

Another potential caveat is that our method
does not distinguish between axonal propagation and
propagation through other neurites, like dendrites.
While we currently do not identify and remove dend-
ritic branches that might be reconstructed by the
method, one could consider the lower propagation
velocity of dendrites in comparison to axons and
remove low-velocity branches. Additionally, extracel-
lular signals in proximity to dendritic sections usu-
ally exhibit a different waveform (positive peaks)
than axonal signals mainly as a consequence of
capacitive return currents [51]. Analyzing branch-
specific waveform features, such as the peak-to-
trough ratio, could therefore provide indications
to identify and potentially exclude dendrites from
the reconstruction. While this is a limitation for
axon tracking, it could also be considered a fea-
ture in case that one would want to also reconstruct
and characterize dendritic back-propagation and its
velocity.

The proposed method relies on spike sorting to
obtain clean extracellular footprints that are used
as input for the algorithm. Due to the high chan-
nel count of the HD-MEA devices that we used, we
relied on automatic spike sorting methods to isol-
ate units. However, these methods are known to
have limitations [40], especially in regimes of highly
synchronized firing activity (e.g. network bursts)
[52], which are rather frequent in in vitro cell culture
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preparations [53]. Therefore, before running the axon
reconstruction algorithm, we performed extensive
manual curation to improve the spike sorting output,
by removing noisy units and merging oversplit units
(based on template similarity and cross-correlogram
features). It is strongly advisable to carefully check the
spike sorting output before using the axon tracking
method to limit the extent of spike sorting errors that
could distort the reconstruction results.

The method includes many parameters that have
been carefully tuned to performwell on data of unmy-
elinated axons obtained with high-density MEAs
(center-to-center-electrode distances of ∼ 17.5 µm).
While the same approach can be applied with other
designs and lower electrode densities, the recon-
struction performance quickly degrades as the spa-
tial resolution of the MEA decreases (figure 6).
However, the user could then modify some of the
parameters to adapt the algorithm for use with
different electrode densities. Most of the paramet-
ers have a physical meaning that should facilitate
the choice of reasonable values. As an example, the
peak_std_distance determines the radius in µm
to select neighboring channels and compute the
peak time standard deviation (section 2.2.1) for
a given channel selection: the default value is set
to 30 µm, which should be certainly increased for
using a MEA design with, for example, 50 µm inter-
electrode distance (otherwise no neighbors would
ever be selected). Nevertheless, the default paramet-
ers should provide a good first guess for data from
commercially available HD-MEA devices (e.g. from
Maxwell Biosystems—www.mxwbio.com, 3Brain—
www.3brain.com, or Multichannel Systems—
www.multichannelsystems.com).

Finally, the validation of the proposed method
was performed on simulated ground-truth data only.
Experimental validation is still an essential step to
further assess the performance of the method (with
respect to different neuronal types, cell densities, etc.)
and to improve it for different use cases. A possible
approach would include to use live imaging meth-
ods to identify axons in sparse cultures, for example,
calcein AM live-staining [54] or other fluorescence
indicators to avoid shrinkage of the tissue due to
fixation (required for standard staining procedures).
As usually a comparably high density of neurons in
the cell cultures (tens of thousands of neurons on
the array) is required to establish stable networks
with sustained activity, however, we anticipate that
live staining methods, according to our experience,
will yield very crowded images, which would make
it very difficult to segment and identify individual
axons and to unambiguouslymatch electrically recor-
ded and imaged neurons and axons: at each and any
of the electrodes, there are plenty of visible neuronal
structures that could have caused or contributed to a
signal, and sometimes the structures generating the

signals are not even visible, e.g. lying below other
neurons or processes. Most probably, patch-clamping
or functional calcium/voltage imaging, performed
simultaneously with HD-MEA measurements, will
enable an unambiguous correlation of extracellular
neuronal recordings with neuronal and axonal mor-
phology, as intra- and extracellular signals can be
simultaneously triggered and recorded. We believe
that such multi-modal approaches, despite being
challenging to implement and to perform measure-
ments, will enable a more thorough validation of the
developed tracking algorithm, and we plan to use
such methods in future studies.

4.3. Applications to neurological disease
characterization and network dynamics
An automated and sufficiently accurate method to
estimate axonal AP propagation velocities from HD-
MEA recordings holds great promise to study axonal
electrophysiology and pathophysiological conditions
related to axonal dysfunction. A panoply of patholo-
gical conditions impairs axonal functions and mostly
results in conduction delays, which ultimately may
cause conduction failures [55–60]. Axonal dysfunc-
tion due to demyelination (e.g. multiple sclerosis)
[61, 62], acute axonal damage [63], and channelo-
pathies, among others, are shown to change axonal
AP conduction properties [64–66].

Axonal features, such as differences in axon
growth, axon signal conduction, time-course of axon
degeneration or axon excitability can also be included
in electrophysiological phenotypic characterization
of human induced pluripotent stem cell (hiPSC)-
derived neuronal cultures. Such cultures are available
from patients suffering from neurological disorders
and from healthy donors, so that electrophysiolo-
gical biomarkers associated to neurological diseases
can be established. Ronchi et al [34], for example,
made a first attempt to characterize axonal velocit-
ies of hiPSC-derived neuronal cultures and found
significant differences between healthy motor and
dopaminergic neurons and disease phenotypes fea-
turing mutations related to amyotrophic lateral scler-
osis and Parkinson’s disease.

Besides identification and characterization of
neurological diseases, an accurate determination of
axonal AP propagation velocity opens up pathways
to investigate axonal conduction times and delays and
their role in neuronal coding and plasticity. Repetit-
ive activity can alter the excitability of axonal mem-
branes and AP conduction velocity, which can res-
ult in substantial changes in AP timings and spike
propagation to presynaptic sites [2, 67, 68]. Con-
duction delays, which depend on conduction velo-
city and axonal length, can vary during repetitive
activity, resulting in altered spike timings and inter-
vals. Such changes in temporal spike patterns may
be an important feature in shaping the neural code
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[69–71]. Similarly, axonal conduction velocities are
highly adaptive in neuronal circuits and undergo
changes in unmyelinated axons upon depolarization
or during formation of new myelin sheaths depend-
ing onneuronal activity [72–74].Our algorithmhelps
to facilitate the study of axonal conduction andpoten-
tial failures, as it enables to simultaneously track a lar-
ger number of different axonal branches, to assess AP
propagation velocities and conduction delays and to
study the role of plasticity of conduction velocity in
network-level dynamics. Such applications can also
be extended to various model preparations such as
organotypic cultures, acute brain slices and retinal
slices.

4.4. Outlook
In conclusion, in this article, we introduced and val-
idated a novel automated method for axonal recon-
struction from HD-MEA recordings, which enables
to track changes in axonal conduction velocity over
days. By providing an open-source Python package to
use and apply the algorithm, we envision rapid adop-
tion by the electrophysiology and HD-MEA com-
munity, which will eventually boost our understand-
ing of biophysical and computational properties of
axons in healthy and diseased states.
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Appendix A. Raw axonal branch
estimation algorithm

In this appendix, we report the pseudo-code for
the algorithm to estimate raw axonal branches from
the constructed graph (see section 2.2.3). Note
that the pruning and merging steps are not included.

Appendix B. Description of parameters

In this appendix, we report a complete list of the para-
meters available for axon_velocity version 0.1.1.
The parameters are listed in table 2.
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Algorithm 1. Identification of raw axonal paths from the graph.

input: graph, min_points, min_length, init_channel
output: raw_paths, branching_points
// list with raw paths
raw_paths= list()
// list with removed nodes per path
removed_neighbors_per_path= list()
// set with all removed nodes
all_removed_neighbors= set()
// list with branching points
branching_points= list()
// path indexes
path_idxs= list()
current_idx= 0
for source_node in graph.nodes do
if source_node not in all_removed_neighbors then
if is_local_maximum(source_node) then

// Find shortest path to init channel
path= astar_path(source_node, init_channel)
// Remove nodes already in other paths and connect to branching point
for i in path_idxs do

removed_nodes_in_path= removed_neighbors_per_path(i)
for node in path do
if node in removed_nodes_in_path then

// Remove further nodes along the path
path.remove(node:end)
// Find and append branching point
closest_node= find_closest_node(node, raw_paths(i))
path.append(closest_node)
possible_branching_point= closest_node

end
end

end
if length(path)≥min_points and length_in_µm(path) > min_length then

// Accept raw path
raw_paths.append(path)
// Update list of removed nodes
neighbor_nodes= find_neighbors(path)
removed_neighbors_per_path.append(neighbor_nodes)
all_removed_neighbors= all_removed_neighbors ∪ neighbor_nodes
branching_points.append(possible_branching_point)
path_idxs.append(current_idx)
current_idx+= 1

end
end

end
end
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Table 2. Additional parameters list for the compute_graph_propagation_velocity() function, including default values, data types,
and descriptions.

Parameter Value Type Description

General

upsample 1 int upsampling factor for template
min_selected_points 30 int minimum number of selected points to run axon tracking
verbose False bool if True, the output is verbose

Channel selection

detect_threshold 0.02 float detection threshold (with respect to channel featuring maximal
signal)
below which a channel is discarded

detection_type ‘relative’ string whether to use an ‘absolute’ or
‘relative’ detection threshold

kurt_threshold 0.3 float kurtosis threshold below which a channel is discarded
peak_std_threshold 1 float peak time standard deviation threshold in ms

below which a channel is discarded
init_delay 0.1 float initial delay in seconds (with respect to maximum channel)

below which a channel is discarded
peak_std_distance 30 float distance in µm to select channel neighborhood to compute

peak time standard deviation
remove_isolated True bool if True, isolated channels are removed from selection

Graph

init_amp_peak_ratio 0.2 float scalar value that weighs the contribution of the amplitude
and the peak latency for hinit (αinit in equation (2))

max_distance_for_edge 100 float maximum distance in µm between channels to create
a graph edge

max_distance_to_init 200 float maximum distance in µm between a channel and the
init_channel to create a graph edge
below which an axonal branch is discarded

n_neighbors 3 int maximum number of edges that one channel can connect to
distance_exp 2 float exponent for distance computation (e in equation (3))
edge_dist_amp_ratio 0.3 float relative weight between distance and amplitude

to select neighbor nodes for graph edges

Axonal reconstruction

min_path_length 100 float minimum axon path length in µm to include
an axonal branch

min_path_points 5 int minimum number of channels in an axon path
to include an axonal branch

neighbor_radius 100 float radius in µm to exclude neighboring channels around
an identified path

min_points_after_branching 3 int minimum number of points after a branching to avoid
pruning

Path cleaning/velocity estimation

mad_threshold 8 float threshold in median absolute deviations on the fit error to
consider points as outliers in the velocity estimation

split_paths True bool If True, the final path splitting step is enabled
max_peak_latency_for_splitting 0.5 float If a jump in the peak latencies of a path exceeds this value,

the path can be split in sub-paths
r2_threshold 0.9 float R2 threshold for velocity linear fit below which an axon

branch is discarded
r2_threshold_for_outliers 0.98 float R2 threshold below which outliers are detected and

removed
min_outlier_tracking_error 50 float tracking error in µm above which a point can be

considered an outlier and removed
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