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Abstract
Brain signals refer to the biometric information collected from the human brain. The research on
brain signals aims to discover the underlying neurological or physical status of the individuals by
signal decoding. The emerging deep learning techniques have improved the study of brain signals
significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals
and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep
learning for non-invasive brain signals analysis, by summarizing a large number of recent
publications. Moreover, upon the deep learning-powered brain signal studies, we report the
potential real-world applications which benefit not only disabled people but also normal
individuals. Finally, we discuss the opening challenges and future directions.

1. Introduction

Brain signals measure the instinct biometric inform-
ation from the human brain, which reflects the user’s
passive or active mental state. Through precise brain
signal decoding, we can recognize the underlying psy-
chological and physical status of the user and fur-
ther improve his/her life quality. Based on the sig-
nal collection, brain signals contain invasive signals
and non-invasive signals. The former are acquired by
electrodes deployed under the scalp while the latter
are collected upon human scalp without electrodes
being inserted. In this survey, we mainly consider
non-invasive brain signals6.

1.1. General workflow
Figure 1 shows the general paradigm of brain signal
decoding, which receives brain signals and produces
the user’s latent informatics. The workflow includes
several key components: brain signal collection, sig-
nal preprocessing, feature extraction, classification,
and data analysis. The brain signals are collected from
humans and sent to the preprocessing component for

6 Without specification, the brain signals mentioned in this work
refer to non-invasive signals.

denoising and enhancement. Then, the discriminat-
ing features are extracted from the processed signals
and sent to the classifier for further analysis.

The collection methods differ from signal to sig-
nal. For example, electroencephalogram (EEG) sig-
nals measure the voltage fluctuation resulting from
ionic current within the neurons of the brain. Col-
lecting EEG signals requires placing a serievs of elec-
trodes on the scalp of the human head to record the
electrical activity of the brain. Since the ionic cur-
rent generated within the brain is measured at the
scalp, obstacles (e.g. skull) greatly decrease the sig-
nal quality—the fidelity of the collected EEG sig-
nals, measured as signal-to-noise ratio (SNR), is only
approximately 5% of that of original brain signals [1].
The collection methods of more non-invasive signals
can be found in appendix A.

Therefore, brain signals are usually preprocessed
before feature extraction to increase the SNR. The
preprocessing component contains multiple steps
such as signal cleaning (smoothing the noisy signals
or resolving the inconsistencies), signal normaliza-
tion (normalizing each channel of the signals along
time-axis), signal enhancement (removing direct cur-
rent), and signal reduction (presenting a reduced rep-
resentation of the signal).

© 2021 IOP Publishing Ltd
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Feature extraction refers to the process of extract-
ing discriminating features from the input signals
through domain knowledge. Traditional features are
extracted from time-domain (e.g. variance, mean
value, kurtosis), frequency-domain (e.g. fast Fourier
transform), and time-frequency domains (e.g. dis-
crete wavelet transform). They will enrich distin-
guishable information regarding user intention. Fea-
ture extraction is highly dependent on the domain
knowledge. For example, neuroscience knowledge is
required to extract distinctive features from motor
imagery EEG signals. Manual feature extraction is
also time-consuming and difficult. Recently, deep
learning provides a better option to automatically
extract distinguishable features.

The classification component refers to the
machine learning algorithms that classify the extrac-
ted features into logical control signals recognizable
by external devices. Deep learning algorithms are
shown to be more powerful than traditional classifi-
ers [2–4].

The classification results reflect the user’s psy-
chological or physical status and can inspire further
information analysis. This is widely used in real-
world applications such as neurological disorder dia-
gnosis, emotionmeasuring, anddriving fatigue detec-
tion. Appropriate treatment, therapy, and precaution
could be conducted based on the analysis results.

In specific, the system is called a brain-computer
interface (BCI) while the decoded brain signals are
converted into digital commands to control the smart
equipment and react with the user (dashed lines in
figure 1). BCI7 systems interpret the humanbrain pat-
terns into messages or commands to communicate
with the outer world [5]. BCI is generally a closed-
loop system with an external device (e.g. wheelchair
and robotic arm), which can directly serve the user. In
contrast, brain signal analysis does not require a spe-
cific device as long as the analysis results can benefit
society and individuals.

In this survey, we summarize the state-of-the-art
studies which adopt deep learningmodels: (1) for fea-
ture extraction only; (2) for classification only; (3) for
both feature extraction and classification. The details
will be introduced in section 4. Brain signal under-
pins many novel applications that are important to
people’s daily life. For example, the brain signal-based
user identification system, with high fake-resistance,
allows normal people to enjoy enhanced entertain-
ment and security [6]; for people with psycholo-
gical/physical deceases or disabilities, brain signals
enable them to control smart device such as wheel-
chairs, home appliances, and robots. We present a

7 Apart from BCI, there are a number of similar terms to define
the system that machines are directly controlled by human brain
signals, like Brain-Machine Interface (BMI), Brain Interface (BI),
Direct Brain Interface (DBI), Adaptive Brain Interface (ABI), and
so on.

wide range of deep learning-based brain signal applic-
ations in section 5.

1.2. Why deep learning?
Although traditional brain signal system has made
tremendous progress [7, 8], it still faces significant
challenges. First, brain signals are easily corrupted by
various biological (e.g. eye blinks, muscle artifacts,
fatigue, and the concentration level) and environ-
mental artifacts (e.g. noises) [7]. Therefore, it is cru-
cial to distill informative data from corrupted brain
signals and build a robust system that works in dif-
ferent situations. Second, it faces the low SNR of
non-stationary electrophysiological brain signals [9].
The low SNR cannot be easily addressed by tradi-
tional preprocessing or feature extraction methods
due to the time complexity of those method and the
risk of information loss [10]. Third, feature extrac-
tion highly depends on human expertise in the spe-
cific domain. For example, it requires the basic bio-
logical knowledge to investigate sleep state through
electroencephalogram (EEG) signals. Human exper-
ience may help on certain aspects but fall insuf-
ficient in more general circumstances. An auto-
matic feature extraction method is highly desirable.
Moreover, most existing machine learning research
focuses on static data and therefore, cannot clas-
sify rapidly changing brain signals accurately. For
instance, the state-of-the-art classification accuracy
for multi-class motor imagery EEG is generally below
80% [11]. It requires novel learning methods to
deal with dynamical data streams in brain signal
systems.

Until now, deep learning has been applied extens-
ively in brain signal applications and shown success in
addressing the above challenges [12, 13]. Deep learn-
ing has two advantages. First, it works directly on
raw brain signals, thus avoiding the time-consuming
preprocessing and feature extraction. Second, deep
neural networks can capture both representative
high-level features and latent dependencies through
deep structures.

1.3. Why this survey is necessary?
We conduct this survey for three reasons. First, there
lacks a comprehensive survey on the non-invasive
brain signals. Table 1 shows a summary of the exist-
ing survey on brain signals. As our best knowledge,
the limited existing surveys [5, 7, 8, 11, 14, 15, 24]
only focus on partial EEG signals. For example, Lotte
et al [11] and Wang et al [18] focus on general
EEG without analyzing EEG subtypes; Cecotti et al
[28] focus on event-related potentials (ERPs); Haseer
et al [29] focus on functional near-infrared spectro-
scopy (fNIRS); Mason et al [15] brief the neurolo-
gical phenomenons like event-related desynchroniz-
ation (ERD), P300, SSVEP, visual evoked potentials
(VEPs), auditory evoked potentials (AEPs) but have
not organized them systematically; Abdulkader et al
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Figure 1. Generally workflow of brain signal analysis. It is named as a brain–computer interface if the classified signal are used to
control smart equipment (dashed lines).

Table 1. The existing survey on brain signals in the last decade. The column ‘Comprehensiveness’ indicates whether the survey covers all
subcategories of non-invasive brain signals or not. MI EEG refers to Motor Imagery EEG signals.

No. Reference Comprehensiveness Signal
Deep
learning

Publication
Time Area

2 [14] No fMRI Yes 2018 Mental Disease
Diagnosis

3 [11] Partial EEG (MI EEG,
P300)

No 2007 Classification

4 [5] Partial EEG (MI EEG,
P300)

Partial 2018 Classification

5 [15] Partial EEG (ERD, P300,
SSVEP, VEP, AEP)

No 2007

6 [16] No MRI, CT Partial 2017 Medical Image Analysis
7 [17] No EEG Yes 2019
8 [8] No EEG No 2007 Signal Processing
9 [18] Partial EEG No 2016 BCI Applications
10 [7] Yes No 2015
11 [19] No EEG Partial 2018
12 [20] No EEG, fMRI No 2015 Neurorehabilitation of

Stroke
13 [21] No MI EEG No 2015
14 [22] No fMRI No 2014
15 [23] No ERP (P300) No 2017 Applications of ERP”
16 [24] No fMRI Yes 2018 Applications of fMRI
17 [25] No ERP No 2017 Classification
18 [26] Partial EEG No 2019 Brain Biometrics
19 [27] Partial EEG No 2018 BCI Paradigms
20 Current Study Yes EEG and the sub-

categories, fNIRS,
fMRI, MEG

Yes

[7] present a topology of brain signals but have not
mentioned spontaneous EEG and rapid serial visual
presentation (RSVP); Lotte et al [5] have not con-
sidered ERD and RSVP; VEP should be a subtype
of ERP in [8]. Ahn et al [21] review the perform-
ance variation in MI-EEG based BCI systems. Roy
et al [17] list some deep learning-based EEG stud-
ies but present little technical inspirations and have
less analysis on deep learning algorithms, they also
failed to investigate other non-invasive brain signals
beyond EEG. In particular, compared to [17], this
work provides a better introduction of deep learning
including the basic concepts, algorithms, and popu-
lar models (section 3 and appendix B). Moreover, this

paper discusses the high-level guidelines in brain sig-
nal analysis in terms of the brain signal paradigms, the
suitable deep learning frameworks and the promising
real-world applications (section 6).

Second, few research has investigated the associ-
ation between deep learning ([30, 31]) and brain sig-
nals ([5, 7, 8, 11, 15, 32]). To the best of our know-
ledge, this paper is in the first batch of comprehens-
ive survey on recent advances on deep learning-based
brain signals. We also point out frontiers and prom-
ising directions in this area.

Lastly, the existing surveys focus on specific areas
or applications and lack an overview of broad scen-
arios. For example, Litjens et al [16] summarize

3
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several deep neural network concepts aiming at
medical image analysis; Soekadar et al [20] review
the BCI systems and machine learning methods
for stroke-related motor paralysis based on sensori-
motor rhythms; Vieira et al [33] investigate the
application of brain signals on the neurological dis-
order and psychiatric.

1.4. Our contributions
This survey can mainly benefit: (1) the researchers
with computer science background who are inter-
ested in the brain signal research; (2) the biomedic-
al/medical/neuroscience experts who want to adopt
deep learning techniques to solve problems in basic
science.

To our best knowledge, this survey is the first com-
prehensive survey of the recent advances and fronti-
ers of deep learning-based brain signal analysis. To
this end, we have summarized over 200 contributions,
most of whichwere published in the last five years.We
make several key contributions in this survey:

• We review brain signals and deep learning tech-
niques to help readers gain a comprehensive
understanding of this area of research.

• We discuss the popular deep learning techniques
and state-of-the-art models for brain signals,
providing practical guidelines for choosing the
suitable deep learning models given a specific sub-
type of signal.

• We review the applications of deep learning-based
brain signal analysis and highlight some promising
topics for future research.

The rest of this survey is structured as followed.
Section 2 briefly introduces an taxonomy of brain
signals in order to help the reader build a big pic-
ture in this field. Section 3 overviews the commonly
used deep learning models to present the basic know-
ledge for researchers (e.g. neurological and biomed-
ical scholars ) who are not familiar with deep learning.
Section 4 presents the state-of-the-art deep learning
techniques for brain signals and section 5 discusses
the applications related to brain signals. Section 6
provides a detailed analysis and gives guidelines for
choosing appropriate deep learning models based
on the specific brain signal. Section 7 points out
the opening challenges and future directions. Finally,
section 8 gives the concluding remarks. We provide a
tutorial8 on how to use popular deep learning models
to analyze brain signals.

2. Brain imaging techniques

In this section, we present a brief introduction of
typical non-invasive brain imaging techniques. More

8 https://github.com/xiangzhang1015/ML_BCI_tutorial.

fundamental details about non-invasive brain signal
(e.g. concepts, characteristics, advantages, and draw-
backs) are provided in appendix A.

Figure 2 shows a taxonomy of non-invasive brain
signals based on the signal collection method. Non-
invasive signals divides into EEG, fNIRS, functional
magnetic resonance imaging (fMRI), and magneto-
encephalography (MEG) [34]. Table 2 summarizes
the characteristics of various brain signals. In this sur-
vey, we mainly focus on EEG signals and its subcat-
egories because they dominate the non-invasive sig-
nals. EEG monitors the voltage fluctuations gener-
ated by an electrical current within human neurons.
The electrodes attached on scalp can measure various
types of EEG signals, including spontaneous EEG [35]
and evoked potentials (EP) [36]. Depending on the
scenario, spontaneous EEG further diverges into sleep
EEG, motor imagery EEG, emotional EEG, mental
disease EEG, and others. Similarly, EP divides into
ERPs [28] and steady-state evoked potentials (SSEPs)
[37] according to the frequency of external stim-
uli. Each potential contains visual-, auditory-, and
somatosensory-potentials based on the external stim-
uli types.

Regarding the other non-invasive techniques,
fNIRS produces functional neuroimages by employ-
ing near-infrared (NIR) light to measure the
aggregation degree of oxygenated hemoglobin
(Hb) and deoxygenated-hemoglobin (deoxy-Hb),
both of which have higher absorbers of light
than other head components such as skull and
scalp [38]; fMRI monitors brain activities by
detecting the blood flow changes in brain areas
[14]; MEG reflects brain activities via magnetic
changes [39].

3. Overview on deep learning models

In this section, we formally introduce the deep
learning models including concepts, architectures,
and techniques that are commonly used in the
field of brain signal researches. Deep learning is
a class of machine learning techniques that uses
many layers of information-processing stages in hier-
archical architectures for pattern classification and
feature/representation learning [31]. More detailed
information about the deep learning techniques which
are common-used in brain signal analysis can be find in
appendix B.

Deep learning algorithms contain several subcat-
egories based on the aim of the techniques (figure 3):

• Discriminative deep learning models, which clas-
sify the input data into a pre-known label based
on the adaptively learned discriminative features.
Discriminative algorithms are able to learn dis-
tinctive features by non-linear transformation, and

4
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Figure 2. The taxonomy of non-invasive brain signals. The dashed quadrilaterals (RAVP, SEP, SSAEP, and SSSEP) are not included
in this survey because there is no existing work focusing on them involving deep learning algorithms. P300, which is a positive
potential recorded approximately 300 ms after the onset of presented stimuli, is not listed in this signal tree because it is included
by ERP (which refers to all the potentials after the presented stimuli). In this classification, other brain imaging technique beyond
EEG (e.g. MEG and fNIRS) could also include visual/auditory tasks theoretically, but we omitted them since there is no existing
work adopting deep learning on these tasks.

Table 2. Summary of non-invasive brain signals’ characteristics.

Signals EEG fNIRS fMRI MEG

Spatial resolution Low Intermediate High Intermediate
Temporal resolution High Low Low High
Signal-to-Noise Ratio Low Low Intermediate Low
Portability High High Low Low
Cost Low Low High High
Characteristic Electrical Metabolic Metabolic Magnetic

classification through probabilistic prediction9.
Thus these algorithms can play the role of both fea-
ture extraction and classification (corresponding
to figure 1). Discriminative architectures mainly
include multi-layer perceptron (MLP) [40], recur-
rent neural networks (RNNs) [41], convolutional

9 The classification function is achieved by the combination of
a softmax layer and one-hot label encoding. The one-hot label
encoding refers to encoding the label by the one-hotmethod, which
is a group of bits among which the only valid combinations of val-
ues are those with a single high (1) bit and all the others low (0)
bits. For instance, a set of labels 0, 1, 2, 3 can be encoded as (1, 0, 0,
0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

neural networks (CNNs) [42], along with their
variations.

• Representative deep learning models, which learn
the pure and representative features from the
input data. These algorithms only have the func-
tion of feature extraction (figure 1) but cannot
make classification. Commonly used deep learn-
ing algorithms for representation are autoencoder
(AE) [43], restricted Boltzmann machine (RBM)
[44], deep belief networks (DBNs) [45], alongwith
their variations.

• Generative deep learning models, which learn the
joint probability distribution of the input data
and the target label. In the brain signal scope,
generative algorithms are mostly used to generate

5
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Figure 3. Deep learning models. They can be divided into discriminative, representative, generative and hybrid models based on
the algorithm functions. Discriminative models (appendix B.1) mainly include multi-layer perceptron (MLP), recurrent neural
networks (RNN), and convolutional neural networks (CNN). The two mainstreams of RNN are long short-term memory
(LSTM) and gated recurrent unit (GRU). Representative models (appendix B.2) can be divided into authoencoder (AE),
restricted Boltzmann machine (RBM), and deep belief networks (DBN). D-AE denotes Deep-Autoencoder which refers to the
Autoencoder with multiple hidden layers. Likewise, D-RBM denotes deep-restricted Boltzmann machine with multiple hidden
layers. Deep belief network can be composed of AE or RBM, therefore, we divided DBN into DBN-AE and DBN-RBM.
Generative models (appendix B.3) that are commonly used in non-invasive brain signal analysis include variational autoencoder
(VAE) and generative adversarial networks (GANs).

a batch of brain signals samples to enhance the
training set. Generative models commonly used
in brain signal analysis include variational autoen-
coder (VAE)10 [46], generative adversarial net-
works (GANs) [47], etc

• Hybrid deep learning models, which combine
more than two deep learningmodels. For example,
the typical hybrid deep learning model employs
a representation algorithm for feature extraction
and discriminative algorithms for classification.

The summary of the characteristics of each deep
learning subcategories are listed in table 3. Almost
all the classification functions in neural networks are
implemented by a softmax layer, which will not be
regarded as an algorithmic component in this sur-
vey. For instance, a model combining a DBN and a
softmax layer will still be regarded as a representative
model instead of a hybrid model.

4. State-of-the-art DL techniques for brain
signals

In this section, we thoroughly summarize the
advanced studies on deep learning-based brain sig-
nals (table 4). The hybrid models are divided into
three parts: the combination of RNN and CNN, the
combination of representative and discriminative
models (denoted as ‘Repre + Discri’), and others
hybrid models.

4.1. EEG
Due to the advantages of high portability and low
price, EEG signals have attracted much attention.

10 VAE is a variation of AE. However, they are working on different
aspects. Therefore, we separately introduce AE and VAE.

Most of the latest publications on non-invasive brain
signals are related to EEG. In this section, we summar-
ize two aspects of EEG signals: spontaneous EEG and
EPs. As implied by the name, the former are spontan-
eous and the latter requires outside stimuli.

4.1.1. Spontaneous EEG
We present the deep learningmodels for spontaneous
EEG according to the application scenarios as follows.

(1) Sleep EEG. Sleep EEG is mainly used for
recognizing the sleep stage and diagnosing sleep
disorders or cultivating the healthy habit [48, 49].
According to Rechtschaffen and Kales (R&K) rules,
the sleep stage includes wakefulness, non-REM (rapid
eye movement) 1, non-REM 2, non-REM 3, non-
REM 4, and REM. The American Academy of Sleep
Medicine recommends segmentation of sleep in five
stages: wakefulness, non-REM 1, non-REM 2, slow
wave sleep (SWS), and REM. The non-REM 3 and
non-REM 4 are combined into SWS since there is no
clear distinction between them [49]. Generally, in the
sleep stage analysis, the EEG signals are preprocessed
by a filter which has various passband in different
papers, but all notched at 50 Hz. The EEG signals are
usually segmented into 30 s windows.

(i) Discriminative models. CNN are frequently
used for sleep stage classification on single-channel
EEG [25, 50]. For example, Viamala et al [51]
manually extracted the time-frequency features and
achieved a classification accuracy of 86%.Others used
RNN [52] and LSTM [53] based on various features
from the frequency domain, correlation, and graph
theoretical features.

(ii) Representative models. Tan et al [54] adopted
a DBN-RBM algorithm to detect sleep spindle based
on power spectral density (PSD) features extracted
from sleep EEG signals and achieved an F-1 of 92.78%

6



J. Neural Eng. 18 (2021) 031002 X Zhang et al

Table 3. Summary of deep learning model types.

Deep learning Input Output Function Training method

Discriminative Input data Label Feature extraction, Classification Supervised
Representative Input data Representation Feature extraction Unsupervised
Generative Input data New Sample Generation, Reconstruction Unsupervised
Hybrid Input data — — —

on a local dataset. Zhang et al [49] further com-
bined DBN-RBM with three RBMs for sleep feature
extraction.

(iii) Hybrid models. Manzano et al [55] presen-
ted a multi-view algorithm in order to predict sleep
stage by combining CNN and MLP. The CNN was
employed to receive the raw time-domain EEG oscil-
lations while the MLP received the spectrum singles
processed by the short-time Fourier transformamong
0.5–32 Hz. Fraiwan et al [56] combined DBN with
MLP for neonatal sleep state identification. Supra-
tak et al [57] proposed a model by combing a multi-
view CNN and LSTM for automatic sleep stage scor-
ing, in which the former was adopted to discover
time-invariant dependencies while the latter (a bid-
irectional LSTM) was adopted the temporal features
during the sleep. Dong et al [58] proposed a hybrid
deep learning model aiming at temporal sleep stage
classification and took advantage of MLP for detect-
ing hierarchical features alongwith LSTM for sequen-
tial information learning.

(2) MI EEG. Deep learning models have shown
the superior on the classification of motor-imagery
(MI) EEG and real-motor EEG [59, 60].

(i)Discriminativemodels. Suchmodelsmostly use
CNN to recognize MI EEG [61]. Some are based on
manually extracted features [62, 63]. For instance, Lee
et al [64] and Zhang et al [65] employed CNN and
2D CNN, respectively, for classification; Zhang et al
[65] learned affective information from EEG signals
to built a modified LSTM control smart home appli-
ances. Others also used CNN for feature extraction
[66]. For example, Wang et al [67] first used CNN
to capture latent connections from MI-EEG signals
and then applied weak classifiers to choose import-
ant features for the final classification; Hartmann et al
[59] investigated how CNN represented spectral fea-
tures through the sequence of the MI EEG samples.
MLP has also been applied for MI EEG recognition
[68], which showed higher sensitivity to EEG phase
features at earlier stages and higher sensitivity to EEG
amplitude features at later stages.

(ii) Representative models. DBN is widely used as
a basis for MI EEG classification for its high rep-
resentative ability [79, 80]. For example, Ren et al
[78] applied a convolutional DBN based on RBM
components, showing better feature representation
than hand-crafted features. Li et al [77] processed
EEG signals with discrete wavelet transformation
and then applied a DBN-AE based on denoising

AE. Other models include the combination of AE
model (for feature extraction) and a KNN classi-
fier [75], the combination of Genetic Algorithm (for
hyper-parameter tuning) andMLP (for classification)
[84], the combination AE and XGBoost for multi-
person scenarios [76], and the combination of LSTM
and reinforcement learning for multi-modality signal
classification [2, 85].

(iii) Hybrid models. Several studies proposed
hybrid models for the recognition of MI EEG [81].
For example, Tabar et al [4] extracted high-level rep-
resentations from the time, frequency domain and
location information of EEG signals using CNN and
then used a DBN-AE with seven AEs as the classifier;
Tan et al [82] used a denoising AE for dimensional
reduction, a multi-view CNN combined with RNN
for discovering latent temporal and spatial inform-
ation, and finally achieved an average accuracy of
72.22% on a public dataset.

(3)EmotionalEEG.The emotion of an individual
can be evaluated in three aspects: valence, arousal,
and dominance. The combination of the three aspects
form emotions such as fear, sadness, and anger, which
can be revealed by EEG signals.

(i) Discriminative models. MLP are traditionally
used [87, 137] while CNN and RNN are increas-
ingly popular in EEG based emotion prediction
[89, 90]. Typical CNN-based work in this category
includes hierarchical CNN [89, 92] and augment-
ing the training set for CNN [91]. Li et al [89] were
the first to propose capturing the spatial depend-
encies among EEG channels via converting multi-
channel EEG signals into a 2Dmatrix. Besides, Talathi
[110] used a discriminative deep learning model
composed of GRU cells. Zhang et al [88] proposed
a spatial-temporal RNN, which employs a multi-
directional RNN layer to discover long-range con-
textual cues and a bi-directional RNN layer to cap-
ture sequential features produced by the previous
spatial RNN.

(ii) Representative models. DBN, especially DBN-
RBM, is widely used for the unsupervised represent-
ation ability in emotion recognition [100, 103, 106].
For instance, Xu et al [99, 101] proposed aDBN-RBM
algorithm with three RBMs and an RBM-AE to pre-
dict affective state; Zhao et al [126] and Zheng et al
[102] combined DBN-RBM with SVM and hidden
Markov model (HMM), respectively, addressing the
same problem; Zheng et al [96, 97] introduced a
D-RBM with five hidden RBM layers to search the
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important frequency patterns and informative chan-
nels in affection recognition; Jia et al [98] eliminated
channels with high errors and then used D-RBM for
affective state recognition based on representative fea-
tures of the residual channels.

The emotion is affected by many subjective and
environmental factors (e.g. gender and fatigue). Yan
et al [95] investigated the discrepancy of emotional
patterns between men and women by proposing a
novel model called bimodal deep autoencoder which
received both EEG and eye movement features and
shared the information in a fusion layer which con-
nected with an SVM classifier. The results showed
that the females have higher EEG signal diversity
on the fearful emotion while males on sad emotion.
Moreover, for women, the inter-subject differences
in fear is more significant then other emotions [95].
To overcome the mismatched distribution among the
samples collected from different subjects or different
experimental sessions, Chai et al [94] proposed an
unsupervised domain adaptation technologywhich is
called subspace alignment autoencoder by combing
an AE and a subspace alignment solution. The pro-
posed approach obtained a mean accuracy of 77.88%
in person independent scenario.

(iii) Hybrid models. One common-used hybrid
model is a combination of RNN and MLP. For
example, Alhagry et al [108] employed an LSTM
architecture for feature extraction from emotional
EEG signals and the features are forwarded into an
MLP for classification. Furthermore, Yin et al [107]
proposed a multi-view ensemble classifier to recog-
nize individual emotions usingmultimodal physiolo-
gical signals. The ensemble classifier contains sev-
eral D-AEs with three hidden layers and a fusion
structure. Each D-AE receives one physiological sig-
nal (e.g. EEG) and then sends the outputs of D-AE
to a fusion structure which is composed of another
D-AE. At last, an MLP classifier makes the prediction
based on the mixed features. Kawde et al [105] imple-
mented an affect recognition system by combining
a DBN-RBM for effective feature extraction and an
MLP for classification.

(4) Mental Disease EEG. A large number of
researchers exploited EEG signals to diagnose neur-
ological disorders, especially epileptic seizure [109].

(i) Discriminative models. The CNN is widely
used in the automatic detection of epileptic seizure
[93, 112, 114, 116]. For example, Johansen et al [118]
adopted CNN to work on the high-passed (1 Hz)
EEG signals of epileptic spike and achieved an AUC of
94.7%. Acharya et al [113] employed a CNN model
with 13 layers on depression detection, which was
evaluated on a local dataset with 30 subjects and
achieved the accuracies of 93.5% and 96.0% based on
the left- and right- hemisphere EEG signals, respect-
ively. Morabito et al [115] tried to exploit a CNN
structure to extract suitable features of multi-channel
EEG signals to classify Alzheimer’s Disease from the

patients with mild cognitive impairment (MCI) and
healthy control group. The EEG signals are filtered
in bandpass (0.1–30 Hz) and achieved an accuracy
of around 82% for three-class classification. Rapid
eye movement behavior disorder (RBD) may cause
many mental disorder diseases like Parkinson’s dis-
ease (PD). Ruffini et al [111] described an echo
state networks model, a particular class of RNN, to
distinguish RBD from healthy individuals. In some
research, the discriminative model is only employed
for feature extraction. For example, Ansari et al [119]
used CNN to extract the latent features and fed into a
Random Forest classifier for the final seizure detec-
tion of neonatal babies. Chu et al [149] combined
CNN and a traditional classifier for schizophrenia
recognition.

(ii) Representative models. For disease detection,
one commonly used method is adopting a represent-
ative model (e.g. DBN) followed by a softmax layer
for classification [127]. Page et al [125] adoptedDBN-
AE to extract informative features from seizure EEG
signals. The extracted features were fed into a tradi-
tional logistic regression classifier for seizure detec-
tion. Al et al [131] proposed a multi-view DBN-RBM
structure to analyze EEG signals from depression
patients. The proposed approach contains multiple
input pathways, composed of two RBMs, while each
corresponded to one EEG channel. All the input path-
ways would merge into a shared structure which is
composed of another RBMs. Some papers would like
to preprocess the EEG signals through dimensional-
ity reductionmethods such as PCA [129] while others
prefer to directly fed the raw signals to the represent-
ative model [122]. Lin et al [122] proposed a sparse
D-AE with three hidden layers to extract the rep-
resentative features from epileptic EEG signals while
Hosseini et al [129] adopted a similar sparse D-AE
with two hidden layers.

(iii) Hybrid models. A popular hybrid method
is a combination of RNN and CNN. Shah et al
[128] investigated the performance of CNN-LSTM
on seizure detection after channel selection and the
sensitivities range from33% to 37%while false alarms
ranges from 38% to 50%. Golmohammadi et al [130]
proposed a hybrid architecture for automatic inter-
pretation of EEG by integrating both the temporal
and spatial information. 2D and 1D CNNs capture
the spatial features while LSTM networks capture the
temporal features. The authors claimed a sensitivity
of 30.83% and a specificity of 96.86% on the well-
known TUH EEG seizure corpus. In the detection
of early-stage Creutzfeldt–Jakob disease (CJD), Mor-
abito et al [123] combined D-AE and MLP together.
The EEG signals of SJD were first filtered by band-
pass (0.5–70 Hz) and then fed into a D-AE with two
hidden layers for feature representation. At last, the
MLP classifier obtained the accuracy of 81%–83% in
a local dataset. Convolutional AE, replacing the fully-
connected layers in a standard AE by convolutional
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and de-convolutional layers, is applied to extract the
seizure features in an unsupervised manner [124].

(5) Data augmentation. The generative models
such as GAN could be used for data augmentation
in brain signal classification [132]. Palazzo et al [133]
first demonstrated that the information contained in
brainwaves are empowered to distinguish the visual
object and then extracted more robust and distin-
guishable representations of EEG data using RNN.
At last, they employed the GAN paradigm to train
an image generator conditioned by the learned EEG
representations, which could convert the EEG sig-
nals into images [133]. Kavasidis et al [134] aiming
at converting EEG signals into images. The EEG sig-
nals were collected when the subjects were observing
images on a screen. An LSTM layer was employed to
extract the latent features from the EEG signals, and
the extracted features were regarded as the input of a
GAN structure. The generator and the discriminator
of theGANwere both composed of convolutional lay-
ers. The generator was supposed to generate an image
based on the input EEG signals after the pre-training.
Abdelfattach et al [132] adopted a GAN on seizure
data augmentation. The generator and discriminator
are both composed of fully-connected layers. The
authors demonstrated that GAN outperforms other
generative models such as AE and VAE. After the aug-
mentation, the classification accuracy increased dra-
matically from 48% to 82%.

(6)Others. Some researches have explored a wide
range of exciting topics. The first one is how EEG sig-
nals are affected by audio/visual stimuli. This differs
from the potentials evoked by audio/visual stimula-
tions because the stimuli in this phenomenon always
exist instead of flicking in a particular frequency.
Stober et al [142, 188] claimed that the rhythm-
evoked EEG signals are informative enough to dis-
tinguish the rhythm stimuli. The authors conducted
an experiment where 13 participants were stimulated
by 23 rhythmic stimuli, including 12 East African
and 12 Western stimuli. For the 24-category classi-
fication, the proposed CNN achieved a mean accur-
acy of 24.4%. After that, the authors exploited con-
volutional AE for representation learning and CNN
for recognition and achieved an accuracy of 27% for
12-class classification [157]. Sternin et al [148] adop-
ted CNN to capture discriminative features from the
EEG oscillations to distinguish whether the subject
was listening or imaging music. Similarly, Sarkar et al
[165] designed two deep learning models to recog-
nize the EEG signals aroused by audio or visual stim-
uli. For this binary classification task, the proposed
CNN and DBN-RBM with three RBMs achieved the
accuracy of 91.63% and 91.75%, respectively. Fur-
thermore, the spontaneous EEG could be used to
distinguish the user’s mental state (logical versus
emotional) [172].

Moreover, some researchers focus on the impact
on EEG of cognitive load [138] or physical workload

[220]. Bashivan et al [159] first extract informative
features through wavelet entropy and band-specific
power, which would be fed into a DBN-RBM for fur-
ther refining. At last, an MLP is employed for cog-
nitive load level recognition. The authors, in another
work [171], also denoted to find the general features
which are constant in inter-/intra- subjects scenarios
under various mental load. Yin et al [150] collected
the EEG signals fromdifferentmental workload levels
(e.g. high and low) for binary classification. The EEG
signals are filtered by a low-pass filter, transformed
to the frequency domain and be calculated the PSD.
The extracted PSD features were fed into a denoising
D-AE structure for future refining. They finally got
an accuracy of 95.48%. Li et al [155] worked on the
recognition of mental fatigue level, including alert,
slight fatigue, and severe fatigue.

In addition, EEG based driver fatigue detection
is an attractive area [147, 151, 158]. Huang et al
[140] designed a 3DCNN to predict the reaction time
in drowsiness driving. This is meaningful to reduce
traffic accident. Hajinoroozi et al [153] adopted a
DBN-RBMtohandle the EEG signalswhichwere pro-
cessed by ICA. They achieved an accuracy of around
85% in binary classification (‘drowsy’ or ‘alert’). The
strength of this paper is that it evaluated the DBN-
RBM on three levels: time samples, channel epochs,
and windowed samples. The experiments illustrated
that the channel epoch level outperformed the other
two levels. San et al [154] combined deep learning
models with a traditional classifier to detect driver
fatigue. The model contains a DBN-RBM structure
followed by an SVM classifier, which achieved the
detection accuracy of 73.29%. Almogbel et al [145]
investigated the drivers’ mental state under different
low workload levels. A proposed CNN is claimed to
detect the driving workload directly based on the raw
EEG signals.

The research of the detection of eye state has
shown exceeding accuracy. Narejo et al [152]
explored the detection of eye state (closed or open)
based on EEG signals. They tried a DBN-RBM with
three RBMs and a DBN-AE with three AEs and
achieved a high accuracy of 98.9%. Reddy et al [136]
tried a simpler structure, MLP, and got a slightly
lower accuracy of 97.5%.

Furthermore, to make this survey more com-
plete, we provide a brief introduction of event-related
desynchronization/synchronization (ERD/ERS).
ERD/ERS refers to the phenomena that the mag-
nitude and frequency distribution of the EEG sig-
nal power changes during a specific brain state
[36]. In particular, ERD denotes the power decrease
of ongoing EEG signals while ERS represents the
power increase of EEG signals. This characteristic of
ERD/ERS of brain signals can be used to detect the
eventwhich caused the EEG fluctuation. For example,
[221] presents the ERD/ERS phenomena in motor
cortex recorded during a MI task.
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ERD/ERS mainly appears in sensory, cognitive
and motor procedures, which is not widely used in
brain research due to the drawbacks like unstable
accuracy cross subjects [36]. Inmost of the situations,
the ERD/ERS is regarded as a specific feature of EEG
powers for further analysis [4, 81]. The task causes an
ERD in the mu band (8–13 Hz) of EEG and an ERS in
the beta band (13–30Hz). In particular, the ERD/ERS
were calculated as relative changes in power con-
cerning baseline: ERD/ERS= (Pe − Pb)/Pb, where Pe

denotes the signals power over 1 s segment when
the event occurring and Pb denotes the signal power
in a one-second segment during baseline which is
before the event [71]. Generally, the baseline refers
to the rest state. For example, Sakhavi et al calcu-
lated the ERD/ERS map and analyzed the different
patterns among different tasks. The analysis demon-
strated that the dynamic of energy should be con-
sidered because the static energy does not contains
enough information [86].

There are several overlooked yet promising areas.
Baltatzis et al [141] adopted CNN to detect school
bullying through the EEG when watching the spe-
cific video. They achieved 93.7% and 88.58% for
binary and four-class classification. Khurana et al
[222] proposed deep dictionary learning that outper-
formed several deep learning methods. Volker et al
[143] evaluated the use of Deep CNN in flanker
task, which achieved an averaging accuracy of 84.1%
on the seen subject and 81.7 on the unseen sub-
ject. Zhang et al [160] combined CNN and graph
network to discover the latent information from the
EEG signal.

Miranda-Correa et al [104] proposed a cascaded
framework by combing RNN and CNN to pre-
dict individuals’ affective level and personal factors
(Big-five personality traits, mood, and social con-
text). An experiment conducted by Putten et al
[146] attempted to identify the user’s gender based
on their EEG signals. They employed a standard
CNN algorithm and achieved the binary classifica-
tion accuracy of 81% over a local dataset. The detec-
tion of emergency braking intention could help to
reduce the responses time. Hernandez et al [144]
demonstrated that the driver’s EEG signals could dis-
tinguish braking intention and normal driving state.
They combined a CNN algorithmwhich achieved the
accuracy of 71.8% in binary classification. Behncke
et al [139] applied deep learning, a CNN model, in
the context of robot assistive devices. They attemp-
ted to use CNN to improve the accuracy of decoding
robot errors from EEG while the subject was watch-
ing the robot both during an object grasping and a
pouring task.

Teo et al [135] tried to combine the brain signal
and recommender system, which predicted the user’s
preference by EEG signals. There were 16 participants
took the experiments which collected the EEG sig-
nals when the subject was presented 60 bracelet-like

objects as rotating visual stimuli (a 3D object). Then,
anMLP algorithmwas adopted to classify the user like
or dislike the object. This exploration got the predic-
tion accuracy of 63.99%. Some researchers have tried
to explore a common framework which can be used
for various brain signal paradigms. Lawhern et al [73]
introduced EEGNet based on a compact CNN and
evaluated its robustness in various brain signal con-
texts [73].

4.1.2. Evoked potential
Next, we introduce the latest researches on EPs
including ERP and SSEP.

(1) ERP. In most situations, the ERP signals
are analyzed through P300 phenomena. Meanwhile,
almost all the studies on P300 are based on the scen-
ario of ERP. Therefore, in this section, a major-
ity of the P300 related publications are introduced
in the subsection of VEP/AEP according to the
scenario.

(i) VEP. VEP is one of the most popular subcat-
egories of ERP [23, 163, 223]. Ma et al [224] worked
on motion-onset VEP by extracting representative
features through deep learning and adopted genetic
algorithm combined with a multi-level sensing struc-
ture to compress the raw signals. The compressed
signals were sent to a DBN-RBM algorithm to cap-
ture the more abstract high-level features. Maddula
et al [170] filtered the P300 signals with visual stim-
uli by a bandpass filter (2–35Hz) and then fed into
a proposed hybrid deep learning model for further
analysis. The model includes a 2D CNN structure
to capture the spatial features followed by an LSTM
layer for temporal feature extraction. Liu et al [168]
combined a DBN-RBM representative model with
an SVM classifier for concealed information test and
achieved a high accuracy of 97.3% over a local data-
set. Gao et al [167] employed an AE model for fea-
ture extraction followed by an SVM classifier. In the
experiment, each segment contains 150 points, which
were divided into five time-steps, and each step had
30 points. This model achieved an accuracy of 88.1%
over a local dataset. Awide range of P300 related stud-
ies is based on P300 speller [173], which allows the
user to write characters. Cecotti et al [177] tried to
increase the P300 detection accuracy for more pre-
cise word-spelling. A newmodel was presented based
on CNN, which including five low-level CNN classi-
fiers with the different feature set, and the final high-
level results are voted by the low-level classifiers. The
highest accuracy reached 95.5% over the dataset II
from the third BCI competition. Liu et al [164] pro-
posed a Batch Normalized Neural Network (BN3)
which is a variant of CNN in P300 speller. The pro-
posed method consists of six layers, and the batch
normalization was operated in each batch. Kawasaki
et al [162] employed an MLP model to detect P300
segments from non-P300 segments and achieved the
accuracy of 90.8%.
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(ii) AEP. A few works focused on the recognition
of AEP. For example, Carabez et al [187] proposed
and tested 18 CNN structures to classify single-trial
AEP signals. In the experiment, the volunteers were
required to wear on an earphone which produces
auditory stimulus designed based on the oddball
paradigm. The experimental analysis demonstrated
that the CNN frameworks, regardless of the number
of convolutional layers, were effective to extract the
temporal and spatial features and provided competit-
ive results. The AEP signals are filtered by 0.1–8 Hz
and downsampled from 256 to 25 Hz. The exper-
imental results showed that the downsampled data
work better.

(iii) RSVP. Among various VEP diagrams, RSVP
has attracted much attention [183]. In the analysis
of RSVP, a number of discriminative deep learning
models (e,g., CNN [177, 178, 182] and MLP [174])
has achieved a big success. A common preprocessing
method used in RSVP signals is frequency filtering.
The pass bands are generally ranged from 0.1 to 50Hz
[176, 185]. Cecotti et al [12] worked on the classific-
ation of ERP signals in RSVP scenario and proposed
a modified CNN model for the detection of the spe-
cific target in RSVP. In the experiment, the images of
faces and cars were regarded as target or non-target,
respectively. The image presenting frequency is 2 Hz.
In each session, the target probability was 10%. The
proposed model offered an AUC of 86.1%. Hajino-
roozi et al [179] adopted a CNN model targeting the
inter-subject and inter-task detection of RSVP. The
experimental results showed that CNN worked good
in cross-task but failed to get satisfying performance
in the cross-subject scenario. Mao et al [175] com-
pared three different deep neural network algorithms
in the prediction of whether the subject had seen
the target or not. The MLP, CNN, and DBN mod-
els obtained the AUC of 81.7%, 79.6%, and 81.6%,
respectively. The author also applied a CNN model
to analyze the RSVP signals for person identification
[180].

The representative deep learning models are also
applied in RSVP. Vareka et al [186] verified if
deep learning performs well for single trial P300
classification. They conducted an RSVP experiment
while the subjects were asked to recognize the tar-
get from non-target and distracters. Then a DBN-
AE was implemented and compared with some non-
deep learning algorithms. The DBN-AE was com-
posed of five AEs while the hidden layer of the
last AE only has two nodes which can be used for
classification through softmax function. Finally, the
proposed model achieved the accuracy of 69.2%.
Manor et al [181] applied two deep neural net-
works to deal with the RSVP signals after lowpass
filtering (0–51 Hz). Discriminative CNN achieved
the accuracy of 85.06%. Meanwhile, the repres-
entative convolutional D-AE achieved the accuracy
of 80.68%.

(2) SSEP.Most of deep learning-based studies in
SSEP area focus on SSVEP like [191]. SSVEP refers
to brain oscillations evoked by the flickering visual
stimuli, which generally produced from the parietal
and occipital regions [192]. Attia et al [196] aimed at
finding an intermediate representation of SSVEP. A
hybrid method combined CNN and RNN was pro-
posed to capture the meaningful features from the
time domain directly, which achieved the accuracy
of 93.59%. Waytowich et al [192] applied a compact
CNN model to directly work on the raw SSVEP sig-
nals without any hand-crafted features. The reported
cross subject mean accuracy was approximately 80%.
Thomas et al [190] first filter the raw SSVEP signals
through a bandpass filter (5–48 Hz) and then oper-
ated discrete FFT on consecutive 512 points. The pro-
cessed data were classified by a CNN (69.03%) and an
LSTM (66.89%) independently.

Perez et al [197] adopted a representative model,
a sparse AE, to extract the distinct features from the
SSVEP frommulti-frequency visual stimuli. The pro-
posed model employed a softmax layer for the final
classification and achieved the accuracy of 97.78%.
Kulasingham et al [195] classified SSVEP signals in
the context of guilty knowledge test. The authors
applied DBN-RBM and DBN-AE independently and
achieved the accuracy of 86.9% and 86.01%, respect-
ively. Hachem et al [189] investigated the influence
of fatigue on SSVEP through an MLP model dur-
ing wheelchair navigation. The goal of this study
was to seek the key parameters to switch between
manual, semi-autonomous, and autonomous wheel-
chair command. Aznan et al [193] explored the
SSVEP classification, where the signals were collec-
ted through dry electrodes. The dry signals weremore
challenging for the lower SNR than standard EEG sig-
nals. This study applied a CNN discriminative model
and achieved the highest accuracy of 96% over a local
dataset.

4.2. fNIRS
Up to now, only a few of researchers paid attention
on deep learning-based fNIRS. Naseer et al [38] ana-
lyzed the difference between twomental tasks (mental
arithmetic and rest) based on fNIRS signals. The
authors manually extracted six features from the pre-
frontal cortex fNIRS and compared six different clas-
sifiers. The results demonstrated that the MLP with
the accuracy of 96.3% outperformed all the tradi-
tional classifiers, including SVM, KNN, naive Bayes,
etc Huve et al [198] classified the fNIRS signals, which
were collected from the subjects during three men-
tal states, including substractions, word generation,
and rest. The employed MLP model achieved the
accuracy of 66.48% based on the hand-crafted fea-
tures (e.g. the concentration of OxyHb/DeoxyHb).
After that, the authors study the mobile robot con-
trol through fNIRS signals and got the binary classi-
fication accuracy of 82% (offline) and 66% (online)
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[199]. Chiarelli et al [71] exploited the combina-
tion of fNIRS and EEG for left/right MI EEG classi-
fication. Sixteen features extracted from fNIRS sig-
nals (eight from OxyHb and eight from DeoxyHb)
were fed into an MLP classifier with four hidden
layers.

On the other hand, Hiroyasu et al [201] attemp-
ted to detect the gender of the subject through their
fNIRS signals. The authors employed a denoising
D-AE with three hidden layers to extract distinct-
ive features to be fed into an MLP classifier for
gender detection. The model was evaluated over a
local dataset and gained the average accuracy of 81%.
In this study, the authors also pointed out that, com-
pared with Positron emission tomography (PET) and
fMRI, fNIRS has higher time resolution and more
affordable [201].

4.3. fMRI
Recently, several deep learning methods have been
applied to fMRI analysis, especially on the diagnosis
of cognitive impairment [14, 33].

(1) Discriminative models. Among the discrim-
inative models, CNN is a promising model to ana-
lyze fMRI [206]. For example, Havaei et al built a seg-
mentation approach for brain tumor based on fMRI
with a novel CNN algorithm which can capture both
the global features and the local features simultan-
eously [205]. The convolutional filters have different
size. Thus, the small-size and large-size filter could
exploit the local and global features, independently.
Sarraf et al [207, 225] applied deep CNN to recognize
Alzheimer’s Disease based on fMRI and MRI data.
Morenolopez et al [226] employed a CNN model to
deal with fMRI of brain tumor patients for three-
class recognition (normal, edema, or active tumor).
The model was evaluated over BRATS dataset and
obtained the F1 score of 88%. Hosseini et al [117]
employed CNN for feature extraction. The extracted
features were classified by SVM for the detection of an
epileptic seizure.

Furthermore, Li et al proposed a data comple-
tion method based on CNN. In particular, utilizing
the information from fMRI data to complete PET,
then train the classifier based on both fMRI and PET
[208]. In the model, the input data of the proposed
CNN is the fMRI patch, and the output is a PET
patch. There are two convolutional layers with ten
filters mapping the fMRI to PET. The experiments
illustrated that the classifier trained by the combin-
ation of fMRI and PET (92.87%) outperformed the
one trained by solo fMRI (91.92%) Moreover, Koya-
mada et al used a non-linearMLP to extract common
features from different subjects. The model is eval-
uated over a dataset from the Human Connectome
Project [202].

(2) Representative models. A wide range of
publications demonstrated the effectiveness of

representative models in recognition of fMRI data.
Hu et al [216] used demonstrated that deep learn-
ing outperforms other machine learning methods
in the diagnosis of neurological disorders such as
Alzheimer’s disease. Firstly, the fMRI images were
converted to a matrix to represent the activity of
90 brain regions. Secondly, a correlation matrix is
obtained by calculating the correlation between each
pair of brain regions to represent the functional con-
nectivity between different brain regions. Further-
more, a targeted AE is built to classify the correla-
tion matrix, which is sensitive to AD. The proposed
approach achieved an accuracy of 87.5%. Plis et al
[211] employed a DBN-RBM with three RBM com-
ponents to extract the distinctive features from ICA
processed fMRI and finally achieved an average F1
measure of above 90% over four public datasets. Suk
et al compared the effectiveness of DBN-RBM and
DBN-AE on Alzheimer’s disease detection and the
experimental results showed that the former obtained
the accuracy of 95.4%, which is slightly lower than the
latter (97.9%) [210]. Suk et al [209] applied a D-AE
model to extract latent features from the resting-state
fMRI data on the diagnosis of MCI. The latent fea-
tures are fed into a SVM classifier which achieved
the accuracy of 72.58%. Ortiz et al [212] proposed
a multi-view DBN-RBM to receives the information
of MRI and PET simultaneously. The learned repres-
entations were sent to several simple SVM classifiers
which were ensembled to form a high-level stronger
classifier by voting.

(3) Generative models. The reconstruction of
natural image (e.g. fMRI) has been attracted lots of
attention [88, 203, 214]. Seeliger et al [213] proposed
a deep convolutional GAN (DCGAN) for recon-
structing visual stimuli from fMRI, which aimed at
training a generator to create an image similar to the
visual stimuli. The generator contains four convo-
lutional layers in order to convert the input fMRI
to a natural image. Han et al [214] focused on the
generation of synthetic multi-sequence fMRI using
GAN. The generated image can be used for data aug-
mentation for better diagnostic accuracy or physician
training to help better understand various diseases.
The authors applied the existing DCGAN [227] and
WGAN [228] and found that the former works bet-
ter. Shen et al [203] presented another image recovery
approach byminimizing the distance between the real
image and the image generated based on real fMRI.

4.4. MEG
Garg et al [217] worked on the refining of MEG sig-
nals by removing the artifacts like eye-blinks and car-
diac activity. The MEG singles were decomposed by
ICA first and then classified by a 1-D CNNmodel. At
last, the proposed approach achieved the sensitivity of
85% and specificity of 97% over a local dataset. Has-
asneh et al [219] also focused on artifacts detection
(cardiac and ocular artifacts). The proposed approach
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uses CNN to capture temporal features and MLP to
extract spatial information. Shu et al [218] employed
a sparse AE to learn the latent dependencies of MEG
signals in the task of single word decoding. The results
demonstrated that the proposed approach is advant-
ageous for some subjects, although it did not produce
an overall increase in decoding accuracy. Cichy et al
[204] applied a CNNmodel to recognize visual object
based on MEG and fMRI signals.

5. Brain signal-based applications

Deep learning models have contributed to various of
brain signal applications as summarized in table 5.
The papers focused on signal classification without
application background are not listed in this table.
Therefore, the publication amounts in this table are
less than in table 4.

5.1. Health care
In the health care area, the deep learning-based brain
signal systems mainly works on the detection and
diagnosis of mental diseases such as sleep disorders,
Alzheimer’s Disease, epileptic seizure, and other dis-
orders. In the first place, for the sleep disorder detec-
tion,most studies are focused on the sleep stage detec-
tion based on sleep spontaneous EEG. In this situ-
ation, the researchers do not need to recruit patients
with sleep disorder because the sleep EEG signals can
be easily collected from healthy individuals. In terms
of the algorithm, it can be observed from table 5 that
the DBN-RBM and CNN are widely adopted for fea-
ture selection and classification. Ruffini et al [111]
walk one step further by detecting the RBD, which
may cause neurodegenerative diseases such as PD.
They achieved an average accuracy of 85% in recog-
nition of the RBD from healthy controls.

Moreover, fMRI is widely applied in the dia-
gnosis of Alzheimer’s Disease. By taking advantage
of the high spatial resolution of fMRI, the diagnosis
achieved the accuracy of above 90% in several studies.
Another reason that contributes to competitive per-
formance is the binary classification scenario. Apart
from that, there are several publications diagnose the
AD based on spontaneous EEG [115, 126].

Besides, the diagnosis of epileptic seizure attrac-
ted much attention. The seizure detection mainly
based on spontaneous EEG. The popular deep learn-
ing models in this scenario contain the independent
CNN and RNN, along with hybrid models combined
RNN and CNN. Some models integrated the deep
learningmodels for feature extraction and traditional
classifier for detection [125, 127]. For example, Yuan
et al [121] applied a D-AE in feature extraction fol-
lowed by SVM for seizure diagnosis. Ullah et al [112]
adopted the voting for post-processing, which pro-
posed several different CNN classifiers and predicted
the final result by voting.

Furthermore, there are a lot of other healthcare
issues can be solved by brain signal research. The
cardiac artifacts in MEG can be automatically detec-
ted by deep learning models [217, 219]. Several mod-
ified CNN structures are proposed to detect brain
tumor based on fMRI from the public BRATS dataset
[205, 206]. Researchers have demonstrated the effect-
iveness of deep learning models in the detection of
a wide number of mental diseases such as depres-
sion [113], interictal epileptic discharge (IED) [229],
schizophrenia [211], CJD [123], and MCI [209].

5.2. Smart environment
The smart environment is a promising application
scenario for brain signals in the future. With the
development of Internet of things, an increasing
number smart environment can be connected to
brain signals. For example, the assisting robot can
be used in smart home [2, 65], in which the robot
can be controlled by brain signals of the individuals.
Moreover, Behncke et al [139] and Huve et al [199]
investigated the robot control problem based on the
visual stimulated spontaneous EEG and fNIRS sig-
nals. The brain signal controlled exoskeleton could
help the disabilities who damaged the motor system
in sub-limb in walking and daily activities [191]. In
the future, the research on brain-controlled appli-
ances may be beneficial to the elders or disabilities in
smart home and smart hospital.

5.3. Communication
One of the biggest advantages of brain signals, com-
pared to other human–machine interface techniques,
is that brain signal enables the patient who lost most
motor abilities like speaking to communicate with the
outer world. The deep learning technology improved
the efficiency of brain signal based communications.
One typical diagram which enables individual typ-
ing without any motor system is P300 speller, which
can convert the user’s intent into text [162]. The
powerful deep learning models empower the brain
signal systems to recognize the P300 segment from
the non-P300 segment while the former contains the
communication information of the user [166]. In a
higher level, the representative deep learning models
can help to detect what character the user is focus-
ing on and print it on the screen to chat with others
[164, 166, 170]. Additionally, Zhang et al [10] pro-
posed a hybridmodel that combinedRNN,CNN, and
AE to extract the informative features from MI EEG
to recognize what letter the user wants to speak.

5.4. Security
Brain signals can be used in security scenarios such
as identification (or recognition) and authentication
(or verification). The former conducts multi-class
classification to recognize a person’s identity [6]. The
latter conducts binary classification to decide whether
a person is authorized [61].
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Figure 4. Illustration of the publications proportion for crucial brain signals and deep learning models.

The majority of the existing biometric identi-
fication/authentication systems rely on individuals’
intrinsic physiological features such as face, iris, ret-
ina, voice, and fingerprint [6]. They are vulnerable
to various attacks based on anti-surveillance pros-
thetic masks, contact lenses, vocoder, and fingerprint
films. EEG-based biometric person identification is
a promising alternative given its highly resilient to
spoofing attacks—individual’s EEG signals are virtu-
ally impossible for an imposter to mimic. Koike et al
[161] have adopted deep neural networks to identify
the user’s ID based on the VEP signals; Mao et al
[180] applied CNN for person identification based on
RSVP signals; Zhang et al [6] proposed an attention-
based LSTMmodel and evaluated it over both public
and local datasets. EEG signals are also combinedwith
gait information in a hybrid deep learning model for
a dual-authentication system [61].

5.5. Affective Computing
Affective states of a user provide critical information
for many applications such as personalized inform-
ation (e.g. multimedia content) retrieval or intelli-
gent human–computer interface design [99]. Recent
research illustrated that deep learning models can
enhance the performance in affective computing. The
most widely used circumplex model believe the emo-
tions are distributed in two dimensions: arousal and
valence. The arousal refers to the intensity of the
emotional stimuli or how strong is the emotion. The
valence refers to the relationship within the person
who experiences the emotion. In some other models,
the dominance and liking dimensions are deployed.

Some research [89–91] attempts to classify users’
emotional state into two (positive/negative) or three
categories (positive, neutral, and negative) based on
EEG signals using deep learning algorithms such as
CNN and its variants [87]. DBN-RBM is the most
representative deep learning model to discover the
concealed features from emotional spontaneous EEG
[96, 99]. Xu et al [99] applied DBN-RBM as feature
extractors to classify affective states based on EEG.

Further, some researchers aim to recognize the
positive/negative state of each specific emotional

dimension. For example, Yin et al [107] employed
an ensemble classifier of AE in order to recog-
nize the user’s affection. Each AE uses three hid-
den layers to filter out noises and to derive stable
physiological feature representations. The proposed
model was evaluated over the benchmark, DEAP,
and achieved the arousal of 77.19% and valence
of 76.17%.

5.6. Driver fatigue detection
Vehicle drivers’ ability to keep alert and maintain
optimal performance will dramatically affect the
traffic safety [145]. EEG signals have proven useful
in evaluating the human’s cognitive state in different
context. Generally, a driver is regarded as in an alert
state if the reaction time is lower than 0.7 s and in
fatigue state if it is higher than 2.1 s. Hajinoroozi et al
[153] considered the detection of driver’s fatigue from
EEG signals by discovering the distinct features. They
explored an approach based on DBN for dimension
reduction.

Detecting driver fatigue is crucial because the
drowsiness of the driver may lead to disaster. Driver
fatigue detection is feasible in practice. In the hard-
ware aspect, the collection equipment of EEG singles
is off-the-shelf and portable enough to be used in
a car. Moreover, the price of an EEG headset is
affordable for most people. In the algorithm aspect,
deep learning models have enhanced the perform-
ance of fatigue detection. As we summarized, the EEG
based driving drowsiness can be recognized with high
accuracy (82%–95%).

Future scope of drive fatigue detection is in the
self-driving scenario. As we know, in the most situ-
ation of self-driving (e.g. Automation level 311), the
human driver is expected to respond appropriately
to a request to intervene, which indicates that the
driver should keep alert state. Therefore, we believe
the application of brain signal-based drive fatigue
detection will benefit the development of the self-
driving car.

11 https://en.wikipedia.org/wiki/Self-driving_car.
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5.7. Mental load measurement
The EEGoscillations can be used tomeasure themen-
tal workload level, which can sustain decisionmaking
and strategy development in the context of human–
machine interaction [150]. Additionally, the appro-
priate mental workload is essential for maintaining
human health and preventing accidents. For example,
the abnormal mental workload of the human oper-
ator may result in performance degradation which
could cause catastrophic accidents [231]. Evaluation
of operator Mental Workload levels via ongoing EEG
is quite promising in human–machine collaborative
task environment to alarm the temporal operator per-
formance degradation.

Several researchers have been paid attention to
this topic. The mental workload can be measured
from fNIRS signals or spontaneous EEG. Naseer et al
adopted a MLP algorithm for fNIRS-based binary
mental task level classification (mental arithmetic
and rest) [38]. The experiment results showed that
the MLP outperformed the traditional classifiers like
SVM, KNN, and achieved the highest accuracy of
96.3%. Bashivan et al [159] presented a statistical
approach, a DBN model, for the recognition of men-
tal workload level based on single-trial EEG. Before
the DBN, the authors manually extracted the wave-
let entropy and band-specific power from three fre-
quency bands (theta, alpha, and beta). At last, the
experiments demonstrated the recognition of men-
tal workload achieved an overall accuracy of 92%.
Zhang et al [156] investigate the mental load meas-
urement across multiple mental tasks via a recurrent-
convolutional framework. The model simultaneously
learns EEG features from the spatial, spectral, and
temporal dimensions, which results in the accuracy
of 88.9% in binary classification (high/low workload
levels).

5.8. Other applications
There are plenty of interesting scenarios beyond the
above where deep learning-based brain signals can
apply, such as recommender system [135] and emer-
gency braking [144]. One possible topic is the recog-
nition of a visual object, which may be used in guilty
knowledge test [195] and concealed information test
[168]. The neurons of the participant will produce a
pulse when he/she suddenly watch a similar object.
Based on the theory, the visual target recognition is
mainly usedRSVP signals. Cecotti et al [177] aimed to
build a common model for target recognition, which
canwork for various subjects instead of a specific sub-
ject.

Besides, researchers have investigated to distin-
guish the subject’s gender by the fNIRS [201] and
spontaneous EEG [146]. Hiriyasu et al [201] adopted
deep learning to recognize the gender of the subject
based on the cerebral blood flow. The experiment res-
ults suggested that the cerebral blood flow changes in
different ways for male and female. Putten et al [146]

tried to discover the sex-specific information from the
brain rhythms and adopted a CNN model to recog-
nize the participant’s gender. This paper illustrated
that fast beta activity (20–25 Hz) is one of the most
distinctive attributes.

5.9. Benchmark datasets
We have extensively explored the benchmark datasets
usable for deep learning-based brain signals (table 6).
We provide a bunch of public datasets with down-
load links, which cover most brain signal types. In
particular, BCI competition IV (BCI-C IV) contains
five datasets via the same link. For better understand-
ing, we present the number of subjects, the number
of class (howmany categories), sampling rate, and the
number of channels of each dataset. In the ‘#Channel’
column, the default channel is for EEG signals. Some
datasets contain more biometric signals (e.g. ECG),
but we only list the channels related to brain signals.

6. Analysis and guidelines

In this section, we first analyze what is the most suit-
able deep learningmodels for each brain signal. Then,
we summarize the popular deep learning models in
brain signal research. At last, we investigate the brain
signals in terms of application. We hope this survey
could help our readers to select the most effective and
efficient methods when dealing with brain signals.
Please recall table 4 where we summarize the brain
signals and the corresponding deep learning models
of the state-of-the-art papers. Figure 4 illustrated of
the publications proportion for crucial brain signals
and deep learning models.

6.1. Brain signal acquisition
Among the non-invasive signals, the studies on EEG
is far more than the sum of all the other brain signal
paradigms (fNIRS, fMRI, and MEG). Furthermore,
there are about 70% of the EEG papers pay atten-
tion to the spontaneous EEG (133 publications). For
better understanding, we split the spontaneous EEG
into several aspects: the sleep, the motor imagery, the
emotional, the mental disease, the data augmenta-
tion, and others.

First, the classification of the sleep EEG mainly
depends on the discriminative and the hybridmodels.
Among the nineteen studies about sleep stage classi-
fication, there are six employed CNN and the mod-
ified CNN models independently while two papers
adopted RNN models. There are three hybrid mod-
els built on the combination of CNN and RNN.

Second, in terms of the research on MI EEG (30
publications), the independent CNNandCNN-based
hybrid models are widely used. As for the represent-
ative models, DBN-RBM is often applied to capture
the latent features from the MI EEG signals.

Third, there are 25 publications related to spon-
taneous emotional EEG. More than half of them
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Table 6. The summary of public dataset for brain signal studies. The ‘# Sub’, ‘# Cla’, and S-Rate denote the number of subject, number of
class, and sampling rate, respectively. FM denote finger movement while BCI-C denote the BCI Competition. The ‘# channel‘ refers to
the number of brain signal channels.

Brain signals Name link #Sub #Cla S-Rate #Channel

Sleep-EDF12: Telemetry 22 6 100 2
Sleep-EDF: Cassette 78 6 100, 1 2
MASS-113 53 5 256 17
MASS-2 19 6 256 19
MASS-3 62 5 256 20
MASS-4 40 6 256 4
MASS-5 26 6 256 20

Sleep EEG

SHHS14 5804 N/A 125, 50 2
CHB-MIT15 22 2 256 18Seizure EEG
TUH16 315 2 200 19
EEGMMI17 109 4 160 64
BCI-C II18, Dataset III 1 2 128 3
BCI-C III, Dataset III a 3 4 250 60
BCI-C III, Dataset III b 3 2 125 2
BCI-C III, Dataset IV a 5 2 1000 118
BCI-C III, Dataset IV b 1 2 1001 119
BCI-C III, Dataset IV c 1 2 1002 120
BCI-C IV, Dataset I 7 2 1000 64
BCI-C IV, Dataset II a 9 4 250 22

MI EEG

BCI-C IV, Dataset II b 9 2 250 3
AMIGOS19 40 4 128 14
SEED20 15 3 200 62

Emotional EEG

DEAP21 32 4 512 32
Others EEG Open MIIR22 10 12 512 64

BCI-C II, Dataset II b 1 36 240 64

EEG

VEP
BCI-C III, Dataset II 2 26 240 64
ADNI23 202 3 N/A N/AfMRI
BRATS24 2013 65 4 N/A N/A

MEG BCI-C IV, Dataset III 2 4 400 10

employed representative models (such as D-AE,
D-RBM, especially DBN-RBM) for unsupervised fea-
ture learning. The most typical state recognition
works recognize the user’s emotion as positive, neut-
ral, or negative. Some researchers take a further step
to classify the valence, and the arouse rate, which is
more complex and challenging.

Fourth, the research on mental disease diagnosis
is promising and attracting. The majority of the
related research focuses on the detection of epileptic
seizure and Alzheimer’s Disease. Since the detection
is a binary classification problem which is rather
easier than multi-class classification, many studies

12 https://physionet.org/physiobank/database/sleep-edfx/
13 https://massdb.herokuapp.com/en/
14 https://physionet.org/pn3/shhpsgdb/
15 https://physionet.org/pn6/chbmit/
16 https://www.isip.piconepress.com/projects/tuh_eeg/html/down
loads.shtml
17 https://physionet.org/pn4/eegmmidb/
18 http://www.bbci.de/competition/ii/
19 http://www.eecs.qmul.ac.uk/mmv/datasets/amigos/readme.html
20 http://bcmi.sjtu.edu.cn/ seed/download.html
21 https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
22 https://owenlab.uwo.ca/research/the_openmiir_dataset.html
23 http://adni.loni.usc.edu/data-samples/access-data/
24 https://www.med.upenn.edu/sbia/brats2018/data.html

can achieve a high accuracy like above 90%. In this
area, the standard CNN model and the D-AE are
prevalent. One possible reason is that CNN and AE
are the most well-known and effective deep learning
models for classification and dimensionality reduc-
tion.

Fifth, several publications pay attention to the
GAN based data augmentation. At last, about 30
studies are investigating other spontaneous EEG such
as driving fatigue, audio/visual stimuli impact, cog-
nitive/mental load, and eye state detection. These
studies extensively apply standard CNN models and
variants.

Moreover, apart from spontaneous EEG, EPs also
attracted much attention. On the one hand, in ERP,
VEP and the subcategory RSVP has drawn lots of
investigations because visual stimuli, compared to
other stimuli, is easier to be conducted and more
applicable in the real world (e.g. P300 speller can be
used for brain typing). For VEP (21 publications),
there are 11 studies applied discriminative models,
and six works adopted hybrid models. In terms of
RSVP, the sole CNN dominates the algorithms. Apart
from them, five papers focused on the analysis of
AEP signals. On the other hand, among the steady-
state related researches, only SSVEP has been studied
by deep learning models. Most of them only applied
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discriminativemodels on the recognition of the target
image.

Furthermore, beyond the diverse EEG diagrams,
a wide range of papers paid attention to fNIRS
and fMRI. The fNIRS images are rarely studied by
deep learning, and the major studies just employed
the simple MLP models. We believe more attention
should be paid to the research on fNIRS for the high
portability and low cost. As for the fMRI, 23 papers
proposed deep learning models to the classification.
The CNN model is widely used for its outstanding
performance in feature learning from images. There
are also several papers interested in image reconstruc-
tion based on fMRI signals. One reason why fMRI is
so hot is that several public datasets are available on
the Internet, although the fMRI equipment is expens-
ive. The MEG signals are mainly used in the med-
ical area, which is insensitive to the deep learning
algorithm. Thus, we only found very few studies on
MEG. The sparse AE andCNNalgorithms have a pos-
itive influence on the feature refining and classifica-
tion of MEG.

6.2. Selection criteria for deep learning models
Our investigation shows that discriminative models
are most frequent in the summarized publications.
This is reasonable at a high level because a large pro-
portion of brain signal issues can be regarded as a clas-
sification problem. Another observation is that CNN
and its variants are adopted in more than 70% of the
discriminative models, for which we provide reasons
as follows.

First, the design of CNN is powerful enough to
extract the latent discriminative features and spatial
dependencies from the EEG signals for classification.
As a result, CNN structures are adopted for classifica-
tion in some studies while adopted for feature extrac-
tion in some other studies.

Second, CNN has been achieved great success in
some research areas (e.g. computer vision), which
makes it extremely famous and feasible (public
codes). Thus, the brain signal researchers have more
chance to understand and apply CNN on their works.

Third, some brain signal diagrams (e.g. fMRI)
are naturally formed as two-dimension images that
are conducive to be processed by CNN. Meanwhile,
other 1D signals (e.g. EEG) could be converted into
2D images for further analysis by CNN. Here, we
provide several methods converting 1D EEG signals
(with multiple channels) to the 2D matrix: (1) con-
vert each time-point25 to a 2D image; (2) convert a
segment into a 2D matrix. In the first situation, sup-
pose we have 32 channels, and we can collect 32 ele-
ments (each element corresponding to a channel) at
each time-point. As described in [89], the collected 32
elements could be converted into a 2D image based on

25 Time-point represents one sampling point. For example, we can
have 100 time-points if the sampling rate is 100 Hz.

the spatial position. In the second situation, suppose
we have 32 channels, and the segment contains 100
time-points. The collected data can be arranged as a
matrixwith the shape of [32, 100]where each row and
column refers to a specific channel and time-point,
respectively.

Fourth, there are a lot of variants of CNN which
are suitable for a wide range of brain signal scenarios.
For example, the single-channel EEG signals can be
processed by 1D CNN. In terms of RNN, only about
20% of discriminative model-based papers adopted
RNN, which is much less than we expected since
RNN has demonstrated powerful in temporal fea-
ture learning. One possible reason for this phenom-
ena is that processing a long sequence byRNN is time-
consuming and the EEG signals are generally formed
as a long sequence. For example, the sleep signals
are usually sliced into segments with 30 s, which has
3000 time-points under 100 Hz sampling rate. For a
sequence with 3000 elements, through our prelimin-
ary experiments, RNN takesmore than 20 folds train-
ing time than CNN. Moreover, MLP is not popular
due to its inferior effectiveness (e.g. non-linear abil-
ity) to the other algorithms its simple deep learning
architecture.

As for representative models, DBN, especially
DBN-RBM, is the most popular model for feature
extraction. DBN is widely used in brain signal for two
reasons: (1) it learns the generative parameters that
reveal the relationship of variables in neighboring lay-
ers efficiently; (2) it makes it straightforward to cal-
culate the values of latent variables in each hidden
layer [31]. However, most works that employed the
DBN-RBMmodel were published before 2016. It can
be inferred that the researchers prefer to use DBN for
feature learning followed by a non-deep learning clas-
sifier before 2016; but recently, an increasing number
of studies would like to adopt CNN or hybrid models
for both feature learning and classification.

Moreover, generative models are rarely employed
independently. The GAN- and VAE-based data aug-
mentation and image reconstruction are mainly
focused on fMRI and EEG signals. It is demonstrated
that the trained classifier will achieve more competit-
ive performance after data augmentation. Therefore,
this is a promising research prospect in the future.

Last but not the least, there are 53 publications
proposed hybrid models for brain signal studies.
Among them, the combinations of RNN and CNN
take about one-fifth proportion. Since RNN and
CNN are illustrated having excellent temporal and
spatial feature extraction ability, it is natural to com-
bine them for both temporal and spatial feature learn-
ing. Another type of hybrid models is the combina-
tion of representative and discriminativemodels. This
is easy to understand because the former is employed
for feature refining, and the latter is employed for
classification. There are 28 publications which almost
covered all the brain signals proposed this type of
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hybrid deep learning models. The adopted repres-
entative models are mostly AE or DBN-RBM; at the
meanwhile, the adopted discriminative models are
mostly CNN. Apart from that, there are 12 papers
proposed other hybrid models such as two discrim-
inativemodels. For example, several studies proposed
the combination of CNN and MLP where a CNN
structure is used for extract spatial features and an
MLP is used for classification.

6.3. Application performance
In order to have a closer observation of the recent
advances on deep learning-based brain signal ana-
lysis, we analyze the brain signal acquisition meth-
ods and the deep learning algorithms in terms of
application performance. In some cases, various stud-
ies adopt the same deep architecture working on the
same dataset but results in different performance,
which maybe caused by the different pre-processing
methods and hyper-parameter settings.

To begin with, the most appealing and hot field
is that using brain signal analysis on health care area.
For sleep quality evaluation, the dominate brain sig-
nals are spontaneous EEG which are measured while
the patient is sleeping. The single RNN or CNNmod-
els seem have a good discriminative feature learn-
ing ability and lead to a comprehensive perform-
ance. Generally, most of the deep learning algorithms
can achieve the accuracy of above 85% in the con-
text of multiple sleep stage scenario. Upon this, the
combined hybrid models (e.g. CNN integrates with
LSTM) can only have incremental improvements.

One key method to detect Alzheimer’s Disease
is brain signal analysis by measuring the functions
of specific brain regions. In detail, the diagnosis can
be conducted by spontaneous EEG signals or fMRI
images. For MD EEG, DBN is supposed to outper-
form CNN since the EEG signals contains more tem-
poral instead of spatial information. As for the fMRI
pictures, CNN have great advantages in the grid-
arranged spatial information learning, which makes
it obtain a very comprehensive classification accur-
acy (above 90%). As for epileptic seizure, the dia-
gnosis are generally based on EEG signals. The single
RNN classifier (e.g. LSTM or GRU) seems work bet-
ter than its counterparts due to the excellent temporal
dependency representing ability. Here, the complex
hybrid models indeed outperform the single com-
ponent. For example, [130] achieves a better spe-
cification than [116] on the same dataset because
of combing with RNN. Most of the epileptic seizure
detection models claim a rather high classification
accuracy (above 95%). One possible reason is that
the binary recognition scenario is much easier than
multi-class classification.

The brain signal-controlled smart environment
only appear in a small number of publications.
Among them, the brain signals are collected through
very different methods. This is an emerging but

promising field because it is easy to integrate with
smart home and smart hospital to benefit the indi-
viduals whether healthy or disable. Another advant-
age of brain signals is bridging people’s inside and
outer world by communication techniques. In this
area, lots of investigations are focusing on the VEP
signals because the VEP is obvious and easy to be
detected. One important data source is from the third
BCI competition. In addition, brain signal analysis
can be widely implement in security systems since
the brain signals are invisible and very hard to be
mimicked. The characteristic of high fake-resistance
enables brain signal a raising star in the identific-
ation/authentication in confidential scenarios. The
drawbacks of brain signal-based security systems are
the expensive equipment and inconvenient (e.g. the
subject have to wear an EEG headset to monitor the
brainwaves).

Affective computing has drawnmuch attention in
recent years. The EEG signals have high temporal res-
olution and able to capture the quick-varying emo-
tions. Therefore, almost all the studies are based on
spontaneous EEG signals. The signals are gathered
when the subject is watching video which is supposed
to arouse the subject’s specific emotion. Another
reason for this phenomenon is that there are sev-
eral open-source EEG-based affecting analysis data-
sets (e.g. DEAP and SEED) which greatly promote
the investigation in this area. The EEG-based affective
computing contains two mainstreams. One of them
focuses on developing powerful discriminative classi-
fiers (such as hierarchical CNN) which are designed
to perform feature extraction and classification in the
same step. The other tries to learn the latent fea-
tures through deep representative models (e.g. DBN-
RBM) and then send the learned representations into
a powerful classifier (such as HMM and MLP). It can
be observed that the former models ([88, 201]) seem
outperform the latter methods ([96]) with a small
margin on the SEED dataset.

Drive fatigue detection can be easily integrated
in the platforms such as self-driving vehicles. Nev-
ertheless, there are only a few publications in this
area due to the expensive experimental cost and the
lack of accessible dataset. Moreover, there are a lot
of interesting applications (e.g. guilty knowledge test
and gender detection) have been explored by deep
learning models.

7. Open issues

Although deep learning has lifted the perform-
ance of brain signal systems, technical and usabil-
ity challenges remain. The technical challenges con-
cern the classification ability in complex scenarios,
and the usability challenges refer to limitations in
large scale real-world deployment. In this section, we
introduce these challenges and point out the possible
solutions.
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7.1. Explainable general framework
Until now, we have introduced several types of brain
signals (e.g. spontaneous EEG, ERP, fMRI) and deep
learning models that have been applied for each type.
One promising research direction for deep learning-
based brain signal research is to develop a general
framework that can handle various brain signals
regardless of the number of channels used for sig-
nal collection, the sample dimensions (e.g. 1-D or 2D
sample), and stimulation types (e.g. visual or audio
stimuli), etc The general framework would require
two key capabilities: the attention mechanism and
the ability to capture latent feature. The former guar-
antees the framework can focus on the most valu-
able parts of input signals, and the latter enables the
framework to capture the distinctive and informative
features.

The attention mechanism can be implemented
based on attention scores or by various machine
learning algorithms such as reinforcement learning.
The attention scores can be inferred from the input
data and work as a weight to help the framework
to pay attention to the parts with high attention
scores. Reinforcement learning has shown to be able
to find the most valuable part through a policy search
[85]. CNN is the most suitable structure for cap-
turing features at various levels and ranges. In the
future, CNN could be used as a fundamental fea-
ture learning tool and be integrated with suitable
attention mechanisms to form a general classification
framework.

One additional direction we may consider is how
to interpret the feature representation derived by the
deep neural network, what is the intrinsic relation-
ship between the learned features and the task-related
neural pattern, or neuropathology of mental dis-
orders.More andmore people are realizing that inter-
pretation could be even more important than pre-
diction performance, since we usually just treat deep
learning as a black box.

7.2. Subject-independent classification
Until now, most brain signal classification tasks
focus on person-dependent scenarios, where the
training samples and testing samples are collected
from the identical individual. The future direction is
to realize person-independent classification so that
the testing data will never appear in the training
set. High-performance person-independent classific-
ation is compulsory for the wide application of brain
signals in the real world.

One possible solution to achieving this goal is to
build a personalized model with transfer learning. A
personalized affective model can adopt a transductive
parameter transfer approach to construct individual
classifiers and to learn a regression function that
maps the relationship between data distribution and
classifier parameters [232]. Another potential solu-
tion is mining the subject-independent component

from the input data. The input data can be decom-
posed into two parts: a subject-dependent compon-
ent, which depends on the subject and a subject-
independent component, which is common for all
subjects. A hybrid multi-task model can work on two
tasks simultaneously, one focusing on person iden-
tification and the other on class recognition. A well-
trained and converged model is supposed to extract
the subject-independent features in the class recogni-
tion task.

7.3. Semi-supervised and unsupervised
classification
The performance of deep learning highly depends on
the size of training data, which, however, requires
expensive and time-consuming manual labeling to
collect abundant class labels for a wide range of scen-
arios such as sleep EEG. While supervised learning
requires both observations and labels for the training,
unsupervised learning requires no labels, and semi-
supervised learning only requires partial labels [98].
They are, therefore, more suitable for problems with
little ground truth.

Zhang et al proposed an adversarial variational
embedding framework that combines a VAE++
model (as a high-quality generativemodel) and semi-
supervised GAN (as a posterior distribution learner)
[233] for robust and effective semi-supervised learn-
ing. Jia et al proposed a semi-supervised framework
by leveraging the data distribution of unlabelled data
to prompt the representation learning of labelled
data [98].

Two methods may enhance the unsupervised
learning: one is to employ crowd-sourcing to label the
unlabeled observations; the other is to leverage unsu-
pervised domain adaption learning to align the distri-
bution of source brain signals and the distribution of
target signals with a linear transformation.

7.4. Online implementation
Most of the existing brain signal systems focus on
offline procedure which means that the training and
testing dataset are pre-collected and evaluated offline.
However, in the real-world scenarios, the brain signal
systems are supposed to receive live data stream and
produce classification results in real time, which is still
very challenging.

For EEG signals, in the online system, compared
to the offline procedure, the gathered live signals are
more noisy and unstable due to lots of factors such
as the less-concentrating of the subject [234] and
the inherent destabilization of the equipment (e.g.
fluctuating sampling rate). Through our empirical
experiments, online brain signal systems generally
perform a lower accuracy of 10% than their coun-
terparts. One future scope of online implementation
is to develop a batch of robust algorithms in order
to handle the influence factors and discover the lat-
ent distinctive patterns underlying the noisy live brain
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signals. Aliakbaryhosseinabadi et al [235] imple-
mented an EEG-based online system that achieves
comparable performance, however, this work only
investigates a very high-level target (i.e. human atten-
tion). Discovering the latent invariant representa-
tions through covariance matrices of EEG signals can
help to mitigate the influence of extinct perturba-
tions [236]. Some post-processing methods (e.g. vot-
ing and aggregating) [149, 166] can help to improve
the decoding performance by averaging the results
from multiple continues samples. However, these
methods will inevitably bring higher latency. Thus,
the post-processing requires a trade-off between the
high-accuracy and low-latency.

For fNIRS and fMRI, the online evaluation is
relatively less challenging since they have a rather
low temporal resolution. The online images with less
dynamic can be regarded as static images to some
extent, whichmakes the online system approximating
to the offline system. Furthermore, most fMRI and
MEG signals are used to evaluate the user’s neurolo-
gical status (e.g. detect the effects of tumor) which
does not require an instantaneous response. Thus,
they have less demand for a real-time monitoring
system.

7.5. Hardware portability
Poor portability of hardware has been preventing
brain signals from wide application in the real world.
In most scenarios, users would like to use small, com-
fortable, or even wearable brain signal hardware to
collect brain signals and to control appliances and
assistant robots.

Currently, there are three types of EEG collec-
tion equipment: the unportable, the portable head-
set, and ear-EEG sensors. The unportable equipment
has high sampling frequency, channel numbers, and
signal quality but is expensive. It is suitable for phys-
ical examination in a hospital. The portable headsets
(e.g. Neurosky, Emotiv EPOC) have 1–14 channels
and 128–256 sampling rate but has inaccuracy read-
ings and cause discomfort after long-time use. The
ear-EEG sensors, which are attached to the outer eat,
have gained increasing attention recently but remain
mostly at the laboratory stage [237]. The ear-EEG
sensors contain a series of electrodes which are placed
in each ear canal and concha [238]. The EEGrids, to
the best of our knowledge, is the only commercial
ear-EEG. It has multi-channel sensor arrays placed
around the ear using an adhesive 26 and is even more
expensive. A promising future direction is to improve
the usability by developing a cheaper (e.g. lower than
200$) andmore comfortable (e.g. can last longer than
3 h without feeling uncomfortable) wireless ear-EEG
equipment.

26 http://ceegrid.com/home/concept/.

8. Conclusion

In this paper, we thoroughly summarize the recent
advances in deep learning models for non-invasive
brain signal analysis. Compared with traditional
machine learning methods, deep learning not only
enables to learn high-level features automatically
from brain signals but also have less dependency on
domain knowledge. We organize brain signals and
dominant deep learning models, followed by dis-
cussing state-of-the-art deep learning techniques for
brain signals. Moreover, we provide guidelines to
help researchers to find the suitable deep learning
algorithms for each category of brain signals. Finally,
we overview deep learning-based brain signal applic-
ations and point out the open challenges and future
directions.

Appendix A. Non-invasive brain signals

Here, we present a detailed introduction of brain sig-
nals as shown in figure 2. Non-invasive brain imaging
technique can be collected using electrical, magnetic
or metabolic methods, which mainly include EEG,
fNIRS, fMRI, and MEG.

A.1. Electroencephalography (EEG)
EEG is the most commonly used non-invasive tech-
nique for measuring brain activities. EEG monitors
the voltage fluctuations generated by an electrical cur-
rent within human neurons. Electrodes placed on the
scalp measure the amplitude of EEG signals. EEG sig-
nals have a low spatial resolution due to the effect
of volume conduction which refers to the complex
effects of measuring electrical potentials a distance
from the source generators [239, 240]. EEG electrode
locations generally follow the international 10–20 sys-
tem [241]. The specific placement of electrodes is
presented in figure 5 [10]. The EEG signals are collec-
ted while the subject is undertaking imagination task.
Each line represents the signal stream collected from a
single EEG electrode (also called ‘channel‘) over time.

The temporal resolution of EEG signals is much
better than the spatial resolution. The ionic current
changes rapidly, which offers a temporal resolution
higher than 1000 Hz. The SNR of EEG is gener-
ally very poor due to both objective and subject-
ive factors. Objective factors include environmental
noises, the obstruction of the skull and other tissues
between cortex and scalp, and different stimulations.
Subjective factors contain the subject’s mental stage,
fatigue status, the variance among different subjects,
and so on.

EEG recording equipment can be installed in a
cap-like headset. The EEG headset can be mounted
on the user’s head to gather signals. Compared to
other equipment used to measure brain signals, EEG
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headsets are portable and more accessible for most
applications.

The EEG signals collected from any typical EEG
hardware have several non-overlapping frequency
bands (Delta, Theta, Alpha, Beta, and Gamma) based
on the strong intra-band correlation with a dis-
tinct behavioral state [10]. Each EEG pattern con-
tains signals associated with particular brain inform-
ation. Table A1 shows EEG frequency patterns and
the corresponding characteristics. Here, the degree of
awareness denotes the perception of individuals when
presented with external stimuli.

Compared to other signals (e.g. fMRI, fNIRS,
MEG), EEG has several important advantages: (1)
the hardware has higher portability with much lower
price; (2) the temporal resolution is very high (milli-
seconds level). Amongother non-invasive techniques,
only MEG has the same level of temporal resolution;
(3) EEG is relatively tolerant of subject movement
and artifacts, which can be minimized by existing
signal processing methods; (4) the subject does not
need to be exposed to high-intensity (>1 T) mag-
netic fields, therefore, EEG can serve subjects that
have metal implants in their body (such as metal-
containing pacemakers).

As the most commonly used signals, there are a
large number of sub-classes of EEG signals. In this
section, we present a methodical introduction of EEG
sub-class signals. As shown in figure 2, we divided
EEG signals into spontaneous EEG and EPs. EPs can
be split into EVP and steady-state EPs based on the
frequency of the external stimuli [7]. Each poten-
tial contains visual-, auditory-, and somatosensory-
potentials based on the external stimuli types. The
dashed quadrilaterals in figure 2, such as Intracor-
tical, SEP, SSAEP, SSSEP, and rapid serial auditory
presentation (RSAP), are not included in this survey
because there are very few existing studies working on
themwith deep learning algorithms.We list these sig-
nals for systematic completeness.

A.1.1. Spontaneous EEG
Typically, when we talk about the term ‘EEG,’ we
refer to spontaneous EEG which measures the brain
signals under a specific state without external stim-
ulation [243–245]. In particular, spontaneous EEG
includes the EEG signals while the individual is sleep-
ing, undertaking amental task (e.g. counting), suffer-
ing brain disorders, undertakingmotor imagery tasks,
in a certain emotion, etc

The EEG signals recorded while a user stares at
a color/shape/image belong to this category. While
the subject is gazing at a specific image, the visual
stimuli are steady without any change. This scen-
ario differs from the visual stimuli in EP, where the
visual stimuli are changing at a specific frequency.
Thus, we regard the image stimulation as a particular
state and regard it as spontaneous EEG. Spontaneous
EEG-based systems are challenging to train, due

to the lower SNR and the larger variation across
subjects [35].

According to the gathering scenarios, the spon-
taneous EEG contains several subordinates: sleeping,
motor imagery, emotional, mental disease and others.

A.1.2. Evoked potential (EP)
EPs or evoked responses refers to the EEG signals
which are evoked by an external stimulus instead of
spontaneously. An EP is time-locked to the external
stimulus while the aforementioned spontaneous EEG
is non-time-locked. In contrast to spontaneous EEG,
EP generally has higher amplitude and lower fre-
quency. As a result, the EP signals are more robust
across subjects.

According to the stimulation method, there exist
two categories of EP: the ERP and the SSEP. ERP
records the EEG signals in response to an isolated dis-
crete stimulus event (or event change). To achieve this
isolation, stimuli in an ERP experiment are typically
separated from each other by a long inter-stimulus
interval, allowing for the estimation of a stimulus-
independent baseline reference [248]. The stimuli
frequency of ERP is generally lower than 2 Hz. In
contrast, SSEP is generated in response to a periodic
stimulus at a fixed rate. The stimuli frequency of SSEP
generally ranges within 3.5–75 Hz.

Event-related potential (ERP). There are three kinds
of EPs in extensive research and clinical use: VEPs;
AEPs; and somatosensory evoked potentials (SEPs)
[28]. TheVEP signals aremainly on the occipital lobe,
and the highest signal amplitudes are collected at the
Calcarine sulcus.

(1) Visual evoked potentials (VEP). VEPs are a
specific category of ERP which is caused by visual
stimulus (e.g. an alternating checkerboard pattern on
a computer screen). VEP signals are hiddenwithin the
normal spontaneous EEG. To separate VEP signals
from the background EEG readings, repetitive stim-
ulation and time-locked signal-averaging techniques
are generally employed.

RSVP [249] can be regarded as one kind of VEP.
An RSVP diagram is commonly used to examine the
temporal characteristics of attention. The subject is
required to stare at a screen where a series of items
(e.g. images) are presented one-by-one. There is a
specific item (called the target) separates from the
rest of the other items (called distracters). The sub-
ject knows which is the target before the RSVP exper-
iment. For instance, the distracters can be a color
change or letters among numbers. RSVP contains
a static mode (the items appear on the screen and
then disappear without moving) and a moving mode
(the items appear on the screen, move to another
place, and finally disappear). Nowadays, brain sig-
nal research mainly focuses on the static mode RSVP.
Usually, the frequency of RSVP is 10 Hz which means
that each item will stay on the screen for 0.1 s.
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(a) EEG electrode locations (b) EEG signals

Figure 5. EEG electrode locations on scalp (10–20 system) [242] and the gathered EEG signals [10]. The electrodes’ names are
marked by their position: Fp (pre-frontal), F (frontal), T (temporal), P (parietal), O (occipital), and C (central).

Table 7. EEG patterns and corresponding characters. Awareness Degree denotes the degree of being aware of an external world. The
awareness degree mentioned here is mainly defined in physiology instead of psychology.

Patterns
Frequency
(Hz) Amplitude Brain state

Awareness
degree

Produced
location

Delta 0.5–4 Higher Deep sleep pattern Lower Frontally and posteriorly
Theta 4–8 High Light sleep pattern Low Entorhinal cortex,

hippocampus
Alpha 8–12 Medium Closing the eyes, relax state Intermediate Posterior regions of

head
Beta 12–30 Low Active thinking, focus, high

alert, anxious
High Most evident frontally,

motor areas
Gamma 30–100 Lower During cross-modal

sensory processing
Higher Somatosensory, auditory

cortices

Figure 6. P300 waves [246] and visual P300 speller [247].

(2) Auditory evoked potentials (AEPs). AEPs are
a specific subclass of ERP in which responses to
auditory (sound) stimuli are recorded. AEP is mainly
recorded from the scalp but originates at the brain-
stem or cortex. The most common AEP measured is
the auditory brainstem response which is generally
employed to test the hearing ability of newborns and
infants. In the brain signal area, AEP is mainly used in
clinical tests for its accuracy and reliability in detect-
ing unilateral loss [250]. Similar to RSVP, RSAP refers
to the experiments with rapid serial presentation of
sound stimuli. The task for the subject is to recognize
the target audio among the distracters.

(3) Somatosensory evoked potentials (SEPs).
Generally, SEPs is abbreviated as SSEP or SEP. In

this paper, we choose SEP as the abbreviation in case
of the conflict with SSEPs. SEP are another com-
monly used subcategory of ERP which is elicited by
electrical stimulation of the peripheral nerves. SEP
signals conclude a series of amplitude deflection that
can be elicited by virtually any sensory stimuli.

P300. P300 (also called P3) is an important compon-
ent in ERP [251]. Here we introduce P300 signal sep-
arately since it is widely-used in brain signal analysis.
Figure 6(a) shows the ERP signal fluctuation in the
500 ms after the stimuli onset. The waveform mainly
concludes five components, P1, N1, P2, N2, and P3.
The capital character P/N represents positive/negative
electrical potentials. The following number refers to
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the occurrence time of the specific potential. Thus,
P300 denotes the positive potential of ERP waveform
at approximately 300 ms after the presented stimuli.
Compared to other components, P300 has the highest
amplitude and is easiest to detect. Thus, a large num-
ber of brain signal studies focus on P300 analysis.
P300 is more of an informative feature instead of a
type of brain signal (e.g. VEP). Therefore, we do no
list P300 in figure 2. P300 can be analyzed in most of
ERP signals such as VEP, AEP, SEP.

In practice, P300 can be elicited by rare, task-
relevant events in an ‘oddball’ paradigm (e.g. P300
speaker). In the oddball paradigm, the subject
receives a series of stimuli where low-probability
target items are mixed with high-probability non-
target items. Visual and auditory stimuli are the most
commonly used in the oddball paradigm. Figure 6(b)
shows an example of visual-based P300 speller which
enables the subject the spell letters/numbers directly
through brain signals [247]. The 26 letters of the
alphabet and the Arabic numbers are displayed on a
computer screen which serves as the keyboard. The
subject focuses attention successively on the char-
acters they wish to spell. The computer detects the
chosen character online in real time. This detection
is achieved by repeatedly flashing rows and columns
of the matrix. When the elements containing the
selected characters are flashing, a P300 fluctuation
is elicited. In the 6× 6 matrix screen, the rows and
columns flash in mixed random order. The flash dur-
ation and interval among adjacent flashes are gener-
ally set as 100 ms [252]. The columns and rows flash
separately. First, the columns flash six times with each
column flashing one time. Second, the rows will flash
for six times. After that, this paradigm repeats for
several times (e.g. N times). The P300 signals of the
total 12 N flash will be analyzed to output a single
outcome (i.e. one letter/number).

Steady state evoked potentials (SSEP). SSEP is
another subcategory of EPs, which are periodic cor-
tical responses evoked by certain repetitive stimuli
with a constant frequency. It has been demon-
strated that the brain oscillations generally main-
tain a steady level over time while the potentials
are evoked by steady state stimuli (e.g. a flicker-
ing light with fixed frequency). Technically, SSEP
is defined as a form of response to repetitive sens-
ory stimulation in which the constituent frequency
components of the response remain constant over
time in both amplitude and phase [37]. Depend-
ing on the type of stimuli, SSEP divides into three
subcategories: steady-state visually evoked potentials
(SSVEPs), steady-state auditory evoked potentials
(SSAEPs), and steady-state somatosensory evoked
potentials (SSSEPs). In the brain signal area, most
studies are focused on visual evoked steady poten-
tials, and only rarely do papers focus on auditory
and somatosensory stimuli. Therefore, in this survey,

we mainly introduce SSVEP rather than SSAEP
and SSSEP.

Commonly used visual-related potentials. VEPs are
the most common used potentials. Therefore, it
is essential to distinguish the three different VEP
paradigms: VEP, RSVP, SSVEP. Here, we theoretic-
ally introduce the characteristics of each paradigm
and then give three demonstration videos to provide
a better understanding. First, the frequencies are dif-
ferent: the frequency of VEP is less than 2 Hz while
the frequency of RSVP is around 10 Hz, and the fre-
quency of SSVEP ranges from 3.5 to 75 Hz. Second,
they have various presentation protocols. In the VEP
paradigm, different visual patterns will be presented
on the screen to check the user’s brain signals changes.
For instance, in this video27, the image pattern is full
of the screen and changes dramatically. In RSVP dia-
gram, several items will be presented on a screen one-
by-one. All the items are shown in the same place and
share the same frequency. For example, the video28

shows an RSVP scenario which is called speed read-
ing. In SSVEP paradigm, several items will be presen-
ted on a screen at the same time while the items are
shown at variant positions with different frequencies.
For example, in this demonstration video29, there are
four circles distributed on the up, down, left, and
right sides of a screen and the frequency of each item
differs from each other.

A.2. Functional near-infrared spectroscopy (fNIRS)
fNIRS is a non-invasive functional neuro-imaging
technology using NIR light [38]. In specific, fNIRS
employs NIR light to measure the aggregation degree
of oxygenated Hb and deoxygenated-hemoglobin
(deoxy-Hb) because Hb and deoxy-Hb have higher
absorbence of light than other head components such
as the skull and scalp. fNIRS relies on blood-oxygen-
level-dependent (BOLD) response or hemodynamic
response to form a functional neuro-image. The
BOLD response can detect the oxygenated or deoxy-
genated blood level in the brain blood. The relative
levels reflect the blood flow and neural activation,
where increased blood flow implies a higher meta-
bolic demand caused by active neurons. For example,
when the user is concentrating on a mental task, the
prefrontal cortex neurons will be activated, and the
BOLD response in the prefrontal cortex area will be
stronger [200].

Single or multiple emitter-detector pairs meas-
ure the Hb and deoxy-Hb: the emitter transmits NIR
light through the blood vessels to the detector. Most
existing studies use fNIRS technologies to measure
the status of prefrontal and motor cortex. The former
response to mental tasks and music/image imagery

27 https://www.youtube.com/watch?v= iUW_l5YAEEM.
28 https://www.youtube.com/watch?v= 5yddeRrd0hA&t= 36 s.
29 https://www.youtube.com/watch?v= t96rl1SFHlI.
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while the latter is a response to motor-related tasks
(e.g. motor imagery). The monitored Hb and deoxy-
Hb change slowly since the blood speed varies in a rel-
atively slow ratio compared to electrical signals. Tem-
poral resolution refers to the smallest time of neural
activity reliably separated by the signal. The fNIRS has
lower temporal resolution compared with electrical
or magnetic signals. The spatial resolution depends
on the number of emitter-detector pairs. In current
studies, three emitters and eight detectors would suf-
fice for adequately acquiring the prefrontal cortex sig-
nals; and six emitters and six detectors would suffice
for covering the motor cortex area [29]. fNIRS has a
drawback in that it cannot be used tomeasure cortical
activity occurring deeper than 4 cm in the brain, due
to the limitations in light emitter power and spatial
resolution.

A.3. Functional magnetic resonance imaging
(fMRI)
fMRI monitors brain activities by detecting changes
associated with blood flow in brain areas [14]. Sim-
ilar to fNIRS, fMRI relies on the BOLD response. The
main differences between fNIRS and fMRI are as fol-
lows [24]. First, as the name implies, fMRI measures
BOLD response through magnetic instead of optical
methods. Hb differs in how it responds to magnetic
fields, depending on whether it has a bound oxygen
molecule. The magnetic fields are more sensitive to
and are more easily distorted by deoxy-Hb than Hb
molecules. Second, the magnetic fields have higher
penetration than NIR light, which gives fMRI greater
ability to capture information from deep parts of the
brain than fNIRS. Third, fMRI has a higher spatial
resolution than fNIRS since the latter’s spatial resol-
ution is limited by the emitter-detector pairs. How-
ever, the temporal resolutions of fMRI and fNIRS are
at an equal level because they both constrained by the
blood flow speed.

fMRI has several flaws compared to fNIRS: (1)
fMRI requires an expensive scanner to generate
magnetic fields; (2) the scanner is heavy and has
poor portability. In order to measure the signal
of interest, CNR (contrast-to-noise ratio) has been
investigated to measure the image quality of fMRI
because researchers are more interested in the con-
trast between images rather than the raw images.
So for fMRI data, using the CNR of the time series
instead of (t)SNR is more preferred because CNR
compares a measure of the activation fluctuations to
the noise [253].

A.4. Magnetoencephalography (MEG)
MEG is a functional neuroimaging technique for
mapping brain activity by recording magnetic fields
produced by electrical currents occurring natur-
ally in the brain, using very sensitive magneto-
meters [254]. The ionic currents of active neur-
ons will create weak magnetic fields. The generated

magnetic fields can be measured by magnetomet-
ers like SQUIDs (superconducting quantum interfer-
ence devices). However, producing a detectable mag-
netic field requires massive (e.g. 50 000) active neur-
ons with similar orientation. The source of the mag-
netic field measured by MEG is the pyramidal cells
which are perpendicular to the cortex surface.

MEG has a relatively low spatial resolution since
the signal quality highly depends on the measure-
ment factors (e.g. brain area, neuron orientations,
neuron depth). However, MEG can provide very high
temporal resolution (≥1000 Hz) since MEG directly
monitors the brain activity from the neuron level,
which is in the same level of intracortical signals.
MEG equipment is expensive and not portable which
limits its real-world deployment.

Appendix B. Basic deep learning in brain
signal analysis

In this part, we will give relative detail introduction
of various deep learning models for the reason that
a part of the potential readers who are from non-
computer area (e.g. biomedical) are not familiar to
deep learning.

For simplification, we first define an operation
T (·) as

T (x) = w ∗ x+ b (1)

T (x,x ′) = w ∗ x+ b+w ′ ∗ x ′ + b ′ (2)

where x and x ′ denote two variables while w, w ′, b,
and b ′ denote the corresponding weights and basis.

B.1. Discriminative deep learning models
Since the main task of brain signal analysis is brain
signal recognition, the discriminative deep learn-
ing models are the most popular and powerful
algorithms. Suppose we have a dataset of brain sig-
nal samples {X,Y} where X denotes the set of brain
signal observations and Y denotes the set of sample
ground truth (i.e. labels). Suppose an specific sample-
label pair {x ∈ RN,y ∈ RM} where N and M denote
the dimension of observations and the number of
sample categories, respectively. The aim of discrim-
inative deep learning models is to learn a function
with the mapping: x→ y. In short, the discrimin-
ative models receive the input data and output the
corresponding category or label. All the discriminat-
ive models introduced in this section are supervised
learning techniques which require the information of
both the observations and the ground truth.

B.1.1. Multi-layer perceptron (MLP)
The most basic neural network is fully-connected
neural networks (figure 7(a))which only contains one
hidden layer. The input layer receives the raw data or
extracted features of brain signals while the output
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layer shows the classification results. The term ‘fully-
connected’ denotes each node in a specific layer is
connected with all the nodes in the previous and next
layer. This network is too ‘shallow‘ and generally not
regarded as ‘deep‘ neural networks.

MLP is the simplest and the most basic deep
learning model. The key difference betweenMLP and
the fully-connected neural network is that MLP has
more than one hidden layers. All the nodes are fully-
connected with the nodes of the adjacent layers but
without connection with the other nodes of the same
layer. MLP includes multiple hidden layers. As shown
in figure 7(b), we take a structurewith twohidden lay-
ers as an example to describe the data flow in MLP.

The input layer receives the observation x and
feeds forward to the first hidden layer,

xh1 = σ(T (x)) (3)

where xh1 denotes the data flow in the first hidden
layer and σ represents the non-linear activation func-
tion. There are several commonly used activation
functions such as sigmoid/Logistic, Tanh, ReLU, we
choose sigmoid activation function as an example in
this section. Then, the data flow to the second hidden
layer and the output layer,

xh2 = σ(T (xh1)) (4)

y ′ = σ(T (xh2)) (5)

where y ′ denotes the predict results in one-hot
format. The error (i.e. loss) could be calculated based
on the distance between y ′ and the ground truth y.
For instance, the Euclidean-distance based error can
be calculated by

error= ∥y ′ − y∥2 (6)

where ∥·∥2 denotes the Euclidean norm. Afterward,
the error will be back-propagated and optimized
by a suitable optimizer. The optimizer will adjust
all the weights and basis in the model until the
error converges. The most widely used loss functions
includes cross-entropy, negative log likelihood, mean
square estimation, etc. The most widely used optim-
izers include Adaptive moment estimation (Adam),
stochastic gradient descent, Adagrad (Adaptive sub-
gradient method), etc

Several terms may be easily confused with each
other: artificial neural network (ANN), deep neural
network (DNN), andMLP. These terms have no strict
difference and often mixed in literature and com-
monly used as synonyms. Generally, ANN and DNN
can be used to describe deep learning models overall,
including not only fully-connected networks but also
other networks (e.g. recurrent, convolutional net-
works), but MLP can only refer to fully-connected
network. Additionally, ANN contains all the models

of neural networks, can be either shallow (one hidden
layer) or deep (multiple hidden layers) while DNN
does not cover shallow neural network [30, 31].

B.1.2. Recurrent neural networks (RNNs)
RNN is a specific subclass of discriminative deep
learning model which are designed to capture
temporal dependencies among input data [41].
Figure 8(a) describes the activity of a specific RNN
node in the time domain. At each time ranges from
[1, t+ 1], the node receives an input I (the subscript
represents the specific time) and a hidden state c from
the previous time (except the first time). For instance,
at time t it receives not only the input It but also the
hidden state of the previous node ct− 1. The hidden
state can be regarded as the ‘memory’ of the nodes
which can help the RNN ‘remember’ the historical
input.

Next, we will report two typical RNN archi-
tectures which have attracted much attention and
achieved great success: long short-term memory
(LSTM) and gated recurrent units (GRUs). They both
follow the basic principles of RNN, and we will pay
our attention to the complicated internal structures
in each node. Since the structure is much more com-
plicated than general neural nodes, we call it a ‘cell.’
Cells in RNN are equivalent to nodes in MLP.

Long short-term memory (LSTM). Figure 9(a)
shows the structure of a single LSTM cell at time t
[255]. The LSTM cell has three inputs (It , Ot− 1, and
ct− 1) and two outputs (ct and Ot). The operation is
as follows:

It,Ot−1, ct−1 → ct,Ot. (7)

It denotes the input value at time t, Ot− 1 denotes
the output at the previous time (i.e. time t− 1), and
ct− 1 denotes the hidden state at the previous time.
ct and Ot separately denote the hidden state and the
output at time t. Therefore, we can observe that the
output Ot at time t not only related to the input It
but also related to the information at the previous
time. In this way, LSTM is empowered to remem-
ber the important information in the time domain.
Moreover, the essential idea of LSTM is to control the
memory of specific information. For this aim, LSTM
cell adopts four gates: the input gate, forget gate, out-
put gate, and input modulation gate. Each gate is a
weight to control how much information can flow
through this gate. For example, if the weight of the
forget gate is zero, the LSTM cell would remember all
the information passed from the previous time t− 1;
if the weight is one, the LSTM cell would remem-
ber nothing. The corresponding activation function
determines the weight. The detailed data flow as fol-
lows:

f= σ(T (It,Ot−1)) (8)

i= σ(T (It,Ot−1)) (9)
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Figure 7. Illustration of standard neural network and multilayer perceptron. (a) The basic structure of the fully-connected neural
network. The input layer receives the raw data or extracted features of brain signals while the output layer shows the classification
results. The term ‘fully-connected’ denotes each node in a specific layer is connected with all the nodes in the previous and next
layer. (b) MLP could have multiple hidden layers, the more, the deeper. This is an example of MLP with two hidden layers, which
is the simplest MLP model.

o= σ(T (It,Ot−1)) (10)

m= tanh(T (It,Ot−1)) (11)

ct = f ∗ ct−1 + i ∗m (12)

ht = o ∗ tanh(ct) (13)

where i, f, o andm represent the input gate, forget gate,
output gate and input modulation gate, respectively.

Gated recurrent units (GRUs). Another widely used
RNN architecture is GRU [256]. Similar to LSTM,
GRU attempts to exploit the information from the
past. GRU does not require hidden states, however, it
receives temporal information only from the output
of time t− 1. Thus, as shown in figure 9(b), GRU has
two inputs (It and Ot− 1) and one output (Ot). The
mapping can be described as:

It,Ot−1 → Ot. (14)

GRU contains two gates: reset gate r and update gate
z. The former decides how to combine the input with
previous memory. The latter decides how much of
previous memory to keep around, which is similar to
the forget gate of LSTM. The data flow as follows:

z= σ(T (It,Ot−1)) (15)

r= σ(T (It,Ot−1)) (16)

Ōt = tanh(T (It, r ∗Ot−1)) (17)

Ot = (1− z) ∗Ot−1 + z ∗ Ōt. (18)

It can be observed that there is an intermediate vari-
able Ōt which is similar to the hidden state of LSTM.
However, Ōt onlyworks on this time point and unable
to pass to the next time point.

We here give a brief comparison between LSTM
and GRU since they are very similar. First, LSTM and

GRU have comparable performance as studied by lit-
erature. For any specific task, it is recommended to
try both of them to determine which provides better
performance. Second,GRU is lightweight since it only
has two gates andwithout the hidden state. Therefore,
GRU is faster to train and requires few data for gen-
eralization. Third, in contrast, LSTM generally works
better if the training dataset is big enough. The reason
is that LSTM has better non-linearity than GRU since
LSTM has two more control gates (input modulation
gate and forget gate). As a result, LSTM, compared
with GRU, is more powerful to discover the latent dis-
tinct information from large-level training dataset.

B.1.3. Convolutional neural networks (CNNs)
CNNs is one of the most popular deep learning
models specialized in spatial information exploration
[42]. This section will briefly introduce the working
mechanism of CNN. CNN is widely used to discover
the latent spatial information in applications such as
image recognition, ubiquitous, and object searching
due to their salient features such as regularized struc-
ture, good spatial locality, and translation invariance.
In the area of brain signal, specifically, CNN is sup-
posed to capture the distinctive dependencies among
the patterns associated with different brain signals.

We present a standardCNNarchitecture as shown
in figure 8(b). The CNN contains one input layer, two
convolutional layers with each followed by a pooling
layer, one fully-connected layer, and one output layer.
The square patch in each layer shows the processing
progress of a specific batch of input values. The key to
the CNN is to reduce the input data into a formwhich
is easier to recognize, with as little information loss
as possible. CNN has three stacked layers: the con-
volutional Layer, pooling Layer, and fully-connected
Layer.

The convolutional layer is the core block of CNN,
which contains a set of filters to convolve the input
data followed by a non-linear transformation to
extract the geographical features. In the deep learn-
ing implementation, there are several key hyper-
parameters should be set in the convolutional layer,
like the number of filters, the size of each filter, etc
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Figure 8. Illustration of RNN and CNN models. (a) The recurrent procedure of the RNN model. This procedure describes the
recurrent procedure of a specific node in time range [1, t+ 1]. The node at time t receives two inputs variables (It denotes the
input at time t and ct− 1 denotes the hidden state at time t− 1) and exports two variables (the output Ot and the hidden state ct
at time t). (b) The paradigm of CNN model which includes two convolutional layers, two pooling layers, and one fully-connected
layer.

Figure 9. Illustration of detailed LSTM and GRU cell structures. (a) LSTM cell receives three inputs (It denotes the input at time t,
Ot− 1 denotes the output of previous time, and ct− 1 denotes the hidden state of the previous time) and exports two outputs (the
output of this time Ot and the hidden state of this time ct). LSTM cell contains four gates in order to control the data flow, which
are the input gate, output gate, forget gate, and input modulation gate. (b) GRU cell receives two inputs (the input of this time It
and the output of the previous time Ot− 1) and exports its output Ot . GRU cell only contains two gates which are the reset gate
and the update gate. Unlike the hidden state ct in LSTM cell, there is no transmittable hidden state in GRU cell except one
intermediate variable Ōt.

The pooling layer generally follows the convolutional
layer. The pooling layer aims to reduce the spatial size
of the features progressively. In this way, it can help
to decrease the number of parameters (e.g. weights
and basis) and the computing burden. There are
three kinds of pooling operation: max, min, average.
Take max pooling for example. The pooling opera-
tion outputs the maximum value of the pooling area
as a result. The hyper-parameters in the pooling layer
includes the pooling operation, the size of the pooling
area, the strides, etc. In the fully-connected layer, as in
the basic neural network, the nodes have full connec-
tions to all activations in the previous layer.

The CNN is the most popular deep learning
model in brain signal research, which can be used
to exploit the latent spatial dependencies among the
input brain signals like fMRI image, spontaneous
EEG, and so on. More details will be reported in
section 4.

B.2. Representative deep learning models
The term of representative deep learning refers to use
DNN for representation learning. It aims to learn rep-
resentations of input data that makes it easier to per-
form a downstream task (e.g. classification, genera-
tion, and clustering) [257].

The essential blocks of representative deep learn-
ingmodels are AEs, andRBMs30. DBNs are composed
of AE or RBM. The representative models includ-
ing AE, RBM31, and DBN, are unsupervised learn-
ing methods. Thus, they can learn the representative
features from only the input observations x without
the ground truth y. In short, representative models
receive the input data and output a dense represent-
ation of the data. There are various definitions in
different studies for several models (such as DBN,
Deep RBM, and Deep AE), in this survey, we choose
the most understandable definitions and will present
them in detail in this section.

B.2.1. Autoencoder (AE)
As shown in figure 10(a), A AE is a neural network
that has three layers: the input layer, the hidden layer,
and the output layer [43]. It differs from the stand-
ard neural network, in that the AE is trained to recon-
struct its inputs, which forces the hidden layer to try
to learn good representations of the inputs.

30 AE and RBM are generally regarded as kind of deep learning
although they only have three and two layers, respectively.
31 We regard AE, and RBMas representative methods as most
researches in brain researches adopt them for feature representa-
tion.
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Figure 10. Illustration of several standard representative deep learning models. (a) A basic autoencoder contains one hidden layer.
The process from the input layer to the hidden layer is an encoder while the process from the hidden layer to the output layer is a
decoder. (b) Restricted Boltzmann Machine, the encoder and the decoder share the same transformation weights. The input layer
and the output layer are merged into the visible layer. (c) Deep AE with hidden layers. Generally, the number of hidden layers is
odd, and the middle layer is the learned representative features. (d) Deep RBM has one visible layer and multiple hidden layers,
the last layer is the encoded representation.

The structure of AE contains two blocks. The first
block is called the encoder, which embeds the obser-
vation to a latent representation (also called ‘code’),

xh = σ(T (x)) (19)

where xh represents the hidden layer. The second
block is called the decoder, which decodes the repres-
entation into the original space,

y ′ = σ(T (xh)) (20)

where y ′ represents the output.
AE forces y ′ to be equal to the input x and calcu-

lates the error based on the distance between them.
Thus, AE can compute the loss function only by x
without the ground truth y

error= ∥y ′ − x∥2 . (21)

Compared to equation (6), this equation does not
involve the variable y because it takes the input x as
the ground truth. This is why AE is able to perform
unsupervised learning.

Naturally, one variant of AE is deep-AE (D-AE)
which has more than one hidden layer. We present
the structure of D-AE with three hidden layers in
figure 10(c). From the figure, we can observe that
there is one more hidden layer in both the encoder
and the decoder. The symmetrical structure ensures
the smoothness of encoding and decoding proced-
ure. Thus, D-AE generally has an odd number of hid-
den layers (e.g. 2n+ 1) where the first n layers belong
to the encoder, the (n+ 1)th layer works as the code

which belongs to both encoder and decoder, and the
last n layers belong to the decoder. The data flow of
D-AE (figure 10(c)) can be represented as

xh1 = σ(T (x)) (22)

xh2 = σ(T (xh2)) (23)

where xh2 denotes themedian hidden layer (the code).
Then decode the hidden layer, we can get

xh3 = σ(T (xh2)) (24)

y ′ = σ(T (xh3)). (25)

It is almost the same as AE except that D-AE has
more hidden layers. Apart from D-AE, AE has many
other variants like denoising AE, sparse AE, con-
tractive AE, etc Here we only introduce the D-AE
because it is easily confused with the AE-based DBN.
The key difference between them will be provided in
section B.2.3.

The core idea of AE and its variants is simple,
which is that condensing the input data x into a
code xh (generally the code layer has lower dimen-
sion) and then reconstructing the data based on
the code. If the reconstructed y ′ can approxim-
ate to the input data x, it can be demonstrated
that the condensed code xh carries enough inform-
ation about x, thus, we can regard xh as a rep-
resentation of the input data for future operation
(e.g. classification).
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B.2.2. Restricted Boltzmann machine (RBM)
RBM is a stochastic ANN that can learn a probabil-
ity distribution over its set of inputs [44]. It contains
two layers including one visible layer (input layer) and
one hidden layer, as shown in figure 10(b). From the
figure, we can see that the connection lines between
the two layers are bidirectional. RBM is a variant
of Boltzmann Machine with stronger restriction of
being without intra-layer connections. In a general
Boltzmann machine, the nodes in the same hidden
layer will connect. Similar to AE, the procedure of
RBM also includes two steps. The first step condenses
the input data from the original space to the hidden
layer in a latent space. After that, the hidden layer
is used to reconstruct the input data in an identical
way. Compared to AE, RBM has a stronger constraint
which is that the encoder weights and the decoder
weights should be equal. We have

xh = σ(T (x)) (26)

x ′ = σ(T (xh)). (27)

In the above two equations, theweights ofT (·) are the
same. Then, the error for training can be calculated by

error= ∥x ′ − x∥2 . (28)

We can observe from the figure 10(d) that the Deep-
RBM (D-RBM) is an RBM with multiple hidden lay-
ers. The input data from the visible layer firstly flow
to the first hidden layer and then the second hidden
layer. Then, the code will flow backward into the vis-
ible layer for reconstruction.

B.2.3. Deep belief networks (DBN)
A DBN is a stack of simple networks, such as AEs or
RBMs [258]. Thus, we divided DBN into DBN-AE
(also called stacked AE) which is composed of AE and
DBN-RBM (also called stacked RBM) which is com-
posed of RBM.

As shown in figure 11(a), the DBN-AE contains
two AE structures while the hidden layer of the first
AE works as the input layer of the second AE. This
diagram has two stages. In the first stage, the input
data feed into the first AE follows the rules introduced
in section B.2.1. The reconstruction error is calcu-
lated and back propagated to adjust the correspond-
ing weights and basis. This iteration continues until
the AE converges. We get the mapping,

x1 → xh1. (29)

Then, we move on to the second stage where the
learned representative code in the hidden layer xh1

will be used as the input layer of the second AE,
which is

x2 = xh1 (30)

and then, after the second AE converges, we have

x2 → xh2 (31)

where xh2 denotes the hidden layer of the second AE,
meanwhile, it is the final outcome of the DBN-AE.

The core idea of AE is that of learning a represent-
ative code with lower dimensionality but containing
most information of the input data. The idea behind
DBN-AE is to learn a more representative and purer
code.

Similarly, the DBN-RBM is composed of several
single RBM structures. Figure 11(b) shows a DBN
with two RBMs where the hidden layer of the first
RBM is used as the visible layer of the second RBM.

Compare the DBN-RBM (figure 11(b)) and
D-RBM (figure 10(d)). They almost have the same
architecture. Moreover, DBN-AE (figure 11(a)) and
D-AE (figure 10(c)) have similar architecture. The
most important difference between the DBN and the
deep AE/RBM is that the former is trained greedily
while the latter is trained jointly. In particular, for
the DBN, the first AE/RBM is trained first, after it
converges, the second AE/RBM is trained [44]. For
the deep AE/RBM, jointly training means that the
whole structure is trained together, no matter how
layers it has.

B.3. Generative deep learning models
Generative deep learning models are mainly used to
generate training samples or data augmentation. In
other words, generative deep learning models play a
supporting role in the brain signal field to enhance
the training data quality and quantity. After the
data augmentation, the discriminative models will be
employed for the classification. This procedure is cre-
ated to improve the robustness and effectiveness of
the trained deep learning networks, especially when
the training data is limited. In short, the generative
models receive the input data and output a batch of
similar data. In this section, we will introduce two
typical generative deep learning models: VAE and
GANs.

B.3.1. Variational autoencoder (VAE)
VAE, proposed in 2013 [46], is an important vari-
ant of AE, and one of the most powerful generat-
ive algorithms. The standard AE and its other vari-
ants can be used for representation but fail in gen-
eration for the reason that the learned code (or rep-
resentation) may not be continuous. Therefore, we
cannot generate a random sample which is similar to
the input sample. In other words, the standard AE
does not allow interpolation. Thus, we can replicate
the input sample but cannot generate a similar one.
VAEhas one fundamentally unique property that sep-
arates it from other AEs, and it is this property that
makes VAE so useful for generative modeling: the lat-
ent spaces are designed to be continuous which allows
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Figure 11. Illustration of deep belief networks. (a) DBN composed of autoencoders. DBN-AE contains multiple AE components
(in this case, two AE), with the hidden layer of the previous AE working as the input layer of the next AE. The hidden layer of the
last AE is the learned representation. (b) DBN composed of RBM. In this illustration, there are two RBM components with the
hidden layer of the first RBM working as the visible layer of the second RBM. The last hidden layer is the encoded representation.
While DBN-RBM and D-RBM (figure 10(d)) have similar architecture, the former is trained greedily while the latter is trained
jointly .

Figure 12. Illustration of generative deep learning models. (a) VAE contains two hidden layers. The first hidden layer is composed
of two components: the expectation and the standard deviation, which are learned separately from the input layer. The second
hidden layer represents the encoded information. ε denotes the standard normal distribution. (b) GAN mainly contain two
crucial components: the generator and the discriminator network. The former receives a latent random variable to generate a fake
brain signal while the latter receives both the real and the generated brain signals and attempts to determine if its generated or
not. In the are of brain signals, GAN reconstructs or augments data instead of classification.

easy random sampling and interpolation. Next, we
will introduce how VAE works.

Similar to the standard AE, VAE can be divided
into an encoder and decoder where the former
embeds the input data to a latent space and the latter
transfers the data from the latent space to the original
space. However, the learned representation in the lat-
ent space is forced to approximate a prior distribu-
tion ¯p(z) which is generally set as Standard Gaussian
distribution. Based on the reparameterization trick
[46], the first hidden layer of VAE is designed to have
two parts where one denotes the expectation µ and
another denotes the standard deviation σ, thus we
have

µ= σ(T (x)) (32)

σ = σ(T (x)). (33)

Then, the latent code in the hidden layer is not directly
calculated but sampled from a Gaussian distribution
N (µ,σ2). The statistic code

z= µ+σ ∗ ε (34)

where ε∼N (0, I). The representation z is forced to
a prior distribution, and the distance errorKL is meas-
ured by Kullback–Leibler divergence,

errorKL = DKL(z, ¯p(z)) (35)

where ¯p(z) denotes the prior distribution. In the
decoder, z is decoded into the output y ′,

y ′ = σ(T (z)) (36)

and the reconstruction error is

errorrecon = ∥y ′ − x∥2 . (37)

The overall error for VAE is combined by the DL
divergence and the reconstruction error,

error= errorKL + errorrecon. (38)

The key point of VAE is that all the latent rep-
resentations z are forced to obey the normal distri-
bution. Thus, we can randomly sample a represent-
ation z ′ ∈ ¯p(z) from the prior distribution and then
reconstruct a sample based on z ′. This is why VAE is
so powerful in generation.
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B.3.2. Generative adversarial networks (GAN)
GANs [47] is proposed in 2014 and achieved great
success in a wide range of research areas (e.g. com-
puter vision and natural language processing). GAN
is composed of two simultaneously trained neural
networks with a generator and a discriminator. The
generator captures the distribution of the input data,
and the discriminator is used to estimate the probab-
ility that a sample came from the training data. The
generator aims to generate fake samples while the dis-
criminator aims to distinguish whether the sample
is genuine. The functions of the generator and the
discriminator are opposite; that’s why GAN is called
‘adversarial.’ After the convergence of both the gener-
ator and the discriminator, the discriminator ought to
be unable to recognize the generated samples. Thus,
the pre-trained generator can be used to create a batch
of samples and use them for further operations such
as as classification.

Figure 12(b) shows the procedure of a stand-
ard GAN. The generator receives a noise signal s
which is randomly sampled from amultimodal Gaus-
sian distribution and outputs the fake brain signals
xF. The distributor receives the real brain signals xR
and the generated fake sample xF, and then it pre-
dicts whether the received sample is real or fake. The
internal architecture of the generator and discrimin-
ator are designed depending on the data types and
scenarios. For instance, we can build the GANby con-
volutional layers on fMRI images since CNN has an
excellent ability to extract spatial features. The dis-
criminator and the generator are trained jointly. After
the convergence, numerous brain signals xG can be
created by the generator. Thus, the training set is
enlarged from xR to {xR,xG} to train a more effect-
ive and robust classifier.

B.4. Hybrid model
Hybrid deep learning models refers to models which
are composed of at least two deep basic learningmod-
els where the basic model is a discriminative, repres-
entative, or generative deep learning model. Hybrid
models comprise two subcategories based on their
targets: classification-aimed (CA) hybrid models and
the non-classification-aimed (NCA) hybrid models.

Most of the deep learning related studies in brain
signal area are focused on the first category. Based on
the existing literature, the representative and gener-
ative models are employed to enhance the discrimin-
ative models. The representative models can provide
more informative and low dimensional features for
the discrimination while the generative models can
help to augment the training data quality and quant-
ity which supply more information for the clas-
sification. The CA hybrid models can be further
subdivided into: (1) several discriminative models
combined to extract more distinctive and robust fea-
tures (e.g. CNN+RNN); (2) representativemodel fol-
lowed by a discriminative model (e.g. DBN+MLP);

(3) generative + representative model followed by a
discriminative model; (4) generative+ representative
model followed by a non-deep learning classifier. In
which, a representativemodel followed by a non-deep
learning classifier is regarded as a representative deep
learning model.

A few NCA hybrid models aim for brain signal
reconstruction. For example, St-yves et al [259] adop-
ted GAN to reconstruct visual stimuli based on fMRI
images.
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