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1. Introduction

Modern approaches to system neuroscience as well 
as the study of motor recovery in clinical applications 
require detailed characterization of sensorimotor 
neural activity underlying natural, three-dimensional 
movements rather than artificially constrained 
behaviours. In this context, an ideal experimental 
set-up should provide (1) flexible and instrumented 
workspaces to allow natural, but reproducible motor 
behaviours and (2) the integration of multimodal 
electrophysiology recordings and behavioural signals.

However, to date, no experimental set-up allows 
the integration of electrophysiological recordings with 
extrinsic signals quantifying natural interactions with 
the environment.

Indeed, several groups developed sophisticated 
experimental platforms capable of characterizing 
unconstrained kinematics but did not provide infor-
mation on interaction forces (Schwartz et al 1988, 
Vargas-Irwin et al 2010, Churchland et al 2012, Schaf-
felhofer and Scherberger 2016, Hu et al 2018, Umeda 
et al 2019). Conversely, the study of active force control 
historically focused on constrained tasks in restricted 
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Abstract
Objective. Translational studies on motor control and neurological disorders require detailed 
monitoring of sensorimotor components of natural limb movements in relevant animal models. 
However, available experimental tools do not provide a sufficiently rich repertoire of behavioral 
signals. Here, we developed a robotic platform that enables the monitoring of kinematics, interaction 
forces, and neurophysiological signals during user-defined upper limb tasks for monkeys. 
Approach. We configured the platform to position instrumented objects in a three-dimensional 
workspace and provide an interactive dynamic force-field. Main results. We show the relevance 
of our platform for fundamental and translational studies with three example applications. First, 
we study the kinematics of natural grasp in response to variable interaction forces. We then show 
simultaneous and independent encoding of kinematic and forces in single unit intra-cortical 
recordings from sensorimotor cortical areas. Lastly, we demonstrate the relevance of our platform to 
develop clinically relevant brain computer interfaces in a kinematically unconstrained motor task. 
Significance. Our versatile control structure does not depend on the specific robotic arm used and 
allows for the design and implementation of a variety of tasks that can support both fundamental 
and translational studies of motor control.

PAPER
2020

Original content from 
this work may be used 
under the terms of the 
Creative Commons 
Attribution 3.0 licence.

Any further distribution 
of this work must 
maintain attribution 
to the author(s) and the 
title of the work, journal 
citation and DOI.

RECEIVED  
21 June 2019

REVISED  

27 September 2019

ACCEPTED FOR PUBLICATION  

9 October 2019

PUBLISHED   
5 December 2019

OPEN ACCESS

https://doi.org/10.1088/1741-2552/ab4c77J. Neural Eng. 17 (2020) 016004

publisher-id
doi
https://orcid.org/0000-0002-5636-6429
https://orcid.org/0000-0002-5757-7367
https://orcid.org/0000-0001-9800-2386
https://orcid.org/0000-0003-4396-8217
https://orcid.org/0000-0002-0975-316X
mailto:marco.capogrosso@unifr.ch
mailto:marco.capogrosso85@gmail.com
https://doi.org/10.1088/1741-2552/ab4c77
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ab4c77&domain=pdf&date_stamp=2019-12-05
https://doi.org/10.1088/1741-2552/ab4c77


2

B Barra et al

experimental settings, often employing only 1-degree 
of freedom movements (Cheney and Fetz 1980, Seki 
et al 2003, Moritz et al 2007, Herter et al 2009, Ethier 
et al 2012, Nishimura et al 2013). These limitations 
arise from the difficulty of pairing unconstrained 
natural movements (Schwartz et al 1988) with instru-
mented workspaces that allow the execution of active 
motor tasks (Cheney and Fetz 1980) while measuring 
force interactions with the surrounding environment.

We believe that functionalized workspaces that 
promote natural movements could be designed by 
extending the concept of classical planar robotic tasks 
(London and Miller 2013, Omrani et al 2016, de Haan 
et al 2018) to three-dimensional workspaces. Such 
setup could provide detailed measurement of kin-
ematics and interaction forces throughout actions 
involving reaching, grasping and manipulation of 
objects. At the same time, it would enable complete 
freedom in defining the spatial constraints, force fields 
and perturbations of tasks that resembles natural, 
three-dimensional movements.

Here, we present a versatile robotic platform that 
combines neurophysiological, mechanical, and kin-
ematic measurements within a customizable three-
dimensional experimental environment. This plat-
form consists of (1) a seven degrees-of-freedom 
compliant robotic arm (LBR iiwa, KUKA, Augsburg, 
Germany) (2) a custom software control package (3) 
force and grip pressure sensors integrated in the robot 
and (4) modules for data synchronisation.

To demonstrate the potential of our platform for 
both basic and translational studies in motor control, 
we programmed the robotic arm to present instru-
mented objects to trained monkeys in a three-dimen-
sional workspace and oppose elastic resistance to dis-
placements of the end effector. By pairing this system 
with intra-cortical neural recordings of sensorimotor 
areas, we created an instrumented platform that pro-
vides a rich portfolio of signals for the investigation of 
natural motor behaviour.

We trained three monkeys to reach for the robot 
and pull the end effector to receive a food reward. We 
first demonstrate the performance and safety of our 
platform. We then use the platform to study the kin-
ematic and dynamic components of movement and 
how these vary when applying different strength of 
dynamic elastic resistance to the target object move-
ment. Third, we show that activity of neurons in both 
the motor and somatosensory areas encode specific 
components of the task such as force, kinematics or 
object contact. Fourth, we argue that our framework 
can be instrumental to neural engineering studies 
seeking to decode movement information from motor 
and sensory areas during natural behaviour.

Our versatile control structure does not depend on 
the specific robotic arm used and allows for the design 
and implementation of a variety of tasks that can sup-
port both fundamental and translational studies of 
motor control.

2. Methods

2.1. Robotic platform
Our platform (figure 1) consists of (1) a  
seven-degrees-of-freedom robotic arm (Intelligent 
Industrial Work Assistant, IIWA-KUKA, Augsburg, 
Germany), (2) a custom built software package that 
enables closed-loop control of the robot arm, (3) a 
synchronized interaction force recording system, (4) 
a strain-gauge grip pressure sensor, (5) an infrared 
video tracking system to measure three-dimensional 
joint kinematics (Vicon, Oxford, UK) and an (6) 
electrophysiology system (Blackrock Microsystems, 
Salt Lake City, USA). We assessed the versatility and 
efficacy of our framework by programming a robotic 
task for monkeys. We configured the robot to position 
objects in a three-dimensional workspace and trained 
monkeys to reach and pull on the objects while kinetic, 
kinematic and neural signals were simultaneously 
recorded.

2.1.1. Closed-loop control infrastructure
The IIWA robotic arm features a large workspace 
(figure S1) allowing ranges of motion that are 
compatible with both human and monkey reaches. 
Additionally, the robotic arm is able to actively lift up to 
7 Kg of weight, which makes it robust to manipulation 
by monkeys.

We developed a software package that implements 
a real-time closed-loop control (figure 2(A), https://
doi.org/10.5281/zenodo.3234138) configured as a 
finite state machine. This allows fast configuration of 
tasks that proceed through several phases, where each 
phase requires a different behaviour of the robot.

In our specific example application, at the begin-
ning of an experimental session the robot lies in home 
position (figure 2(A), FS1), in which all joint coordi-
nates are equal to 0°, resulting in a straight and verti-
cal robotic arm configuration (supplementary fig-
ure S1(C) (stacks.iop.org/JNE/17/016004/mmedia)). 
The robotic arm maintains its position until the user 
triggers the start of a new trial by pressing a remote 
button. This brings the robot in a position control 
phase (figure 2(A), FS2) during which it moves the end 
effector to a determined position in space.

Once the sum of the errors in the positioning of all 
the joints decreases to a value of 0.01 radians, the robot 
is considered in target position and the control mode 
switches to impedance mode (figure 2(A), FS3). In this 
state the robot behaves as a mass-spring-damper sys-
tem, trying to keep the target position while opposing 
a dynamic resistance to applied forces. In our specific 
examples we facilitated smooth movements of the end 
effector along the x-axis (towards the monkey), by 
imposing higher stiffnesses and damping parameters 
along the other orthogonal directions.

To interact with our platform we trained three 
monkeys to grasp a flexible instrumented object con-
nected to the end effector, and pull it until a user-
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defined-position along the x-axis is crossed. Upon suc-
cess, the robot quickly updates the next desired target 
position and moves towards it (figure 2(A), FS4, FS5). 
If the animal fails to pull the object across the thresh-
old or the trial timeouts, the robot returns to target 
position. After three failed trials the robot switches to 
another target.

2.1.2. Omnidirectional measurement of grip strength
We designed an air-pressure-based gauge sensor that 
can measure the applied grip force independently 
from an object shape in the interval  −0.7 kPa–   
40 kPa. We 3D-printed hollow objects of different 
shape and size (figure 2(B)) and connected to a steel 
enclosure hosting the sensor. In this configuration 
the grip strength is proportional to the air flux 
produced by compression of the object. We designed 
a programmable electronic circuit (figure 2(B)) that 
digitizes pressure measurements while power and 
data transfer are provided through connection ports 
located at the robot end effector thereby limiting 
external wires at the subject-robot interface.

The pressure sensor circuit converted air pres-
sure into a voltage measurement using strain-gages 
(1620 measurement SPECIALTIES™) directly con-
nected to a front-end amplifier (FEA—LMP90100) 
of a full-Wheatstone bridge circuit. The footprint 
of the electronic circuit was maximally reduced in 

order to integrate it to the robot (diameter 3.2 cm). 
The embedded circuit converts the strain-gages sig-
nal into an analog output signal bounded between 0 
and 4.1 V. The electronic assembly comprises a micro-
controller (pic24FV08KM101) for the control of the 
FEA and the digital-to-analog converter (DAC8551) 
via a serial peripheral interface (SPI) protocol. Signals 
were amplified, digitized at 16 bits, and converted in 
analog signals after noise reduction. A 5 V regulator 
(EG113NA-5) adjusted the input power supply from 
6 V to 9 V and a second regulator (LM4140ACM-4.1) 
outputted a precise reference voltage of 4.1 V used for 
signal conversions. Three LEDs indicated the state 
of the system and three input switches were used to 
impose gains ranging from 1 to 64. The in-circuit 
serial programming (ISCP) connector served to re-
program the microcontroller. The system was also 
equipped from an ON/OFF button, a reset button 
and a power supply connector. The assembly was 
mechanically and electrically coupled to the flange of 
the robotic arm.

The objects were printed in a thermoplastic elas-
tomer and were covered with two layers of silicon 
(DOWSIL™ and Sil-Poxy®) to ensure sealing. All the 
sensitive elements were characterized using a comp-
uter-controlled compression system (Zwick/Roell 
1KN D0728165) to derive the internal pressure of each 
object as a function of the applied force.

Figure 1. Robotic framework for the study of reaching and grasping. A monkey is implanted with microelectrode arrays in the 
arm and hand sensorimotor areas. The arrays are connected to a high-resolution electrophysiology system that records wideband 
extracellular potentials. A robotic arm presents the target objects to the monkey at different positions within a spherical 3D space 
(figure S1(C)). The animal can interact with the robotic arm by reaching for, grasping and pulling the target objects. A robot control 
software allows implementation of tasks that proceed through different phases. Each phase can contain different robot behavior. The 
3D force applied by the monkey on the robotic joints is measured in real time. The target objects are instrumented with a sensor that 
measures the applied grip pressure. A motion capture system is used to track the full kinematics of monkey’s arm and fingers using 
reflective markers.

J. Neural Eng. 17 (2020) 016004
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2.2. Animals involved in this study
Three adult female Macaca fascicularis monkeys were 
trained in this study (Mk-Jo 10 years old, 3.6 kg, Mk-
Cs 9 years old 4.0 kg, and Mk-Ol 3 years old 3.0 kg). 
All procedures were carried out in accordance to the 
Guide for Care and Use of Laboratory Animals (ISBN 
0-309-05377-3; 1996) and the principle of the 3 Rs. 
Protocols were approved by local veterinary authorities 
(Canton of Fribourg, Switzerland authorizations No 
2017_03_FR and 2017_04E_FR) including the ethical 
assessment by the local (cantonal) Survey Committee 
on Animal Experimentation and acceptance by the 
Federal Veterinary Office (BVET, Bern, Switzerland).

2.2.1. Surgical procedures
All the surgical procedures were performed under full 
anaesthesia induced with midazolam (0.1 mg kg−1)  
and ketamine (10 mg kg−1, intramuscular injection) 
and maintained under continuous intravenous 
infusion of propofol (5 ml/kg/h) and fentanyl (0.2–
1.7 ml/kg/h) using standard aseptic techniques. 
A certified neurosurgeon (Dr Jocelyne Bloch, 
CHUV, Lausanne, Switzerland) supervised all the 
surgical procedures. We implanted two 64-channel 
microelectrode arrays in Mk-Jo and Mk-Cs and 

two 48-channel microelectrode arrays in Mk-
Ol (Blackrock Microsystems, 400 µm pitch and 
electrodes tip lengths 1.5 mm and 1 mm for M1 and 
S1, respectively). Mk-Cs was implanted in M1 and S1 
area of the arm, and Mk-Jo and Mk-Ol were implanted 
in M1 and S1 area of the hand. Functional areas were 
identified with electrical stimulation delivered as 
biphasic pulses on the cortex surface at 3 mA and  
300 Hz. A 20 mm diameter craniotomy was performed 
in order to span the brain areas of interest and the dura 
was incised. Implantation of the arrays was achieved 
using a pneumatic compressor system (Impactor 
System, Blackrock Microsystems). The pedestal was 
fixated to a compliant titanium mesh modelled to fit 
the skull shape for Mk-Jo and Mk-Cs. The pedestal was 
fixed directly to the skull in Mk-Ol. Surgical and post-
operative care procedure are developed in details in 
Capogrosso et al (2018). Data presented in this paper 
were collected 3, 8 and 9 weeks post-implantation for 
Mk-Jo, Mk-Ol and Mk-Cs, respectively.

2.2.2. Behavioural tasks
We built a custom primate chair (supplementary 
figure S1) in which only the neck of the animal was 
fixed with a metallic collar allowing wide range of 

Figure 2. The scheme of the robotic arm control protocol and the design of the grip pressure sensor. (A) Finite state machine of 
the robotic control protocol during the behavioural task. When a trial starts, the robot moves the end effector to a pre-determined 
position in space using standard impedance joint control strategy. When the position is reached, the finite state machine switches to 
a custom impedance control mode to allow interaction with the subject (right panel). In this modality, the end effector behaves like 
a mass-spring-damper system whose parameters are entirely user-defined and can be easily modified. xa, ẋa, =  measured position 
and velocity of the end effector in Cartesian coordinates; xs, ẍs  =  derived position and acceleration of the end effector in Cartesian 
coordinates; ẍd  =  derived damping acceleration in Cartesian coordinates; xt, ẋt, ẍt   =  target position, velocity and acceleration 
in Cartesian coordinates; qt, qt  =  target position and velocity in the joint space. (B) Top: pressure sensor electronic circuit design 
describing the electronic components, the communication protocols and the voltage input values. Bottom: schematic of the pressure 
sensor assembly fixed at the end effector of the robot with spherical, cylindrical and pinch-like objects shown. DAC: digital-to-
analog converter—FEA: front-end amplifier—LED: light-emitting diode—SPI: serial peripheral interface.

J. Neural Eng. 17 (2020) 016004
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voluntary arm and hand movements in the three-
dimensional space. Two Plexiglas plates were used 
to restrain the access to the head and a third plate 
placed around the stomach of the animal served for 
placing a resting bar and elastic bands to immobilize 
the right hand. Monkeys were trained to maintain a 
resting position between trials and place the left hand 
on the resting bar a few centimetres in the front, at 
chest level. A trial started when the robot presented 
a graspable target in front of the animal, at a distance 
of approximatively 20 cm. As soon as the ‘go’ cue was 
played (1 s duration sound), monkeys reached for the 
target, grasped it, and pulled it towards themselves 
(x-direction). Once the robot end effector crossed a 
pre-set virtual spatial threshold (8 cm), a clicker sound 
played by the experimenter indicated the success of the 
trial encouraging the animal to release the grip, return 
to the resting bar and get a food reward. The reward 
was delivered manually by the experimenter for Mk-
Jo and Mk-Cs and automatically for Mk-Ol. The robot 
returned to its vertical home position at the end of 
each trial. For Mk-Cs and Mk-Jo, cueing signals during 
the task were implemented as follow: a go cue was 
implemented as a high pitch sound coupled to a green 
light that was played when the robot was in position 
and reached the impedance control mode; a success 
cue consisted in a low pitch sound when the monkey 
crossed the spatial threshold by pulling on the robot. 
Sounds were played from the application controlling 
the robot while the light cue was triggered through a 
synchronisation module (Arduino Due, Arduino, 
Italy). For Mk-Ol, the visual cues were delivered 
on a computer screen. A start cue was displayed as a 
rectangular box on top of the screen. After 500 ms, 
the start box disappeared and a cursor was displayed 
on top of the screen with a rectangular target at the 
bottom. The cursor moved down vertically towards 
the target, proportionally to the displacement of 
the robot end effector towards the pre-set spatial 
threshold. Auditory cues were delivered automatically 
and consisted in a high pitch start cue, a medium pitch 
success cue and a low pitch reward cue. Liquid food 
was delivered together with the reward sound using a 
pump (masterflex consoledrive) triggered externally 
via the control software. The screen and the reward 
system were controlled using an in-house application 
(Matlab Mathworks®) coupled to a synchronization 
board (National Instruments, US). All cues were 
identically delivered during training and experimental 
sessions.

In Task 1, Mk-Jo reached for, grasp and pull objects 
of different sizes and shapes all presented at the same 
location. A cylinder (length 8 cm; diameter 1.5 cm), 
a small sphere (diameter 1.5 cm) and a large sphere 
(diameter 3 cm) were used to induce cylindrical, small 
and wide spherical grips, respectively. CAD design of 

these objects are available at (https://doi.org/ 10.5281/
zenodo.3234138).

Each of these targets were presented with various 
levels of resistance applied by the robot impedance 
controller (joint stiffness 200, 400 and 600 N m−1 
corre sponding to ‘low’, ‘medium’ and ‘high’ stiffness 
levels). In addition, a small triangular pinch-like object 
(base 2 cm; height 1.5 cm) was used to prompt a lateral 
precision grip and was presented with the lowest level 
of resistance. Each session consisted in 12 to 20 trials 
per object per level of resistance. Two to four objects 
were presented during a single session.

In Task 2, Mk-Cs performed 3D centered-out task 
where the small spherical object was alternatively and 
randomly presented in three horizontal positions 
in the sagittal plane, center, left and right. The object 
was placed at  −40, 0 and 60 mm along the y -axis for 
the left, center and right position, respectively. The z 
distance was fixed for all conditions at approximately 
180 mm above the animal seating height. Each ses-
sion consisted in approximately 25 trials per position. 
Mk-Ol performed both Task 1 and Task 2. In Task 2, the 
left and right targets were placed approximately 3 cm 
higher than the central target along the z-coordinate. 
Each session consisted in at least 80 or 70 trials per con-
dition, for position or object, respectively.

2.3. Multimodal recordings
2.3.1. Kinematic recordings
Three-dimensional spatial coordinates of arm and 
hand joints during upper limb movements were 
acquired using a 14-camera motion tracking system 
(figure 1, Vicon Motion Systems, Oxford, UK) at a  
100 Hz-frame rate. The video system tracked the 
Cartesian position of up to 15 infrared reflective 
markers (6–9 mm in diameter each, Vicon Motion 
Systems, Oxford, UK). For each monkey, one marker 
was placed directly below the shoulder, three on the 
elbow (proximal, medial and distal) and two were 
placed on the wrist (lateral and medial) using elastic 
bands. For Mk-Jo and Mk-Ol, nine additional markers 
were positioned on the back of a customized viscose 
glove, on the metacarpal (MCP), proximal (PIP) and 
distal phalanxes (DIP) joints of the thumb, index and 
little finger (supplementary figure S2(A)). A model 
of each subject’s marker placement was calibrated in 
Vicon’s Nexus software.

2.3.2. Pulling force recordings
The interaction force, measured as the force applied 
at the robotic joints, was sampled at 500 Hz and 
synchronized with triggers marking the beginning 
(go cue) and the end (spatial threshold crossing) of 
each trial together with the spatial position of the end 
effector. Values were also streamed in the BlackRock 
system using the single-board microcontroller. The 

J. Neural Eng. 17 (2020) 016004
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pressure sensor signal was sampled at 1000 Hz with the 
VICON and Blackrock systems.

2.3.3. Electrophysiology recordings
Neural signals were acquired with a Neural Signal 
Processor (Blackrock Microsystems, USA) using the 
Cereplex-E headstage with a sampling frequency of 
30 kHz.

2.4. Data analysis
2.4.1. System performances characterization
We evaluated the safety and usability of the robotic 
platform accuracy of positioning, stability of position 
over time and repeatability of behaviour across 
sessions (see section results).

We continuously recorded the three-dimensional 
position of the robot arm end effector, together with 
the three-dimensional force exerted on the object. We 
computed a positioning error, a time for the robot arm 
to converge on the target position (target positioning 
time) and a drop error (figure 3(A)). The precision error 
was computed as the distance between the targeted end 
effector position and the reached endpoint position, 
therefore illustrating the reproducibility of the robotic 
arm across trials. Since joint stiffness values influence 
the speed of the motion and the speed of convergence 
toward the commanded position we evaluated the 
variation of position error for several joint stiffness 
values ranging from 200 to 800 N m−1. In addition, 
we enclosed the variation of the time needed for conv-
ergence toward the commanded position (time for tar-
get positioning). The drop error was computed as the 
three-dimensional drift of the end effector from the 
target position during the first 500 ms after placement, 
illustrating the stability of the robotic arm in holding 
the object in the target position. Subsequently, we veri-
fied the compliance of the robot movement upon inter-
action with a monkey previously trained to perform 
Task 2. We recorded three-dimensional coordinates of 
the joints and then computed a trajectory smoothness 
index (Hans-Leo Teulings et al 1997) computed as:

S =

Ã
T5

L2

N∑
i=1

∥∥∥∥
Å
∂3p

∂t3

ã

i

∥∥∥∥
2

dt

where p  is the end effector position, N is the number 
of samples considered for the measure, t is the time, 
T and L represents the total duration of the trajectory 
in seconds and the length of the trajectory in m, 
respectively. We computed a separated smoothness 
index over the reach and the pull.

We analyzed the movement velocity by comput-
ing the maximum wrist speed during the reaching and 
pulling phase separately. We derived the wrist speed 
from the wrist kinematics of Mk-Jo using the cylinder 
for three levels of robotic joint resistances (200 N m−1, 
400 N m−1 and 600 N m−1).

All the grip pressure sensor-coupled objects were 
characterized using a computer-controlled compres-

sion system (Zwick/Roell 1KN D0728165) to derive 
the internal pressure of each object as a function of 
the applied force in Netwon. Calibration curves were 
acquired by applying dynamically load ranging from 0 
to 10 N on each object.

2.4.2. Analysis of arm and hand dynamics
Post processing of motion capture data was performed 
to ensure that all joint markers were labelled correctly. 
We converted the three-dimensional marker position 
data to rotational degrees of freedom. For Mk-Jo and 
Mk-Ol, we computed 12 joint angles (see figure S2): 
index finger PIP flexion/extension, pinkie finger PIP 
flexion/extension, thumb finger PIP flexion/extension, 
index finger MCP flexion/extension, pinkie finger 
MCP flexion/extension, thumb finger MCP flexion/
extension, index finger abduction/adduction, pinkie 
finger abduction/adduction, thumb finger abduction/
adduction, thumb opposition, wrist flexion, wrist 
ulnar deviation. For Mk-Cs, we computed 3 joint 
angles: shoulder adduction, elbow flexion/extension 
angle and wrist pronation/supination. Interaction 
force measurements were synchronized post-hoc 
to kinematics signals based on triggers marking the 
start (go cue) and end (threshold crossing) of each 
trial. For further analysis of arm and hand dynamics 
during natural reaching and grasping, we averaged the 
mesurements across each condition. Kinematics, force 
and grip pressure measurements were low-pass filtered 
at 10 Hz.

Principal component analysis (PCA) was per-
formed on joint angle kinematics and kinetic vari-
ables to identify which dynamic features accounted for 
most of the variance in the data. We reconstructed the 
Y  ×  Ndf matrix where Ndf is the number of joint angles 
and Y  =  [Y1, Y2,…, YN] is the concatenated vector of 
all time points t  =  1,…, N. Average kinematic, force 
and pressure variables were normalized and mean-
centered before singular values decomposition. The 
dynamic data projected along the first three eigenvec-
tors in the PC space were averaged over each condition 
and smoothed using a 5-samples moving average filter 
before plotting.

2.4.3. Analysis of kinematic synergies
We used PCA, as described in Santello et al (1998) 
to identify kinematic synergies as orthogonal axes 
of maximal correlated variance in the 3D joint 
coordinates of the hand. Briefly, the x, y and z joints 
Cartesian coordinates were first normalized and 
mean-centered. The principal components (PCs) were 
then computed from the eigenvalues and eigenvectors 
of the matrix of the covariance coefficients between 
each of the joint coordinates waveforms. As each of 
the 13 markers was represented by three coordinates, 
the PCA was computed over 39 waveforms. The first 
PC accounted for at least 70% of the variance. We 
represented the hand posture corresponding to the first 
synergy by plotting the 39 coefficients corresponding 
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to the first PC in 3D (Mason et al 2001) and overlaid a 
sketch of a monkey hand for the sake of representation. 
The positions of the ring finger and middle finger were 
not measured in our experiment but were represented 
in a realistic inferred position with respect to the 
thumb index and pinkie to help visualize the hand 
posture in supplementary figure S2(D).

2.4.4. Multiunit activity analysis during skilled grasp-
ing and 3D reaching
We acquired the multiunit spiking activity from each 
channel of intracortical neural recordings (2  ×  64 
channels for Mk-Cs and Mk-Jo, 2  ×  48 channels 
for Mk-Ol) using the Neural Signal Processor 
(Capogrosso et al 2016). Specifically, a spiking event 

Figure 3. Evaluation of the system performances: (A) graphical representation of the measures of reproducibility of the three-
dimensional positioning. The positioning error is the distance between the set and measured robot end effector position; the drop 
error is the distance between the measured robot end effector position at the cue-time and the measured robot endpoint position 
0.5 s after the cue-time. (B) Left: accepted positioning tolerance for different values of joint stiffness. Center: time of convergence 
toward target for different values of joint stiffness (* p   <  0.01). Right: standard deviation of positioning error on the x, y  and z 
dimension for different values of joint stiffness. (C) Positioning error values as a function of the distance from the center of the robot 
workspace. Linear regression α  =  −0.009, RMSE  =  0.05. (D) Drop error on the x, y  and z dimension. (E) Maximal force exerted 
on the robot end effector on the x, y  and z axis. Comparison across 2 different sessions. (F) Comparison of trajectory smoothness 
values during the reach (robot not interacting with the subject) and pull (robot is interacting with the subject). Data presented here 
were collected over 2 sessions of n  =  100 trials each. (G) Left: example of Mk-Jo wrist cartesian position and velocity along the x axis 
for three different levels of robotic joint resistance. Right: maximal wrist speed during the reach and pull phases of the movement 
for three levels of joint resistances (n  =  10 measurements per condition). For each joint resistance, the peak reaching speed was 
significantly higher than the peak pulling speed. Wilcoxon rank-sum test, p 200  =  p 400  =  p 600  =  1.8  ×  10−4. The pulling peak speed 
was also significantly larger at 200 N m−1 resistance than at 600 N m−1 resistance (Kruskal–Wallis test, χ2

200−600  =  10.72, p   =  0.005). 
(H) Left: example of force-deformation relationship for each object during five calibration rounds at 5 N. Right: calibration 
curves describing the voltage to pressure relationship for each object geometry before and after 1000 squeeze movements (n  =  3 
measurements per point). The horizontal standard deviations represent the error on the voltage measurement for forces ranging 
from 1 to 10 N.
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was defined on each channel if the band-pass filtered 
signal (250 Hz–5 kHz) exceeded 3.0–3.5 times its 
root-mean-square value calculated over a period of 
5 s. Artefacts removal was achieved by eliminating all 
the spikes occurring within a time window of 0.5 ms 
after a spike event in at least 30 channels. We computed 
the firing rate of each channel as the number of spikes 
detected over non-overlapping bins of 10 ms.

In order to perform a neural population analysis, 
we identified a neural manifold (Gallego et al 2017) 
by conducting PCA on multi-unit firing rates rang-
ing from movement onset to the end of the pulling 
phase. Movement onset happened in average 660 ms, 
910 ms and 520 ms before the grasp for Mk-Jo, Mk-Cs 
and Mk-Ol, respectively. The pulling phase lasted at 
least 350 ms, 740 ms and 370 ms for Mk Jo, Mk-Cs and 
Mk-Ol, respectively. Events marking movement onset, 
grasp onset and release of the object were identified 
using video recordings. Neural features for M1 and S1 
consisted in the firing rates computed over all intra-
cortical neural channels of each array (64 channels 
for Mk-Cs and Mk-Jo, 48 channels for Mk-Ol). PCs 
were computed using at least 15 trials per object and 25 
trials per position in Mk-Jo and Mk-Cs, respectively. 
In Mk-Ol, principal components during the objects-
grasping task were computed using 70 trials per object 
(supplementary figure S3).

2.4.5. Neural encoding analysis
We manually spike-sorted the recordings from each 
electrode implanted in M1 and S1. We computed 
the average firing rate across the entire reach for 
each neuron to compare the two brain areas (figure 
7(a)). Additionally, we inspected the tuning for each 
parameter by plotting the firing rate in each bin against 
the hand velocity and the magnitude of pulling force 
recorded at each time (figure 7(b)).

We then constructed encoding models to predict 
the spiking of each neuron using Generalized Lin-
ear Models (GLMs), adapting an analysis previously 
described by Lawlor et al (2018) and Perich et al (2018). 
First, we counted the number of spikes in non-overlap-
ping 10 ms bins. In brief, GLMs generalize the idea of 
multilinear regression for non-Gaussian statistical dis-
tributions using a nonlinear link function. The neurons 
were assumed to have Poisson statistics, thus we used an 
exponential link function (Lawlor et al 2018). As inputs 
to the GLMs we provided: (1) full-limb kinematics, 

including the three-dimensional velocities and accel-
erations of the shoulder, elbow, and wrist; (2) three-
dimensional pulling force applied to the robot by the 
monkey; (3) the time of the grab event, to capture either 
motor commands related to hand shaping or sensory 
feedback from the object contact. For the third input, 
the grab event was convolved with three raised cosine 
basis functions (Pillow et al 2008) spaced evenly up to 
300 ms in the past or future for M1 and S1, respectively.

We quantified the performance of the GLMs using 
a pseudo-R2 metric, which generalizes the notion 
of variance explained for the Poisson statistics of the 
model (Lawlor et al 2018, Perich et al 2018). This met-
ric compares the log-likelihood of the tested model fit 
against a simpler model.

pR2 = 1 −
logL (n)− logL

Ä
λ̂
ä

logL (n)− logL (n̄)
.

Typically, the simpler model n̄ is a mean-fit to the 
data. However, this formulation also allows us to test 
the relative contributions of different parameters. We 
compared the full model with all three types of inputs 
described above to a reduced model n̄ where just one 
of the inputs is omitted. This relative pseudo-R2 metric 
provides insights into how well specific parameters, 
such as object contact, helps to explain neural activity. 
We assessed significance for all of these using a Monte 
Carlo simulation resampling across the available trials. 
A model fit or parameter was assumed to be significant 
if the 95% confidence intervals on the parameter fit 
were greater than zero.

2.4.6. Detection of movement onset and object grasp 
from the sensorimotor neural activity
We implemented an approach based on a multiclass 
regularized linear discriminant analysis algorithm 
(mrLDA) to detect moments of movement onset and 
object grasp from the continuous neural recordings 
from either the motor or somatosensory cortices 
(Milekovic et al 2013a, Capogrosso et al 2016, 
Milekovic et al 2018). In brief, we synchronized the 
multiunit spike activity with the movement onset and 
object grasp events. The performance of decoders was 
evaluated using five-fold cross-validation (Hastie et al 
2009). The movement onset and object grasp events, 
mo and og, were used to derive the respective classes of 
neural features, Cmo and Cog:

Cmo =





āmo |āmo (i) =




x1 (mo (i)−∆tmo)

x1 (mo (i)−∆tmo −∆t)
...

x1 (mo (i)−∆tmo − (NTP − 1) ·∆t)

x2 (mo (i)−∆tmo)
...

xNCH (mo (i)−∆tmo − (NTP − 1) ·∆t)
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āog
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(
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(
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)
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(
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)
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where āmo and āog  are feature vector members of 
classes Cmo and Cog, respectively; NTP is the number 
of multiunit spike rate measurements taken from the 
same neural channel; Δt is the temporal difference 
between the two consecutive spike rate measurements 
taken from the same neural channel; NCH  =  64 is the 
number of neural channels; and Δtmo and Δtog are 
the temporal offsets for each type of event. NTP, NTP · 
Δt (history used to sample neural features), Δtmo and 
Δtog were used as decoder parameters—their values 
were selected from a following list of values: NTP: 
3 and 5; NTP · Δt: 0.3 s and 0.5 s; Δtmo and Δtog: any 
value from  −200 ms to 200 ms with 0.5 ms steps. We 
additionally formed another class COTHER representing 
states at least 10 ms away from all mo and og events.

We then calibrated a set of mrLDA decoding mod-
els using Cmo, Cog and COTHER and all possible combi-
nations of parameter values (Milekovic et al 2013a, 
Capogrosso et al 2016, Milekovic et al 2018). We used 
the mrLDA regularization parameter as an additional 
parameter with values of 0, 0.001, 0.1, 0.3, 0.5, 0.7, 
0.9 and 0.99. The performance of each of the models 
was validated using four-fold crossvalidation on the 
training dataset as follows. A model was calibrated 
on three quarters of the training dataset and tested on 
the remaining part of the training dataset. For each 
time point of this remaining part, the mrLDA model 
calculated the probability of observing neural activ-
ity belonging to Cmo and Cog classes. When one of 
these two probabilities crossed a threshold of 0.9, the 
decoder detected movement onset or object grasp, 
moDET or ogDET, respectively. To reproduce the sparsity 
of these events, we ignored the probability values of the 
detected event for 1 s after the detection. We pooled the 
time series of actual and detected events across all four 
folds and calculated normalized mutual information 
using a tolerance window of 200 ms (Milekovic et al 
2013a, Capogrosso et al 2016, Milekovic et al 2018). 
We then calibrated another decoding model on the 
left-out testing dataset using the parameter values that 
resulted with the maximum normalized mutual infor-
mation. This decoder was then used on the testing part 
of the dataset to detect the moDET or ogDET events. We 
again pooled actual and detected events across all five 
testing folds and measured the decoding performance 
using temporal accuracy—the ratio of actual events 
that have one and only one event of the same type 
within the 200 ms neighbourhood. We estimated the 
standard error of the temporal accuracy using boot-
strapping with 10 000 resamples (Moore et al 2009).

2.4.7. Time-resolved classification of grasp types  
and trajectories
We applied a similar approach to classify grasp types 
(Mk-Jo) and reach target locations (Mk-Cs) using 
mrLDA from the neural recordings from either the 
motor or somatosensory cortex (Milekovic et al 2015). 
We measured the classification performance using 
leave-one-out cross-validation (Hastie et al 2009)—in 

each validation fold (‘e’), a different trial e is selected as 
a test dataset and all other trials are used as a training 
dataset to calibrate a mrLDA model. This calibration 
involves a procedure to select the regularization 
parameter of the mrLDA model from the values of 0, 
0.001, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.99. The training dataset 
is used to derive the classes of neural features, C1(e,t), 
…, CN(e,t) (N  =  4 for four objects in Mk-Jo, and 
N  =  3 object positions for Mk-Cs) as described above 
for event timing using leave-one-out validation on the 
training dataset. We then calibrated a mrLDA classifier 
on the complete testing dataset using the regularization 
coefficient that resulted with the maximum decoding 
accuracy. We pooled the classification outcomes across 
all folds and measured the decoding accuracy. This 
procedure resulted in a confusion matrix and decoding 
accuracy value for every value of the latency t around 
both movement onset and object grasp events. We 
estimated the standard error of the decoding accuracy 
using bootstrapping with 10 000 resamples (Moore 
et al 2009).

2.4.8. Kalman filter decoding
We assessed continuous predictions of limb 
kinematics using a Kalman Filter (Wu et al 2006). The 
Kalman Filter provides a probabilistic framework 
to predict the state of the limb during the reach and 
grasp task based on the neural recordings. The output 
of the filter was the state of the limb. For Mk-Cs, this 
comprised the position and speed of the elbow and 
wrist. For Mk-Jo, it comprised the position and speed 
of the thumb, index and pinkie finger joints (distal 
phalanx, PIP joint and MCP joint), as well as of the 
wrist, elbow and shoulder joints. We computed the 
limb kinematics and the instantaneous firing rate of 
each neuron at 50 ms intervals. We used the multiunit 
firing rate obtained from thresholding on M1 and 
S1 arrays as inputs to the decoder. The neural signals 
were shifted relative to the kinematics by a static value 
of 100 ms in Mk-Cs and 70 ms in Mk-Jo. These lags 
were determined by testing the models on various 
delays to optimize the model performance. We trained 
and tested the models using the leave-one out cross-
validation method: we iteratively set aside one trial 
for testing and trained the model using the remaining 
trials. We pulled together kinematic and neural data 
over different objects (small sphere and large sphere) 
for Mk-Jo and over different positions (left, center 
and right) for Mk-Cs. The performance was assessed 
using the coefficient of determination R2 for which 
we computed the 95% confidence intervals across all 
repetitions. 3D static hand posture reconstruction 
represents hand configuration for the best time point 
of the fold resulting in the highest average R2 for both 
the small sphere and the cylinder objects in Mk-Jo.

2.5. Statistics
All computed parameters were quantified and 
compared between tested groups unless otherwise 
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specified. All data are reported as mean  ±  SEM 
unless specified otherwise. Significance was analysed 
using non-parametric Monte-Carlo permutation test 
and Wilcoxon rank-sum test followed by post-hoc 
correction for multiple comparison.

2.6. Data and software availability
The custom-built open-source software application 
used to control the robotic arm and a step-by-step 
implementation protocol are available at (https://doi.
org/10.5281/zenodo.3234138). Further data from this 
study are available from the corresponding author 
upon reasonable request.

3. Results

3.1. System performance
In order to assess the performances of the robotic 
platform, we ran a series of tests aiming at computing 
the spatial accuracy of positioning, stability of position 
over time and repeatability of behaviour across 
sessions (figure 2(A), Video 1).

We evaluated the spatial accuracy by measuring 
the positioning error—the distance between the target 
position and the actual position reached by the robot 
(figure 3(A)). To evaluate the speed of positioning, we 
measured the target positioning time—time needed 
for the robot to move the end effector to the target 
position. We measured the positioning error and the 
target positioning time for different joint stiffness val-
ues. To evaluate the stability of the robot to hold a spec-
ified position over time, we measured the drop error 
(figure 3(A)). For a stiffness of 200 N m−1 (the typical 
value used during experimental sessions), the mean 

positioning errors were 0.186, −0.133 and 0.008 mm 
for the x, y  and z directions with standard deviation 
of 7, 6 and 13 mm, respectively. We considered these 
errors acceptable for our experimental demonstra-
tions. Nonetheless, the positioning errors and the tar-
get positioning time decreased with increasing stiff-
ness values (figure 3(B)). This shows that it is possible 
to obtain a higher positioning precision by accepting 
a higher joint stiffness during motion. Our analysis 
revealed no relationship between positioning error 
and end effector spatial location (figure 3(C)). Simi-
larly, drop errors (figure 3(D)) were uniform across 
space (1.0  ±  1.8 mm, 0.8  ±  2.2 mm and 2.1  ±  0.3 mm 
for the x, y , and z direction). Measured forces were con-
sistent across sessions (n  =  2 sessions) (figure 3(E)).

We next evaluated the robot compliance upon 
interaction with a monkey. In particular, we verified 
that passive movements of the end effector did not 
introduce sudden and unexpected perturbations of 
the arm kinematic trajectories when pulling on the 
object.

We measured arm joint kinematics in Mk-Cs 
performing a reach-and-pull task (figure 1) in differ-
ent directions and computed the smoothness index 
(Hans-Leo Teulings et al 1997) of arm joints and end 
effector trajectories during the reaching and the pull-
ing phase separately. The smoothness during the pull-
ing phase was comparable to that computed in the 
reaching phase suggesting that the robot did not per-
turbate the dynamics of natural arm movements (fig-
ure 3(F)).

We then computed the maximum wrist speed dur-
ing the reaching and pulling phase in Mk-Jo perform-
ing a reach-and-pull task at different stiffness levels 

Figure 4. Multimodal electrophysiology during unconstrained reaching and grasping. (A) Utah arrays placement for Mk-Jo and 
Mk-Cs. Each animal received two arrays of 64 channels. M1 hand and arm areas where identified in Mk-Jo and Mk-Cs, respectively, 
through intra-operative electrical stimulation. (B) Schematic of a skilled grasping task during which the monkey had to reach for 
different types of object and pull them towards a pre-determined spatial threshold. (C) Schematic of the 3D reaching task during 
which the monkey had to reach for an object placed at different positions in space and pull it towards a pre-determined spatial 
threshold. Examples of synchronous multiunit neural recordings, hand and arm kinematics, grip pressure and pulling force 
recordings are shown on the right for both tasks.
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(figure 3(G)). Our results show than for every stiff-
ness level, the maximal hand speed was significantly 
lower when interacting with the object than during the 
reaching phase. In addition, higher stiffness resulted in 
lower pulling speed. Taken together, these results show 
that our robotic platform can be used to apply loads 
while remaining compliant to upper-limb movements.

Finally, we characterized the force-to-voltage rela-
tionship of the grip pressure sensor for different object 
geometries. Calibration curves showed that spherical 
and cylindrical objects exhibit a non-linear force-to-
voltage behaviour while the pinch-like geometry dis-
played a linear behaviour (figure 3(H)). We demon-
strated that the force-to-voltage relationship remained 
stable after 1000 squeezes (figure 3(H)).

3.2. Applications to basic and translational studies
We investigated the kinematic, kinetic and neural 
components of natural three-dimensional reaching, 
grasping and pulling behaviour in monkeys. Three 
adult Macaca fascicularis female monkeys (Mk-Jo, 
Mk-Cs and Mk-Ol) were implanted with a pair of 
microelectrode arrays (Blackrock Microsystems, Salt 
Lake City, UT, USA). The arrays were placed in the hand 
and arm area of the right primary motor (M1) and 
right primary somatosensory (S1, area 1/2) cortices 
(Pons et al 1985, London and Miller 2013) (figure 
4(A)). Brain signals were synchronized to interaction 
forces, grip pressure and arm and hand kinematics. We 
implemented two tasks. In both, the animal reached 
freely towards an object, performed a specific grasp, 
and compensated for the dynamic resistance applied 
by the robot to pull the object across a virtual border. In 
Task 1, the monkey reached for four objects of different 
shapes: a small sphere, a large sphere, a cylinder, and a 
‘pinch’ object. Each object encouraged the animal to 
use a specific grasp: three finger grip (small sphere), 
whole hand grip (large sphere), two-finger precision 
grip (pinch), and power grip (cylinder) (figures 2(B), 
4(B) and 5(A)). The objects were presented at the same 
position. The joint impedance varied across ‘low’, 
‘medium’ and ‘high’ level of resistance to object 
displacement. In Task 2, the monkey reached for the 
small sphere presented at different positions in space 
(‘central’, ‘left’, or ‘right’, figure 4(C)).

3.3. Arm and hand dynamics during natural 
reaching and grasping
We first explored how kinematic and kinetic 
components of movement varied during natural reach 
and grasp paradigms, and how these evolved under 
different levels of resistance. The animal adapted the 
hand configuration according to the selected objects 
(figures 5(A) and S3(B)). Fingers joint angles showed 
closer motor patterns for the small and large sphere 
than for the cylindrical object. Interestingly, average 
grip pressure was larger for the small spherical grip 
than for the other objects, presumably because strong 
grip was required to compensate for the small surface 

of hand contact. Grasping pressure and pulling forces 
increased in response to an increase in resistance 
(figures 5(B) and S3(B)), indeed during pulling grip 
pressure was linearly correlated to pulling force (figure 
5(B), R2  =  0.5). We performed a principal component 
analysis (PCA) of kinetic and kinematic features of 
grasping. This analysis revealed that grasping features 
evolved over well clustered smooth trajectories for 
different resistance levels during movement (figures 
5(C) and S2(C)).

The two leading principal components showed 
strong correlations to finger joint kinematic features, 
as well as kinetic features (figure 5(C)). This suggested 
that the monkey adapted its kinematic strategy to 
overcome higher resistances. To verify this hypothesis, 
we extracted kinematic synergies (Santello et al 1998, 
Mason et al 2001) (figures 5(D) and S2(D)). We found 
that the activation of the main synergy (first comp-
onent, 70% of variance for all objects figures 5(D) and 
S2(D)) changed across resistance levels for spheri-
cal objects, but not for the cylinder (figures 5(D) and 
S2(D)). This suggests that the monkey adapted the 
grasping strategy to execute higher force levels. In the 
case of the cylindrical grip, the monkey overcame large 
resistance levels by generating stronger puling torque 
without substantial change in his grip pattern.

We then inspected kinematic behaviour for differ-
ent spatial targets in Task 2 (figures 5(E), S3(D) and 
(E)). Joint angles showed reproducible patterns across 
trials, even if the animal was not trained to follow a 
specific strategy and was free to reach the object with-
out time or spatial constraints. In Mk-Cs, joint angles 
and hand trajectory along the x and z direction showed 
a similar trend across the different positions (figure 
5(E)). In Mk-Ol, since the lateral targets were located 
higher than the central target along the z direction, 
hand trajectories as well as wrist position showed vari-
ations along the y and the z coordinate (figure S3(D)). 
In both Mk-Cs and Mk-Ol, forces along the pulling 
direction were similar across all the target positions, 
confirming that the effort needed to pull the robot end 
effector past the threshold on the x-axis was propor-
tional to the end effector displacement from the target 
position. Forces along the y -axis were markedly differ-
ent, suggesting that the monkey always displaced the 
end effector towards its body center when pulling.

Projections in the PC space formed smooth and 
separated trajectories that spanned the three-dimen-
sional manifold defined by first PCs (figure 5(F)). 
Most of the variance was explained by the force exerted 
in the y  direction as suggested by the pulling force pro-
files (figure 5(E)).

3.4. Sensorimotor neural dynamics during natural 
reaching and pulling
We then used our robotic framework to study the 
neural activity in M1 and S1 during natural reaching 
and grasping. Nearly all channels showed high 
modulation of multi-unit firing rates for both sensory 
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Figure 5. Arm and hand dynamics during natural reaching and grasping. (A) Examples of kinematic and kinetic variables for 
three different objects (n  =  15 trials per object, one recording session). 3D hand configuration is shown on top for each object. (B) 
Example of normalized pulling force and grip pressure obtained for three levels of resistance when pulling on the large spherical 
object (n  =  10 trials per resistance condition, one recording session). The box-plots show the median, the 1.96 SEM and the STD of 
the pulling force area under the curve (AUC) during the movement (n  =  30 trials per condition, three recording sessions). Data were 
normalized by the maximal pulling force measured within each session. Increase in resistance had a significant effect on the pulling 
force impulse (Kruskal–Wallis, p   <  0.001 with post hoc correction, * p low-med  <  0.05, *** p low-high  <  0.001, *** p med-high  <  0.001). 
Correlation analysis between the grip pressure and the pulling force impulses (AUC) revealed a linear correlation between these 
two variables (R2  =  0.5 and p value  =  1.6  ×  10−16, n  =  30 trials per condition, three recording sessions). (C) Principal component 
analysis of the kinematic and kinetic components of the movement for the three levels of mechanical resistances (n  =  10 trials per 
condition, large sphere object, one recording session). The color-coded representation of factor loadings identifies variables that 
contributed most to the differences observed between the difference levels of resistance. (D) Top panel: postural kinematic synergy 
defined by the first principal component. Bottom panel: time course activation of the first PC averaged over trials shows modulation 
for high level of resistance compared to low and medium resistances, indicating a change in kinematic grasping strategy to overcome 
increased levels of resistance (n  =  10 trials per condition, large sphere object, one recording session). (E) Examples of kinematic 
and dynamic variables for 3D reaching towards different spatial targets (n  =  25 trials per position, one recording session). Joint 
kinematics angles, three dimensional pulling force and wrist trajectories are shown for the left, center and right position. Stick 
diagram depicts evolution of the arm joint angles for the three conditions while maxima pulling force is represented as 3D vectors. 
Thick stroke arrows represents the average maximal force value. Wrist trajectories are also plotted in 3D. (F) Principal component 
analysis of the kinematic and kinetic components of the movement reveals partial overlapping of the movement performed to reach 
the three different target positions (n  =  25 trials per position, one recording session). Color-coded representation of factor loadings 
identifies the x and y  components of the pulling force as the most meaningful features for the first PC while the wrist and elbow 
joints associate with high loadings in the second and third PC, respectively. Thicker lines represents the data mean while shaded areas 
depicts the SEM.
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and motor areas in all monkeys (figures 6(A), (C), 
S3(A) and (C)). Interestingly, activity arising from 
the arm somatosensory area (Mk-Cs) was strongly 
modulated during the whole movement while the 
largest response in the somatosensory area of the hand 
(Mk-Jo and Mk-OL) occurred shortly following the 
grasp (figure 6(A)).

We then identified a neural manifold (Gallego et al 
2017) from the multi-unit activity of each brain area 
and compared the trajectories to those of the kinemat-
ics (figures 6(A), (C) and S3(B)). In Task 1, both M1 
and S1 showed smooth curves that segregate for dif-
ferent object shapes. The trajectories corresponding to 
similar objects were found to be very close in the PC 
space for both kinematic and neural features. In Task 2 
instead, trajectories in the kinematic manifold showed 
distinct paths for different positions in space (figures 
6(B) and (D)), while neural manifolds displayed very 
similar trajectories for different positions suggesting a 
common neural basis for reaching and pulling in both 
motor and sensory areas.

3.5. Single unit encoding of multimodal motor  
and sensory information
We then exploited the capabilities of our framework to 
dissect the role of kinematic, kinetic or sensory events 
on the firing patterns of single units. We manually 
sorted M1 and S1 recordings to identify well-isolated 

single units. During the task, firing rates in M1 were 
typically higher than in S1 (figure 7(A)). By design, the 
pulling force applied by the monkey correlated with the 
negative (towards the body) hand velocity of the pull 
(figure 7(B)). We first asked whether this interaction 
between limb kinematics and object dynamics could 
be observed at the single neuron level. We then plotted 
the firing patterns of single neurons against force and 
velocity variables and observed diverse and complex 
tuning for hand velocity and pulling force in both M1 
(figure 7(C)) and S1 (figure 7(D)). While some cells 
showed apparent tuning for specific features (figures 
7(C) top and (D) top likely modulate only with pulling 
force) others showed a more complex interaction of 
these features (e.g. figure 7(D), bottom, modulates 
with both hand velocity and pulling force).

We next sought to quantify the influence of these 
behavioural covariates on each spike train using an 
encoding model of neural activity. We constructed 
generalized linear models (GLMs) (Pillow et al 2008, 
Perich et al 2018) to predict the spiking activity of the 
individual neurons based on numerous behavioural 
and environment signals including limb kinematics, 
pulling force, and object contact events reflecting the 
possibility for cutaneous sensory input (figure 7(E)) at 
object contact. The GLMs predicted the probability of 
observing an individual spike train. We found that the 
majority of cells in both M1 and S1 could be signifi-

Figure 6. Sensorimotor neural dynamics during unconstrained reaching and pulling. (A) Averaged synchronized neural, 
kinematic and dynamic signals collected during skilled grasping of four different objects (Mk-Jo, n  =  15 trials per object, one 
recording session). The dashed line identifies the onset of the grasp. Signals were averaged before the grasp over the mean reaching 
phase duration and after the grasp up to the minimum pulling phase duration. Brain signals were binned over 10 ms time 
window, normalized for each channel and sorted in ascending order of time of maximal firing rate. The reference condition for 
aligning neural signals is the large sphere for task 1. (B) Principal component analysis of the kinematic, motor and sensory neural 
components of the movement reveal clustering of the four different types of object geometry along the three first PCs in each 
the cortical and kinematic PC spaces (Mk-Jo, n  =  15 trials per object, one recording session). (C) Averaged synchronized neural, 
dynamic and kinematic signals during the execution of the task 2 for three different spatial targets. Signals were processed identically 
to task 1 (Mk-Cs, n  =  25 trials per position, one recording session). The reference condition for aligning neural signals is the central 
target for task 2. (D) Principal component analysis of the kinematic, motor and sensory neural components of the movement for the 
three different object positions (Mk-Cs, n  =  25 trials per position, one recording session) show overlapping trajectories for the three 
targets in the neural PC space and dissociated trajectories in the kinematics PC space.
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cantly predicted using this model (figure 7(F)), with 
similar performance for both areas. By computing a 
relative pseudo-R2 metric, which compares the per-
formance of the full model to a reduced model which 
omits specific variables (see methods), we quanti fied 
the unique contribution of each specific set of vari-
ables on the model performance (figure 7(G)). We 
found limb kinematics to be the dominant explana-
tory variable, reflecting the gross modulation of neural 
activity throughout the reach. Yet, a significant por-
tion of neural spiking could also be explained by the 
three-dimensional pulling force or the time of object 
contact. For both monkeys, approximately 16% of 
S1 neurons were significantly explained by the pre-

cise object contact independently of other variables  
(figure 7(H)). Across the population of neurons 
recorded from the M1 arm area Mk-Cs, 24% of neu-
rons were significantly explained by pulling force, yet 
we found very little force information in the hand-area 
M1 neurons recorded from Mk-Jo.

3.6. Discrete and continuous decoding  
of movement kinematics
Finally, we sought to demonstrate the relevance of 
our framework to neural engineering applications. 
For this, we evaluated the ability to decode discrete 
and continuous features of natural movement using 
tools widely employed in studies of brain computer 

Figure 7. Single unit encoding of multimodal motor and sensory information. (A) Each histogram shows the peak firing rate across 
all trials (one session per animal) for the populations of sorted neurons from M1 (red) and S1 (blue). On average, M1 firing rates 
were slightly higher than S1 (9.5 Hz compared to 6.4 Hz; p   <  0.001, Student’s t-test). (B) Hand velocity against pulling force for 
all trials from Mk-Cs. Each dot represents a single time point (sampled at 10 ms intervals). Since the pulling phase was loaded, the 
pulling force strongly correlates with negative hand velocity. (C) Example tuning for three M1 cells plotting firing rate against the 
hand velocity (left column) and pulling for (right column). Insets show 100 randomly drawn spike waveforms (scale bar indicates 
100 μV). Due to the interplay between kinematics and force during the object interaction, we observed very complex tuning for the 
different cells. The top cell, for example, correlates with pulling force, whereas the middle cell appears to correlate with both force 
and kinematics. (D) Three example cells from S1, presented as in panel (C). (E) We used GLMs to assess whether neural activity is 
explained by limb kinematics, pulling force, or object contact events. Example predictions for one cell is shown comparing a model 
with kinematics and force (gray) against the full model (black). The black model better captures the burst of spikes following object 
contact. (F) The distribution of pseudo-R2 values for the full model across all M1 and S1 cells in Mk-Cs (solid) and Mk-Jo (hollow). 
(G) The relative pseudo-R2 metric captures the contribution of each parameter to the full model fit. Most cells were predominantly 
explained by limb movements, but there remains a substantial effect of pulling force and object contact. (H) The percentage of 
cells that were significantly described (p   <  0.05, bootstrap test; see methods) by each of the parameters. All cells were significantly 
predicted by kinematics, though many also were significantly explained by object contact and pulling force.
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interfaces (Velliste et al 2008, Fitzsimmons et al 2009, 
Vargas-Irwin et al 2010, Ethier et al 2012, Nishimura 
et al 2013, Capogrosso et al 2016, Hu et al 2018).

We developed a linear discriminant analysis (LDA) 
decoder that calculated the probability of reaching 
onset and grasping events using cortical signals from 
primary motor areas. The decoder accurately pre-
dicted these events over extended periods of behaviour 
in both monkeys (figure 8(A)), with accuracy of up to 
99% for Mk-Jo and 93% for Mk-Cs. The median tem-
poral precision was found to be close to zero (median 
difference:  −11.5 ms for reaching onset and 9.5 ms 
for grasping in Mk-Jo, and  −4 ms for both events in 
Mk-Cs).

We then used the LDA decoder to classify object 
type and direction of reaching from both motor and 
sensory cortices. We repeated the LDA analysis at 
sliding time windows spanning the entire reach-and-
grasp movement. Both M1 and S1 multiunit spiking 
activity accurately discriminated between different 
grasps during the grasping phase in Mk-Jo (maximum 
decoding accuracy: M1: 100%, S1: 94%). Interestingly, 
multiunit activity from M1 and S1 could be used to 
differentiate between objects more than 300 ms before 
movement onset. Yet, we were not able to reliably clas-
sify one of the three positions before the movement 
onset in Mk-Cs. Maximum decoding accuracy was 
reached around 100 ms before the grasp and was 70% 
for M1 and 58% for S1.

We finally investigated the possibility to decode 
continuous arm and fingers kinematics. By fitting 
a standard Kalman filter (Wu et al 2006) to each 3D 
coordinates of the arm and hand joints, we managed 
to reconstruct time-varying joint coordinates for most 
of the finger joints, obtaining a median performance 
of 0.83 and 0.65 for M1 and S1 areas, respectively, in 
Mk-Jo (figure 8(C)). Three-dimensional reconstruc-
tion of the wrist and fingers position based on decoded 
kinematic features is shown in figure 8(C) for both 
spherical and cylindrical grips. Hand and arm joint 
kinematics could also be decoded from Mk-Cs with a 
median performance of 0.68 and 0.67 for M1 and S1 
area, respectively. For both monkeys, M1 decoder out-
performed S1 decoder.

4. Discussion

Here we presented the implementation of a robotic 
platform for the study of sensorimotor processes 
underlying upper limb movements in monkeys. We 
validated this platform by implementing behavioural 
tasks in monkeys involving natural, three-dimensional 
reaching, grasping and object manipulation. We 
discuss our developments and the functionality of our 
robotic platform in light of three applications: 1) the 
study of arm/hand kinematics, 2) neural correlates of 
natural upper limb movements 3) application in Brain 
Computer Interfaces.

4.1. A versatile framework for multimodal 
characterization of three-dimensional arm 
movements
In typical neurophysiological experiments with 
monkeys, experimenters constrain the behaviour of 
monkeys to separate kinematic analysis from the study 
of dynamic force interactions with the world. Reach 
to grasp is often studied using static objects (Santello 
et al 1998, Brochier et al 2004, Vargas-Irwin et al 
2010, Ethier et al 2012, Schaffelhofer and Scherberger 
2016, Okorokova et al 2019) or constrained 
manipulandum (London and Miller 2013, de Haan 
et al 2018, Omrani et al 2016), while the production 
of forces is typically investigated under isometric/
unidimensional conditions (Moritz et al 2007, Ethier 
et al 2012, Nishimura et al 2013) or in planar tasks 
(London and Miller 2013, Omrani et al 2016, de Haan 
et al 2018). While these constraints are effective to 
dissect the role of specific neuronal-subpopulation 
in the control of dynamic movement variables, even 
simple natural movements present an extraordinary 
complex patchwork of precision and force-controlled 
movement actions following unconstrained limb 
and joint trajectories. Our robotic framework allows 
the characterization of these natural behaviours 
while retaining the ability to integrate multimodal 
recordings of kinetic and kinematic signals.

We devised a platform in which subjects can inter-
act freely with a robotic arm in a large three-dimen-
sional workspace (figure S1(C)). We showed that inter-
action with the robot during upper-limb movements 
was safe and robust and that it did not impose any 
direct physical constraint on the arm, therefore pro-
moting natural and smooth trajectories (figure 3(F)). 
In addition, we instrumented our platform to provide 
simultaneous recordings of pulling and contact forces. 
Our robot control strategy can accommodate for sim-
ple and straightforward definition of motor tasks and 
it allows the user to easily adjust robot behaviour. The 
control software package and libraries are made freely 
accessible and open source on Zenodo (https://doi.
org/10.5281/zenodo.3234138). These can also be used 
as a basis to configure other robotic arms for similar 
tasks using our logic. We finally synchronized kine-
matics and cortical recordings to both robot behaviour 
and interaction forces measurements to obtain a rich 
multimodal panel of sensory and motor features char-
acterizing arm and hand movements.

This framework provides with unprecedented 
means to address scientific questions that require the 
study of motor actions following unconstrained tra-
jectories of limbs and joints in monkeys, such as the 
characterization of motor recovery in pre-clinical 
studies. It can potentially be used to design complex 
tasks such as precise control of grip pressure (Ethier 
et al 2012), maneuvering of 3D manipulandum, or 
motion under force-field perturbation. In addition, 
our platform could serve rehabilitation purposes 
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Figure 8. Discrete and continuous decoding of movement dynamics (A) LDA decoding of reach-onset and grasp-onset events 
from M1 multiunit activity in both monkeys. On the left, four (Mk-Jo) and five (Mk-Cs) successive reach, grasp and pull trials 
are presented along with the actual event onset identified using video recordings, the detected motor states and the probability of 
reach-onset and grasp-onset motor states (in black and purple). On the right, histograms show the distribution of the temporal 
differences between the actual occurrence of reach-onset and grasp-onset events and the decoded occurrence of these motor states 
for all the recording sessions in the two monkeys (n  =  76 reach and grasp events for M-Jo, one recording session, and n  =  278 reach 
and grasp events for Mk-Cs, one recording session). (B) LDA decoding of grip types and target positions. On the left, we represented 
the trial structure as well as the average wrist displacement during the task (n  =  48 trials for Mk-Jo, one recording session). The wrist 
position does not vary before the movement onset event identified via video recordings. The average reaching phase duration was 
650 ms, while the average pulling phase lasted for about 900 ms. On the right, we show the average performance of the offline LDA 
decoder for each object shapes and each target position in space using multiunit activity recorded from M1 and S1 areas (n  =  15 
trials per objects for Mk-Jo, one recording session and n  =  25 trials per position for Mk-Cs, one recording session). Confusion 
matrices report accuracies obtained for the best time window for M1 and S1 signals. (C) Continuous prediction of arm and fingers 
kinematics using Kalman filtering. Multiunit activity from M1 and S1 areas were used to predict fingers and arm 3D coordinates 
during the whole reach-and-pull movement. On the left, time traces show prediction of the thumb, index and wrist x, y  positions 
and velocity using neural population activity from M1 and S1 arrays in Mk-Jo and Mk-Cs. Three-dimensional static hand postures 
were reconstructed by predicting x, y  and z coordinates of each fingers and wrist joints in Mk-Jo for the small spherical grip and the 
cylindrical grip (n  =  1 trial per object). On the right, performances of the continuous decoders are computed separately for M1 and 
S1 in both monkeys (cross validation k-folds with k  =  48 for Mk-Jo, one recording session and k  =  134 for Mk-Cs, one recording 
session).
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(Spalletti et al 2014, 2017). For example, deficits and 
recovery in kinematics or force outputs could be char-
acterized in animal models of disease.

4.2. Applications in the study of three-dimensional 
movement dynamics
Characterization of arm and hand movement 
dynamics requires the integration of pulling force 
components, contact forces and kinematics of the 
joints. In our example, we utilized these features to 
define a ‘dynamic’ manifold showing the evolution 
of trajectories in a space that mixes kinematic and 
forces. We used this tool to study kinematic adaptation 
to resistance levels and investigate the relationship 
between kinematics and pulling forces in grasping 
(Santello et al 1998). Surprisingly, our analysis revealed 
that kinematic strategies adapted to resistive loads. 
This suggests that kinematic synergies may vary when 
stronger forces are perceived. Our results indicate 
that during functional movements, upper-limb 
postures, interaction forces, and joint trajectories are 
continuously adapted together to reach the desired 
motor output, and perhaps regulated by both central 
(Santello et al 1998) or even simple reflex mechanisms 
(Weiler et al 2019).

4.3. Applications in the study of neural 
sensorimotor processes
We then sought to demonstrate the efficacy and 
potential of our framework for applications in the 
study of neural dynamics during natural movements. 
We reported that neural activity from both motor 
and somatosensory cortex show clear modulation 
with kinematic and dynamic movement variables. 
Both M1 and S1 activity showed complex modulation 
throughout the whole movement, with clear and 
smooth trajectories in the neural manifold (figures 
6 and S3). This corroborates that somatosensory 
single cells encode multiple movement components 
and not only, or mostly, touch-related information 
(Prud’Homme and Kalaska 1994, London and Miller 
2013). The firing patterns of single units in both M1 
and S1 showed strong and complex modulation with 
respect to multiple movement parameters (figure 
7). Our unique set up allowed us to investigate 
how kinematic, forces and contact events could, 
in combination or independently, explain neuron 
firing patterns. The majority of neurons in the 
somatosensory cortex encoded kinematics variables 
only. The remaining portion of cells encoded either 
contact events or force in conjunction with kinematics 
suggesting that important components of movement 
dynamics are encoded in somatosensory area 2. 
Availability of such a complex dataset and integrated 
kinematic signals opens intriguing possibilities for 
the study of population dynamics during natural 
behaviour.

4.4. Applications in neuroengineering and brain 
computer interfaces
Brain Computer Interfaces have been applied to animal 
models and humans to control robots (Hochberg 
et al 2006, 2012, Collinger et al 2013, Wodlinger et al 
2015) support communication (Wolpaw et al 2002, 
Milekovic et al 2013b, Gilja et al 2015, Vansteensel 
et al 2016) and restore motor control (Moritz et al 
2007, Ethier et al 2012, Bouton et al 2016, Ajiboye 
et al 2017). However clinical applicability is limited 
by the fact that these devices are tested in restricted 
laboratory environments and constrained tasks. 
Instead, the development of future solutions aiming at 
the recovery of functional movements requires set-ups 
that replicate and quantify performances of natural 
motor tasks. Our framework provides with such an 
opportunity allowing the execution and quantification 
of three-dimensional arm and hand movements in a 
relevant animal model.

For example, we showed that it was possible to 
decode both reach and grasp events as well as as target 
shape or position in space during a natural tasks that 
did not constrain the execution time or the movement 
trajectory. This type of information could be com-
bined to build simple though robust decoders driving 
pre-programmed patterns of stimulation of the nerv-
ous system in pre-clinical and clinical settings (Capo-
grosso et al 2016, Wagner et al 2018).

Interestingly, even in a task that did not constrain 
the duration of the movement preparation or execu-
tion phase, we were able to predict grasp types from 
both motor and sensory activity several hundreds of 
milliseconds before movement onset. We found this 
result in accordance with several theories around the 
dynamical interaction and integration of sensory-
motor processed during movement, and may even 
include components such as ‘efference copy’ (Grüsser 
1994).

Finally, we showed that we were able to predict 
individual fingers kinematics from multiunit activity 
recorded in motor and somatosensory cortex dur-
ing whole three-dimensional reaching and grasping 
movements (figure 8(C)). These results confirm the 
findings of Vaskov et al (2018) on M1-based finger 
motion decoding and extend the findings of Okorok-
ova et al (2019) to multiunit activity and whole arm 
and hand movements.

5. Limitations

Our platform holds some limitations both in terms 
of performance in the present applications and 
flexibility towards different experimental uses. First, 
for our example applications, the monkey interacted 
with the robotic arm in an impedance-control mode. 
Impedance control introduces a damping effect on 
the arm of the animal which slows down the pulling 
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movement. We explicitly chose this control mode, 
since this dampening effect was a feature of our 
experimental design. However, this behaviour can 
represent a motor constraint for studies that envision 
a fully transparent interaction with a robotic device 
that does not oppose any resistance to manipulation. 
In this case, direct torque-control strategies offer 
a good alternative to impedance control. These 
would allow for transparent interactions by 
compensation of any force applied on the robot 
end-effector. However, this control architecture 
could require additional strategies to compensate 
for kinematic instabilities. The code structure of our 
robotic framework provided online allows a custom 
implementation of direct force control schemes as 
well as several others, making it compliant to other 
behavioural requirements.

Second, our platform is built around a robotic 
arm. Obviously this choice influences not only the 
experimental performance and constraints, but also 
the number and type of variables that can be evalu-
ated and compared to neural activity. In our case, we 
focused on studying upper-limb unconstrained reach-
ing. Therefore, we allowed the monkeys to interact 
with the robotic arm exclusively at the end effector in 
order to leave the arm clear from any other constraints. 
This system is not compatible with studies aiming to 
manipulate or constrain specific degrees of freedom in 
the arm joint space, as well as the direct measurements 
of arm joint torques. In those cases, exoskeletons may 
offer a valid and more appropriate alternative (Scott 
1999, Pirondini et al 2016).

6. Conclusion

In summary we have reported and described a 
platform that can be adapted to study a large variety of 
tasks that are useful to investigations in motor control 
and perhaps other related applications. We provided 
three examples showing the validity of our approach 
for both basic and applied investigations thus paving 
the way to more detailed studies investigating 
sensorimotor processes in both monkeys and humans.
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