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Abstract
Objective. In this study, we combine a wheelchair and an intelligent robotic arm based on an 
electrooculogram (EOG) signal to help patients with spinal cord injuries (SCIs) accomplish 
a self-drinking task. The main challenge is to accurately control the wheelchair to ensure 
that the randomly located object is within a limited reachable space of the robotic arm 
(length: 0.8 m; width: 0.4 m; height: 0.6 m), which requires decimeter-level precision, and 
is still undemonstrated for EOG-based systems as well as EEG-based systems. Approach. 
A novel high-precision EOG-based human machine interface (HMI) is proposed which can 
effectively translate two kinds of eye movements (i.e. blinking and eyebrow raising) into 
various commands. For the wheelchair, positional precision can reach decimeter-level and the 
minimal steering angle is 5◦. For the intelligent robotic arm, shared control is implemented 
based on an EOG-based HMI, two cameras and the arm’s own intelligence. Main results. After 
brief training, five healthy subjects and five paralyzed patients with severe SCIs successfully 
completed three experiments. For the healthy subjects/patients with SCIs, the system achieved 
an average accuracy of 99.3%/97.3%, an average response time of 1.91 s/2.02 s per command 
and an average stop-response time of 1.30 s/1.36 s with a 0 false operation rate. Significance. 
The EOG-based HMI can provide sufficient precision control to integrate a wheelchair and 
a robotic arm into a system which can help patients with SCIs to accomplish a self-drinking 
task. (ChiCTR1800019764)

Keywords: spinal cord injury (SCI), electrooculogram (EOG), human-machine interface 
(HMI), wheelchair, robotic arm
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1.  Introduction

Patients who are paralyzed from the neck down by spinal cord 
injuries (SCIs), amyotrophic lateral sclerosis or other disorders 
lose, or partially lose, control of their limbs. For paralyzed 
patients, external assistance is necessary to accomplish cer-
tain daily tasks, such as moving from one place to another and 
grasping a bottle to drink. Usually, such assistance is provided 
by a nurse or other paramedics, which may be time consuming 
and cost tremendous manpower. To help paralyzed patients 
take care of themselves, artificial devices, such as robotic 
arms and wheelchairs, are widely used to realize two basic and 
essential limb functions: (i) the walking function of the lower 
limbs and (ii) the grasping function of the upper limbs.

A common solution to compensate for the walking function 
of the lower limbs is to use a nonmanual wheelchair. Since 
most paralyzed patients still maintain normal brain functions 
and eye movements, an electroencephalogram (EEG) and 
an electrooculogram (EOG) may be used as input signals of 
nonmanual human-machine interfaces (HMIs) to control a 
wheelchair [1–5]. EEG-based HMIs, known as brain–comp
uter interfaces, generate control commands by decoding the 
user’s intention from various EEG patterns [6–9]. Compared 
with EEG, EOG has a higher signal-to-noise ratio [10] but 
requires users to maintain normal eye movements, such as 
winking, blinking, gazing and frowning [4, 11, 12]. In [3], the 
four directions (i.e. up, down, left and right) of eye movement 
were translated into four wheelchair-control commands (for 
example, moving forward, stopping, turning left and turning 
right), respectively. In one of our prior works [13], subjects 
drove the wheelchair by blinking synchronously with the 
button flashes on screen.

For the grasping function of the upper limbs, a robotic arm 
is commonly used to simulate arm movements and help par-
alyzed patients accomplish daily tasks [14–18]. In [15], the 
patient’s motion intentions were decoded to control a robotic 
arm to drink coffee from a bottle. In [16], a noninvasive EEG-
based HMI was proposed for robotic arm control. In [17], 
Witkowski et al fused the EEG and EOG to build an enhanced 
HMI to control a hand exoskeleton. To the best of our knowl-
edge, existing robotic arm systems require the origin of the 
arm to be fixed on a stationary platform (for example, a table). 
To ensure a successful grasp, the target object needs to be 
within the fixed reachable area of the robotic arm, which is 
unpractical for daily applications, for example, when the user 
is far away from the reachable area.

Although prior works have developed effective EEG-/
EOG-based wheelchair systems and robotic arm systems, as 
far as we know, these two devices have not been integrated 
together and controlled by an EEG-/EOG-based HMI. The 
main challenge in combining the two devices is that it requires 
high precision control (i.e. positional precision and direc-
tional precision). To ensure a successful grasp, the user needs 
to effectively drive and accurately stop the wheelchair such 
that the randomly located object is within reach of the robotic 
arm, which requires decimeter-level positional precision and 
accurate direction control. Until now, it has not been reported 

that EEG-/EOG-based wheelchair systems can provide such 
precision control.

In this study, we install an intelligent robotic arm on a 
wheelchair to help patients with SCIs. A novel high-precision 
EOG-based HMI is proposed which can effectively trans-
late two kinds of eye movements (i.e. blinking and eyebrow 
raising) into various commands. For the wheelchair, the posi-
tional precision can reach decimeter-level and the minimal 
steering angle is 5◦. For the intelligent robotic arm, shared 
control is implemented based on the EOG-based HMI, two 
cameras and the arm’s own intelligence. Five patients with 
severe SCIs and ten healthy subjects participated in the 
experiments. After brief training, all subjects were able to 
successfully complete the experiments. For healthy subjects/
patients with SCIs, the system achieved an average accuracy 
of 99.3%/97.3% and an average response time of 1.91 s/2.02 s 
per command with a 0 false operation rate. The experimental 
results demonstrated that the proposed EOG-based HMI 
can provide sufficient precision control to integrate a wheel-
chair and a robotic arm, which can help patients with SCIs to 
accomplish a self-drinking task.

The remainder of this paper is organized as follows: sec-
tion 2 illustrates the methodologies, including the signal acqui-
sition, system outline, EOG-based HMI, wheelchair control, 
and shared control for the robotic arm, section 3 presents the 
experimental results, further discussions are included in sec-
tion 4, and section 5 concludes the paper.

Figure 1.  Electrode placements. ‘EOG’: the data channel that is 
placed above the right eyebrow to record vertical EOG signals; 
‘DRL’: the feedback channel that is located on the left mastoid; 
‘REF’: the reference channel that is located on the right mastoid.

Figure 2.  Overall view of the system, which consists of an EOG-
based HMI, a wheelchair, a robotic arm, and two cameras.
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2.  Methods

2.1.  Signal acquisition

In this study, a self-designed EOG acquisition device was used 
to collect and amplify the EOG signals. The sampling rate and 
the overall gain of the device are 250 Hz and 1000, respectively. 
Three channels (‘EOG’, ‘REF’, and ‘DRL’), corresponding to 
three electrodes, are attached to the skin, as shown in figure 1. 
Among the three channels, ‘EOG’ is the data channel to record 
vertical EOG signals from the forehead; ‘DRL’ is the feedback 
channel through which the common mode signal in the differ
ential amplifier is sent back to the subject’s body; and ‘REF’ 
is the reference channel. The impedances between the skin and 
the three electrodes are kept below 5 kΩ.

2.2.  System outline

The main components of the proposed system include an 
EOG-based HMI, a wheelchair (UL8W, 0.67 m × 0.6 m, 
Pihsiang Machinery Co. Ltd), an intelligent robotic arm 
(JACO6 DOF-S, Kinova Robotics) and two cameras (Kinect 
v2, Microsoft). Kinect v2 is a customized sensing device that 

provides both color-image and depth information about sur-
rounding objects. The placement of the components is shown 
in figure 2. The robotic arm was installed at the front-left side of 
the wheelchair. One of the cameras (camera A) was fixed near 
the robotic arm facing forward; the other camera (camera B)  
was installed on a steel column towards the user’s face.

The system workflow is illustrated in figure 3. The graphic 
user interface (GUI) of the EOG-based HMI is presented on 
the screen of a laptop with several flashing buttons, each of 
which corresponds to a specific command. The buttons flash 
one by one in a predefined sequence. To select a button, the 
user first performs an intended blink in response to a flash of 
the button. The algorithm analyzes the EOG signals, detects 
the intended blink, and preselects a target button. Then, visual 
feedback of the preselected button is presented on the GUI. 
If the feedback is correct, the user is required to intentionally 
raise his/her eyebrows to verify it. Otherwise, the user ignores 
the visual feedback and the GUI continues to flash. If the user 
misses a button flash, he/she can wait for the next flashing 
round. A command is executed only when the corresponding 
button has been preselected and verified. For the wheelchair 
control, the user generates commands, such as turning and 
stopping, through the EOG-based HMI. For the robotic arm, 

Figure 3.  System workflow. The wheelchair is completely controlled by the EOG-based HMI, and shared control is implemented for the 
intelligent robotic arm.

J. Neural Eng. 16 (2019) 026021
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shared control is implemented. Two cameras (i.e. cameras A 
and B) are used to identify the positions of the objects and the 
user’s mouth. After the user preselects and verifies a button 
that represents a target object through the EOG-based HMI, 
the intelligent robotic arm automatically plans the path to 
grasp the object and bring it to the user’s mouth according 
to the positions of the object and the mouth identified by the 
two cameras. Other commands for controlling the robotic 
arm are also provided by the EOG-based HMI, such as reset-
ting the robotic arm to its home position, backtracking it to 
put the object back, and stopping and restarting it to avoid 
emergencies.

2.3.  EOG-based HMI

A GUI is presented on the screen of a laptop, which consists 
of two levels: the wheelchair control panel (figure 4(a)) and 
the robotic arm control panel (figure 4(b)). Each control panel 
contains several flashing buttons, and each button corresponds 
to a specific command (see the details of the button-command 
mappings in sections  2.5 and 2.6). Initially, the wheelchair 
control panel is presented and the ‘on/off’ button flashes at 
1 Hz while the other buttons remain unchanged, indicating 
that the GUI is off. The user can select this button to turn on 
the GUI. Once the GUI is turned on, the 14 buttons of the 

wheelchair control panel start to flash one by one in a pre-
defined sequence. Each flash lasts 50 ms, and the interval 
between the onsets of two continuous flashes is 80 ms. Thus, 
the period of a flashing round (in which each button flashes 
once) is 1.12 s (14 × 80 ms). For the robotic arm control panel, 
nine buttons are presented and flash one by one sequentially. 
The duration of a single flash is also 50 ms, and the interval 
between the onset of two continuous flashes is 120 ms. As a 
result, the period of a flashing round is 1.08 s (9 × 120 ms).

2.4.  EOG detection algorithm

The proposed EOG detection algorithm can be divided into 
three parts: (i) the blink detection; (ii) the preselection; and 
(iii) the verification.

2.4.1.  Blink detection.  At the end of each button flash, a 
600 ms data epoch (starting from the onset of a flash) of the 
vertical EOG signal is recorded and analyzed. Since the sam-
pling rate of the EOG acquisition device is 250 Hz (i.e. the 
sampling period is 4 ms), a data epoch contains 150 sampling 
points. For each button, the data epoch is first filtered by a 
bandpass filter (1–10 Hz), and then the first-order difference 
of the filtered epoch is calculated to achieve the differential 
epoch. To detect the blink, a multithreshold algorithm similar 

Figure 4.  The GUI consists of two levels: the wheelchair control panel (a) and the robotic arm control panel (b). Each panel contains 
several buttons that correspond to various commands. Initially, the wheelchair control panel is presented. The user can switch to the robotic 
arm control panel by selecting the ‘arm’ button on the GUI (a) and switch back by selecting the ‘wheelchair’ button on the GUI (b).

Figure 5.  A typical differential shape of the EOG signals for blinking (a) and raising eyebrows (b).

J. Neural Eng. 16 (2019) 026021
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to the one proposed in [7] is implemented. Several waveform 
features are extracted from the filtered epoch and the differ
ential epoch, such as the maximum (i.e. the peak) of the fil-
tered epoch amax, the peak of the differential epoch dmax, the 
minimum (the valley) of the differential epoch dmin, the posi-
tion of the peak and valley tp  and tv in the differential epoch, 
and the duration td (as shown in figure 5(a)). The duration is 
defined as the interval between tp  and tv:

td = |tp − tv| .� (1)

The algorithm detects the intended blink by checking whether 
these waveform features satisfy specific threshold conditions. 
For a successful detection, the extracted features described 
above should satisfy the following inequalities:

amax � ath1

dmin � dth1, dmax � dth2

tth1 � td � tth2

� (2)

where ath1 is the amplitude threshold of the filtered epoch, dth1 
and dth2 are the minimal and maximal amplitude thresholds of 
the differential epoch, respectively, and [tth1, tth2] represents 
the range in which the duration td should be located in the 
differential epoch.

2.4.2.  Preselection.  Since the generation of unintended blinks 
is almost a random process, we further check if the detected 
blink was generated within a certain range of delay after the 
button flash. The delay check is based on the following formula:

|tp − Tp| � e� (3)

where tp  is the peak position in the differential epoch, which 
represents the delay of the blink to the target button flash, Tp  
is the desired value of tp , and e is the error range. In this study, 
e is set to be 30 ms.

If the detected blink is generated within the delay range 
after the button flash, the corresponding button is preselected 
and highlighted as visual feedback.

2.4.3.  Verification.  Sometimes an unintended blink may be 
recognized as an intended one and result in a false preselec-
tion. Thus, we add a verification process. Specifically, when a 
button is preselected, the algorithm starts a 600 ms time win-
dow for verification. The user is required to evaluate the selec-
tion when he/she receives the visual feedback and raise his/
her eyebrows if it is correct. Only when the eyebrow raising 
is detected within the 600 ms time window is the preselected 
button verified. A typical differential shape of the EOG signal 
for raised eyebrows is illustrated in figure 5(b). Similar to that 
in section 2.4.2, the 600 ms EOG data epoch of the verifica-
tion window is filtered and differentiated to achieve the fil-
tered epoch and differential epoch. Then, the same waveform 
features are extracted for detecting the raising of eyebrows. A 
successful detection should satisfy the following inequalities:

ath2 � amax � ath3

dth3 � dmax � dth4

tth3 � td � tth4

tp � tv

�

(4)

where ath2 and ath3 are the upper and lower amplitude thresh-
olds of the filtered epoch, respectively, and dth3 and dth4 
represent the upper and lower amplitude thresholds of the 
differential epoch, respectively. In addition, [tth3, tth4] repre-
sents the range in which the duration td should be located in 
the differential epoch.

We chose eyebrow raising as the verification method for 
two reasons: (i) it is rarely performed unintentionally and (ii) 
it results in a vertical EOG signal that can be recorded by the 
electrode placed on the forehead and distinguished from that 
produced by an eye-blink.

2.4.4.  Calibration.  Before the experiments, each user was 
asked to complete a calibration process which contained 
two intended blinking blocks, one unintended block and 
one eyebrow raising block. In an intended blinking block, 
the user performed five intended eye-blinks in sync with the 
button flashes (1 Hz) on screen. An intended block lasted 
6–7 s, and users were informed to avoid any unintended 
eye-blink during this period. In the eyebrow raising block, 
the user raised his/her eyebrows ten times in sync with 
the button flashes. In the unintended blinking block, the 
users just relaxed for 3 min and only blinked unintention-
ally. EOG features, such as amax, dmax, dmin, tp  and td, were 
extracted from those recorded EOG signals of intended and 
unintended blinks, and eyebrow movements. For blinking, 
the amplitude threshold ath1 was set as the mean of the aver-
age EOG amplitude of intended eye-blinks and that of unin-
tended eye-blinks to differentiate them. The average values 
[dmin , dmax] and tp of intended blinks were selected to be the 
differential thresholds [dth1, dth2] and the desired delay value 
Tp , respectively. The duration thresholds [tth1, tth2] were cal-
culated by multiplying the average value td with empirical 
factors (for example, tth1 = 0.8 × td and tth2 = 1.2 × td). 
Similarly, the thresholds of eyebrow raises were calculated 
using the average values of the EOG features extracted from 
the eyebrow movements.

Figure 6.  A rectangular effective zone is defined in the robotic 
arm space (length: 0.8 m; width: 0.4 m; height: 0.6 m). The closest 
distance between the effective zone and the vertical plane of camera 
A is 0.4 m.
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2.5.  Wheelchair control

The wheelchair control requires sufficient commands, such as 
forward and backward motions, left and right turns, accelera-
tion and deceleration, and stopping. In the EOG-based HMI, 
the wheelchair control panel (as shown in figure 4(a)) provides 
14 buttons, each of which corresponds to a specific command. 
Among these buttons, the ‘on/off’ button is used to turn on/
off the GUI. When the wheelchair is static, the user can select 
(i.e. preselect and verify) the ‘speed 1’ button to move the 
wheelchair forward at 0.2 m s−1, and the ‘speed 2’ button is 
used to accelerate the speed to 0.3 m s−1. If the wheelchair is 
moving at 0.3 m s−1 and the user selects ‘speed 1’, the speed is 
decelerated to 0.2 m s−1. For safety, ‘speed 2’ is available only 
when the wheelchair is moving forward. For the backward 
motion, the speed is fixed at 0.2 m s−1. Directional control is 
achieved by eight direction buttons (‘L1’–‘L4’, ‘R1’–‘R4’). 
The four buttons on the left from ‘L1’–‘L4’ correspond to 
turning left at 5◦, 30◦, 45◦, and 90◦, respectively. Similarly, 
‘R1’–‘R4’ correspond to turning right at 5◦, 30◦, 45◦, and 90◦, 
respectively. The wheelchair can be turned when it is either 
moving or static. If the user selects the ‘arm’ button when 
the wheelchair is static, the GUI switches to the robotic arm 
control panel. The switch buttons (i.e. ‘arm’ and ‘on/off’) are 
unavailable when the wheelchair is moving. To achieve quick 
stopping performance, the stop command is executed as long 
as the ‘stop’ button is preselected without verification.

2.6.  Shared control for the robotic arm

Shared control is implemented for the robotic arm, based on 
the EOG-based HMI, two cameras (i.e. cameras A and B) and 
the arm’s own intelligence. Camera A is used to identify the 
position of the objects in front of the wheelchair, and camera 
B is used to identify the position of the user’s mouth. When 
the user stops the wheelchair and preselects and verifies the 
‘arm’ button, the GUI switches to the robotic arm control 
panel as shown in figure 4(b), and the nine buttons flash one 
by one in a predefined sequence.

To ensure a successful grasp, the target object should be 
located in an effective zone of the robotic arm, which is deter-
mined by the arm length and camera A’s viewpoint, as shown 
in figure 6. The defined zone is a rectangular space (length: 
0.8 m; width: 0.4 m; height: 0.6 m), whose element coordi-
nate system is parallel to the coordinate system of the robotic 
arm. All of the parameters of the effective zone are determined 
according to the motion range of the arm and the camera’s 
viewpoint. When the user switches the GUI to the robotic arm 

control panel, camera A starts to calculate 3D coordinates of 
the objects ahead using the region-growing algorithm [19]. 
Only the objects within the effective zone are maintained and 
assigned to the three object buttons (i.e. ‘object 1’, ‘object 2’, 
and ‘object 3’). The result of the assignment is shown on the 
monitor in real time as the feedback. The mouth position is 
identified by implementing camera B’s face detection function.

In this study, the system is used to assist patients with SCIs 
to accomplish a self-drinking task. Thus, the target objects to 
be grasped are bottles with some water and a straw in each of 
them. To grasp a target bottle for drinking, the user first checks 
if the bottle has been detected and assigned to an object button. 
If so, the user selects (i.e. preselects and verifies) the corre
sponding button through the EOG-based HMI. Then, camera 
A and camera B report the positions of the bottle and the user’s 
mouth, respectively, to the robotic arm. According to the posi-
tions, the arm plans the path to grasp and brings the bottle to the 
user’s mouth. After the bottle arrives near the user’s mouth, he/
she can select the ‘rotate’ button on the GUI to rotate the wrist 
joint of the robotic arm to bite the straw (15◦ per rotation). The 
‘back’ button is used to return the robotic arm to put the bottle 
back, and the ‘home’ button is used to reset the arm to its home 
position. During the arm movements, the user can stop and 
restart it by selecting the ‘stop’ and ‘continue’ button, respec-
tively. The ‘wheelchair’ button is used to switch the GUI back 
to the wheelchair control panel when the task is completed.

2.7.  Experimental procedure

Five healthy subjects (one female and four males, numbered 
S1–S5, aged between 22 and 29 years) and five male para-
lyzed patients (numbered P1–P5, aged between 17 and 32 
years) with severe SCIs participated in three experiments 
to demonstrate the effectiveness of the proposed system. 
Individual information on the patients is presented in table 1. 
All subjects maintained normal eye movements. The experi-
ments were approved by the Ethics Committee of Sichuan 
Provincial Rehabilitation Hospital. We also registered on the 
Chinese Clinical Trial Register (ChiCTR) with the registra-
tion number ChiCTR1800019764. Written informed consent 
for the experiment and the publication of individual informa-
tion was obtained from the patients and their legal guardians. 
The performance indices used in this study are listed below:

	 (i)	�Accuracy—the probability of selecting a button correctly; 
	(ii)	�False operation rate (FOR)—the number of false output 

commands per minute when the subject has no intention 
of selecting any buttons; 

Table 1.  Individual information on patients with SCIs.

Patients Gender Age Pathogenesis Time of onset (month) ASIA

P1 Male 26 Falling injury 54 C5-B
P2 Male 17 Swimming injury 2 C5-C
P3 Male 32 Falling injury 8 C7-B
P4 Male 23 Myelitis 40 C5-C
P5 Male 20 Car accident 2 C7-A

Note: AISA: American Spinal Injury Association [20].

J. Neural Eng. 16 (2019) 026021
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	(iii)	�Response time (RT)—the time used to generate a com-
mand; 

	(iv)	�Information transfer rate (ITR)—bits of information 
transferred per minute; 

	(v)	�Operations—the number of commands generated to 
accomplish the mobile self-drinking task; 

	(vi)	�Collisions—the number of collisions during the mobile 
self-drinking task; 

	(vii)	�Unsuccessful grasps—the number of times that the 
robotic arm tries but fails to grasp the target object.

2.7.1.  Experiment I.  All ten subjects participated in this 
experiment to evaluate the overall performance of the EOG-
based HMI without involving the wheelchair or the robotic 
arm. The experiment contained three blocks, each of which 
consisted of 30 trials. In the trial, the system first presented 
a cue regarding a random target button on the wheelchair 
control panel for 4 s. Then, the 14 buttons flashed one by 
one in a predefined sequence. The subject was asked to pre-
select and verify the button associated with the cue as soon 
as possible. Once a button had been selected and verified, 
the GUI stopped flashing and highlighted the selected but-
ton for 300 ms. All commands were invalid in this experi-
ment. Both the cue and the selected button were recorded 
for the accuracy calculation. Then, the system started a new 
trial. When a block was finished, there was a 1 min break. 
After the three blocks were completed, a 30 min idle period 
was conducted during which the subject took a rest with no 
intention to select any buttons. Any verified selection during 
the idle period was recorded as a false output to calculate 
the FOR. Moreover, an important index for evaluating non-
manual HMIs was the ITR [21], which describes the sys-
tem efficiency for transferring effective information. In this 
study, the ITR was calculated using the following formula:

ITR = 60(log2 N + P log2 P + (1 − P) log2[
1 − P
N − 1

])/T
� (5)
where N is the number of commands, P is the average acc
uracy and T is the average RT.

2.7.2.  Experiment II.  This experiment was designed to sim-
ulate a common scene in daily life: moving from a random 
position to reach a table also randomly located in the room, 
selecting a target bottle on the table and grasping it to drink 
water with a straw. As shown in figure 7(a), the experimental 
field was built on a rectangular space (9 m × 5 m) to simu-
late an indoor environment. Seven obstacles and a bench were 
randomly placed in the field. An ordinary table (0.35 m high) 
with three different bottles on it was located at one side of the 
field. Each bottle contained some water and a straw. Before 
the experiment, the subjects were given a preparation period 
to become familiar with the system and the field. All subjects 
participated in this experiment, and each of them completed 
five trials. In each trial, by using the proposed HMI, the sub-
ject was required to drive the wheelchair from a random posi-
tion in the starting zone to bypass the obstacles and stop right 
in front of the table, manipulate the robotic arm to grasp a tar-
get bottle for drinking and put the bottle back after drinking.

2.7.3.  Experiment III.  All of the ten subjects participated in 
this experiment to evaluate the classification accuracy between 
the three classes, i.e. blinking, eyebrow raising and idle state. 
The experiment contained six blocks, each of which consisted 
of 20 trials. At the beginning of a trial, the system randomly 
presented one of the three cues (‘blink’, ‘eyebrows’ and 
‘idle’). The subject was asked to perform the corresponding 
eye movement after a beeping sound. The system analyzed the 
recorded EOG signals and the result was presented as feed-
back. When a block was completed, there was a 1 min break. 
Any inconsistent result between a cue and the subsequent 
feedback was considered a mistake, which was used to calcu-
late the classification accuracy.

3.  Results

The experimental results of experiment I are shown in tables 2 
and 3, respectively. The accuracy represents the probability of 
preselecting a target button and further verifying it correctly. 
If the subject preselected a wrong button, he/she could wait 
for the next flash of the target button while not verifying the 

Figure 7.  (a) General view of the experimental field (9 m × 5 m). Seven obstacles (red circles) and a bench (red rectangle) were placed 
randomly between the starting zone (blue area) and the table (yellow area). In an experimental trial, the subject drove the wheelchair from a 
random point in the starting zone to reach the table and grasp a bottle to drink. (b) Actual scene of the experimental field.
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wrong result. This situation was not counted as an error, but it 
would extend the RT. For healthy subjects, the system achieved 
an accuracy of 99.3 ± 1.0%, an RT of 1.91 ± 0.07 s per com-
mand, and an ITR of 119.2 ± 4.2 bits min−1. As for patients 
with SCIs, the average accuracy, RT and ITR were 97.3 ± 
2.2%, 2.02 ± 0.15 s, and 110.6 ± 4.1 bits min−1, respectively. 
Furthermore, since the stop command is executed without the 
verification process, the RT for stopping is reduced to 1.30 ± 
0.03 s and 1.36 ± 0.04 s for healthy subjects and patients with 
SCIs, respectively. For all of the subjects, the FOR during the 
idle period was 0. The false positive probability of preselec-
tions (FPP-pre) represented the probability that an unintended 
blink was recognized as an intended one (without the veri-
fication process) during the idle state. For healthy subjects/
patients with SCIs, the probability that an unintended blink 
was recognized as an intended one was 7.7%/17.3%.

All subjects completed experiment II without any col
lisions. The average time and operations used were calculated 
over five trials for each subject. According to the results, to 
complete one trial, healthy subjects approximately spent 
247 s and performed 26 operations, while patients with SCIs 
approximately spent 315 s and performed 38 operations, on 
average. The number of unsuccessful grasps was 0 for all 
subjects. No emergency stop was recorded during the test. To 
measure the workload, each patient with SCIs completed the 
Hart and Staveland NASA task load index (TLX) question-
naire after the task. The NASA TLX measures the workload 
from six aspects: mental demand, physical demand, tem-
poral demand, performance, effort, and frustration level [22]. 
According to the results, the average ratings of all six aspects 
were maintained below 25.

The experimental results of experiment III are shown in 
tables 4 and 5. The classification accuracies between two of 
the three classes (blinking, raising eyebrows and idle state) 
were calculated. For example, ‘blink–eyebrows’ represents 
the classification accuracy between blinking and raising 
eyebrows, which was calculated by dividing the sum of the 

number of correct ‘blinking’ trials and that of correct ‘raising 
eyebrow’ trials by the total number of ‘blinking’ and ‘raising 
eyebrow’ trials. According to the results, the algorithm could 
properly distinguish between two of the three classes.

4.  Discussion

For severely paralyzed patients, it is difficult to perform some 
daily tasks, such as moving from a random place to reach a 
table and to select and grasp a target object for self-feeding 
and self-drinking. In this study, we combined a wheelchair 
and an intelligent robotic arm with the aim of helping patients 
with severe SCIs to accomplish a self-drinking task.

The main challenge in combining a robotic arm with 
a wheelchair is that it requires high precision control. To 

Table 2.  Results for the healthy subjects in experiment I.

Subjects Accuracy (%) RT (s) Stop RT (s)
FOR  
(events min−1) ITR (bits min−1) FPP-pre (%)

H1 100 1.95 1.31 0 117 8.7
H2 98.9 1.91 1.33 0 118 9.7
H3 97.7 1.98 1.30 0 115 2.5
H4 100 1.81 1.25 0 126 10.9
H5 100 1.89 1.30 0 120 6.5
Mean ± SD 99.3 ± 1.0 1.91 ± 0.07 1.30 ± 0.03 0 119.2 ± 4.2 7.7 ± 3.3

Table 3.  Results for the patients with SCIs in experiment I.

Subjects Accuracy (%) RT (s) Stop RT (s)
FOR  
(events min−1) ITR (bits min−1) FPP-pre (%)

P1 94.4 1.83 1.33 0 115 25.5
P2 100 2.03 1.41 0 112 17.7
P3 96.7 2.08 1.38 0 112 21.5
P4 98.9 2.04 1.33 0 110 12.2
P5 96.7 2.13 1.34 0 104 9.5
Mean ± SD 97.3 ± 2.2 2.02 ± 0.15 1.36 ± 0.04 0 110.6 ± 4.1 17.3 ± 6.6

Table 4.  Results for the healthy subjects in experiment III.

Subjects
Blink–
eyebrows (%)

Blink–idle 
(%)

Eyebrows–
idle (%)

H1 84.8 95.0 89.8
H2 95.1 97.6 97.5
H3 95.6 100 95.6
H4 100 100 100
H5 92.9 97.3 95.6
Mean ± SD 93.7 ± 5.6 97.9 ± 2.1 95.7 ± 3.7

Table 5.  Results for the patients with SCIs in experiment III.

Subjects
Blink–
eyebrows (%)

Blink–idle 
(%)

Eyebrows–
idle (%)

P1 85.0 85.0 100
P2 90.6 95.0 95.6
P3 75.0 87.5 87.5
P4 92.6 97.5 95.1
P5 87.3 95.0 92.3
Mean ± SD 86.1 ± 6.8 92.0 ± 5.4 94.1 ± 4.6
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successfully grasp the bottle, the user needs to effectively 
drive and accurately stop the wheelchair such that the ran-
domly located bottle is within the effective zone of camera 
A (a cuboid space with 0.4 m ahead of camera A, length: 0.8 
m; width: 0.4 m; height: 0.6 m), as shown in figure 6. This 
task requires a positional precision of 0.4 m and a directional 
precision of 30◦. To satisfy these demands, the performance of 
the system should have a short RT (especially for stopping), 
a low FOR and a high selection accuracy. As far as we know, 
it has not been previously reported that EEG-/EOG-based 
wheelchair systems can provide such precision control. For 
example, in [3], unintended eye movements were not distin-
guished from intended ones, which resulted in a high FOR 
and affected the selection accuracy. In [4], the system could 
only turn left/right by 90◦, and in [5], it took nearly 6 s to stop 
the wheelchair, and in our previous work [13], the RT to issue 
a command was 3.7 s (the wheelchair speed: 0.2 m s−1). In 
this study, the proposed system achieves a positional preci-
sion of 0.27 m (wheelchair speed: 0.2 m s−1; stop RT: 1.36 
s), which is much smaller than the required precision (0.4 m).  
The minimal direction angle of the proposed system is 5, 
which is also sufficient to satisfy the required direction preci-
sion. Moreover, the FOR of the proposed system is nearly 0. 
According to the experimental results, all subjects success-
fully completed the self-drinking task, which demonstrated 
that the proposed EOG-based HMI provided sufficient preci-
sion control to combine the wheelchair and the robotic arm.

Another challenge is to eliminate the false positive com-
mands caused by unintended blinks. Compared with intended 
ones, unintended blinks usually have smaller EOG signal 
amplitudes due to weaker muscle strength. In this study, the 
false positive commands caused by unintended blinks were 
eliminated by the following steps: (i) in the online experiments, 
the EOG algorithm first checked if the data epoch contained a 
blink. If so, then the algorithm calculated the EOG amplitude 
of the detected blink. Only when the amplitude exceeded the 
amplitude threshold ath1 would the detected blink be recog-
nized as an intended one. According to the results of experi-
ment I, for healthy subjects/patients with SCIs, the probability 
that an unintended blink was recognized as an intended one 
was 7.7%/17.3%. (ii) If an unintended blink was falsely rec-
ognized as an intended one, the verification process was used 
to prevent any false positive command in this case. Only when 
the user raised his/her eyebrows to verify the preselection 
result would the corresponding command be triggered.

FOR is an important index to evaluate an EOG-based 
HMI, which is defined as the number of false output com-
mands per minute during the idle period in which the user has 

no control intention. In this study, if an unintended blink was 
recognized as an intended one and happened to be generated 
within the delay range after the ‘STOP’ button flash, it would 
result in a false positive selection of ‘STOP’. The probability 
of false positive stops resulting from unintended blinks was 
reduced from two aspects: (i) the EOG algorithm could dis-
tinguish unintended blinks from intended ones by using the 
amplitude threshold ath1. For healthy subjects/patients with 
SCIs, the average FPP-pre was 7.7%/17.3%. (ii) The prob-
ability that an unintended blink happened to be located within 
the delay range after the ‘STOP’ button flash was about 7% 
(1/14). Thus, the overall probability of a false stop caused by 
unintended blinks was very small. During the 30 min idle test, 
no false positive selection of ‘STOP’ was recorded.

We further compared the proposed EOG-based HMI with 
several state-of-the-art ones, as shown in table 6. Compared 
with these works, the proposed HMI provides more com-
mands (14) with higher accuracy (97.3 ± 2.2%) and a 0 FOR. 
The RT for the proposed HMI to issue a command (approxi-
mately 2 s) is shorter than most of the listed works, but higher 
than that in [3]. The reason is that the authors in [3] did not 
implement a verification process to distinguish between 
intended and unintended eye movements, which might result 
in a high FOR. We also compared the proposed HMI with 
that reported in our previous paper [13]. In [13], the subjects 
usually needed to perform three–four blinks in sync with the 
button flashes to select a button and the decision making pro-
cess occurred at the end of a flashing round. The average RT 
reported in [13] was around 3.7 s, which could not meet the 
requirement of positional precision (0.4 m) considering the 
wheelchair speed (approximate 0.2 m s−1). In this study, the 
button preselection and verification process needed one blink 
and an eyebrow movement, which occurred immediately after 
each button flash. Therefore, the average RT was reduced to 
2 s for all button selections, the stop RT was 1.36 s, and the 
minimal steering angle was 5◦. This performance could meet 
the requirement of positional precision to combine a wheel-
chair and a robotic arm, as demonstrated by the experimental 
results.

Safety is also a major concern for practical applications. In 
case of an emergency in which the user has no time to react, 
two ultrasonic range finders (HC-SR04) are installed on the 
front and back sides of the wheelchair to stop it as long as one 
of the returned distance values is below 0.2 m.

5.  Conclusion

In this paper, we combine a wheelchair and an intelligent 
robotic arm and control both of them by a novel EOG-based 
HMI to help patients with severe SCIs accomplish a self-
drinking task. The wheelchair is purely controlled by the 
EOG-based HMI. For the robotic arm, shared control is imple-
mented, based on the EOG-based HMI, two cameras and the 
arm’s own intelligence. Five healthy subjects and five patients 
with SCIs successfully completed the self-drinking task. 
Moreover, the user’s workload of manipulating the system was 
maintained at an acceptable level. The experimental results 

Table 6.  Comparison with other EOG-based HMIs.

EOG-based HMIs
Accuracy 
(%)

FOR  
(events min−1)

RT 
(s)

No. of 
commands

Ma et al [4] 86.2 3.15 3.1 7
Barea et al [3] / High 1 4
Huang et al [13] 91.7 0 3.7 13
Rui et al [23] 93.6 0.1 8.1 12
The proposed HMI 97.3 0 2 14
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demonstrated that the proposed EOG-based HMI can provide 
sufficient precision control to integrate a wheelchair and a 
robotic arm, which could help patients with SCIs in daily life. 
In a future work, we will expand the application range of the 
proposed system and test the system on more patients.
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