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1.  Introduction

Essential tremor (ET) is one of the most common neurological 
movement disorders, affecting up to 4.5% of the population 
over the age 65, and up to 20% of the population over the 
age 95 [1]. The cardinal symptom for ET is tremors during 
voluntary movement, typically in the dominant hand and arm 

[2]. A common therapy for treating the symptoms of ET is 
deep brain stimulation (DBS), which consists of an electrode 
implanted into a deep brain region (typically the ventral inter-
mediate nucleus (VIM) of the thalamus) that continuously 
delivers high-frequency stimulation (130–180 Hz) to the area. 
Through a still-unknown mechanism, stimulation alleviates 
many of the symptoms of ET. Despite its therapeutic effect, 
continuous stimulation has several drawbacks, such as side 
effects [3–5] and an unnecessary depletion of battery life 
[4]. Furthermore, continuous DBS is ill-suited for treating 
dynamic movement disorders such as ET, where symptoms 
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Abstract
Objective. Deep brain stimulation (DBS) is a well-established treatment for essential tremor, 
but may not be an optimal therapy, as it is always on, regardless of symptoms. A closed-loop 
(CL) DBS, which uses a biosignal to determine when stimulation should be given, may be 
better. Cortical activity is a promising biosignal for use in a closed-loop system because it 
contains features that are correlated with pathological and normal movements. However, 
neural signals are different across individuals, making it difficult to create a ‘one size fits all’ 
closed-loop system. Approach. We used machine learning to create a patient-specific, CL DBS 
system. In this system, binary classifiers are used to extract patient-specific features from 
cortical signals and determine when volitional, tremor-evoking movement is occurring to alter 
stimulation voltage in real time. Main results. This system is able to deliver stimulation up to 
87%–100% of the time that subjects are moving. Additionally, we show that the therapeutic 
effect of the system is at least as good as that of current, continuous-stimulation paradigms. 
Significance. These findings demonstrate the promise of CL DBS therapy and highlight the 
importance of using subject-specific models in these systems.
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can change on both short (seconds to minutes, due to pres-
ence of symptoms only during movement) and long (months 
to years, due to the neurodegenerative nature of a disease) tim-
escales [6].

A way to improve DBS is to integrate it into a closed-
loop (CL) system where stimulation is only delivered when 
the patient is experiencing symptoms. Such a system would 
increase battery life and minimize the time that the patient 
experiences stimulation-induced side effects. To determine the 
correct time to stimulate, a CL system requires a biosignal that 
is indicative of the presence of symptoms. Importantly, for ET, 
detecting symptoms themselves may not be necessary. Rather, 
the underlying volitional movement that evokes the tremor 
can be readily detected due to the stereotypical changes in the 
neural activity it causes, despite the presence of tremors [7, 
8]. These changes are most prominent at frequencies between 
12–30 Hz, often termed ‘β-band’. Additionally, there is evi-
dence that there are similar changes in neural activity during 
tremors [9, 10]. Thus, neural signals are a promising biofeed-
back signal for a CL DBS system since they are correlated 
with both normal and pathological movement. Indeed, suc-
cessful CL control of DBS using activity recorded from the 
DBS electrode has been demonstrated in Parkinson’s disease 
patients [11]. Additionally, CL stimulation using cortical sig-
nals for the treatment of epilepsy has seen marked success, 
with an implantable neurostimulator currently FDA approved 
for patient use [12]. Recently, a proof-of-concept study from 
our group, using a single ET patient, showed that cortical 
activity could also be used as a feedback signal for CL DBS 
[13]. However, these results still need to be extended to mul-
tiple patients.

Both aforementioned studies used manually-tuned thresh-
olds to detect power changes in specific local field potential 
(LFP) frequency bands, which would be onerous for clinicians 
to perform and may not make use of all the neural features 
available. Furthermore, despite the occurrence of common 
phenomena, such as beta-band desynchronization [14], neural 
activity has subject-specific features, which make using a 
general rule for extracting content suboptimal [15]. Machine 
learning (ML), on the other hand, can be used to automate 
the process of building models that relate neural activity to 
symptoms and can determine which neural features are most 
useful. While ML has been used offline to detect movement 
disorder symptoms in previously recorded data [16–21], it has 
never been used to detect symptoms from neural activity in a 
real-time CL DBS system.

Herein we develop and test a CL DBS system that relies 
on ML to build subject-specific models for predicting voli-
tional, tremor-evoking movement from cortical activity in sev-
eral human ET patients and describe the performance of the 
system. We show that the system is capable of accurate detec-
tion of tremor-evoking movement and that the system exerts a 
high therapeutic effect. A preliminary form of this study in a 
single ET patient is found in [22].

2.  Methods

2.1.  Subjects

Three male human subjects (see demographics and stimu-
lation settings in table  1) with ET were implanted with the 
Activa PC  +  S (Medtronic, Inc.) investigational DBS device 
for the treatment of symptoms [23]. Additionally, they were 
implanted with a four-contact ECoG strip electrode over 
the hand/arm area of the primary motor and somatosensory 
cortex. Electrode locations in all three subjects were verified 
by co-registered CT and MRI scans and functional screening 
(figure 1). Additionally for subject S3, ECoG electrode loca-
tion was intra-operatively verified by examining somato-
sensory evoked potentials during median nerve stimulation 
(subject S3 did not receive an improved outcome, compared 
to the other subjects). Subjects provided informed consent in 
accordance with the institutional review board and partici-
pated in the study for up to two years (S1  =  2 y, S2  =  1 y, 
S3  =  3 mo). Prior to experiments, each subject’s DBS param
eters (contacts, voltage, frequency and pulse width) were set 
by a trained clinician for optimal therapeutic benefit. During 
the experiments, only the DBS voltage was altered by the CL 
system and this voltage was always between 0 volts and the 
maximum voltage set by the clinician. The stimulation voltage 
was increased/decreased in 500 mV steps, with stimulation 
updates occurring every 400 ms. This ramping paradigm was 
chosen to allow a reasonable system response time but also 
to mitigate any paresthesias that occurred due to increasing 
stimulation too quickly. The subjects did not discontinue 
any medication for the treatment of symptoms prior to the 
experiments.

2.2.  Data collection

During the experiments, a single channel of cortical activity 
was sensed in a differential configuration from two electrode 
contacts by the Activa PC+S device. The cortical signal was 
low-pass filtered at 100 Hz, high-pass filtered at 0.5 Hz and 
sampled at 10-bit resolution and 422 Hz with a gain of 2000. 
The ECoG electrode contacts used for sensing cortical activity 
were selected for each subject by recording from all six poten-
tial electrode configurations and examining which signal had 
the highest power in the beta frequency range (12–30 Hz). It 
confirmed by observation the decreases in this power during 
movement of the right arm and/or hand. Compressed ECoG 

Table 1.  Subject demographics and clinician-determined 
stimulation settings.

Subject Sex Age
Stimulation 
contacts Stimulation settings

S1 M 60 2+/0−   2.5 V, 140 Hz, 90 µs
S2 M 82 2+/0−   3.9 V, 140 Hz, 90 µs
S3 M 79 1+/0−   3.6 V, 130 Hz, 90 µs

J. Neural Eng. 16 (2019) 016004
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data were streamed onto a laptop computer through the 
Nexus-D interface (Medtronic, Inc.) for offline analysis, as 
well as during CL experiments. A commercial smartwatch 
(LG G-watch) was worn on the right wrist, and three-axis 
gyroscope signals were sampled at 100 Hz and streamed via 
Bluetooth onto the laptop computer.

2.3.  Experimental tasks

All experiments for a given subject were performed during a 
single visit. The subjects first engaged in a prompted move-
ment (PM) task that entailed repeatedly performing a phasic 
or tonic movement that evoked tremors. The movements for 
subjects S1, S2 and S3, respectively, were holding his right 
hand close to his nose, holding a pen in his right hand close 
to a fixed point on a wall, mimicking using a screwdriver, and 
holding his right hand up near his head and slowly rotating it 
back and forth. Movement and rest periods were prompted 
by a voice saying ‘rest’ and ‘move’ and/or a computer screen 
displaying the same words (the choice of cues was determined 
by the equipment available at the time of the experiment), and 
the duration of each movement/rest period was approximately 
30 s. A PM trial lasted approximately 4 min, and during 
training, a trial was carried out with stimulation both off and 
on. After classifier training, the PM task was repeated several 
more times to examine the performance of the CL system. 
During testing, the duration of each movement/rest period 
was drawn from uniform distribution between 3–12 s. This 
distribution was chosen to reflect the relatively short dura-
tion of many natural movements, such as bringing a spoon to 
one’s mouth, as well as to prevent fatigue from repeating long 
movements.

Subjects performed approximately 16 movements over the 
course of about 4 min.

Additionally, subjects engaged in the Fahn–Tolosa–Marin 
(FTM) tremor assessment [27], which scores tremor during 
various movements and postures. The subjects performed 
this assessment with stimulation off, stimulation on at the 

therapeutic voltage and stimulation under CL control. For 
the CL portion of the task, the classifiers used were the same 
as those used during each subject’s PM task. A video of the 
subjects performing the FTM assessment was recorded and 
symptoms were evaluated by three blinded clinicians trained 
in evaluating movement disorders.

2.4.  Classifier training

Using cortical data collected during the PM tasks, binary clas-
sifiers were trained offline to detect tremor-evoking movement 
from neural activity. Due to the stimulation resulting in physi-
ological responses being seen in the signal, separate classifiers 
were trained for when stimulation was off and on. Power spec-
tral density (PSD) features were extracted from cortical data 
over a sliding, 1 s window using Welch’s method (50% overlap 
with a 0.5 s Hann window), resulting in frequency bins with a 
width of approximately 2 Hz. Features were extracted using 
this sliding window five times per second for offline training. 
This frame sampling was chosen to provide a sufficient time 
resolution of changes in the spectral features. Due to the pres-
ence of stimulation artifacts in various parts of the spectrum, 
only power in 2 Hz bins in the frequency range [4,28) Hz 
was used for the features. The features were normalized to 
have zero mean and unit standard deviation. Gyroscope sig-
nals recorded from the smartwatch were visually inspected to 
determine tremor-evoking movement/rest epochs for labeling 
neural data. These features and labels were used to train 
logistic regression classifiers. Logistic regression was chosen 
due to its relatively low computational complexity being ame-
nable to real-time processing. L2-norm regularization was 
used to prevent overfitting , and a grid search method was used 
to find the optimal hyperparameter for maximizing classifier 
sensitivity. Features and labels were partitioned into two equal 
halves (without shuffling) for cross-validation of the classi-
fiers during training. The classifiers were incorporated into the 
CL DBS system (figure 2). During real-time testing, a packet 
containing 400 ms of neural data was sent to the computer 

Figure 1.  Coregistered pre-operative MRI and post-operative CT scans show the placement of the four-contact DBS electrode (cyan) in the 
thalamus and the four-contact ECoG electrode (red) over the central sulcus, overlying primary motor and somatosensory cortex.

J. Neural Eng. 16 (2019) 016004
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using the Nexus-D bridge. This packet was added to a buffer, 
and the last 1 s of neural data was preprocessed and fed into 
the system of classifiers. If the system classified the 1 s frame 
as ‘movement’, a command was sent back to the PC+S to 
increase the stimulation voltage by one step (500 mv). If the 
system classified the frame as ‘no movement’, a command 
was sent back to the PC+S to decrease the stimulation voltage 
by one step (500 mV). These updates occurred every 400 ms.

2.5.  System evaluation

The performance of the system was evaluated using several 
different metrics. First, was classifier performance, both in 
terms of overall accuracy and sensitivity. Due to the non-
instantaneous changes in stimulation voltage in response to 
false negatives, the stimulation often remained on despite 
occasional errors by the classifiers. Due to this fact, the 
system was also evaluated in terms of the percentage of time 
that stimulation was on while the subject was moving (termed 
‘system sensitivity’) and percentage of time that stimulation 
matched the movement condition (termed ‘system accuracy’). 
Reduction in average stimulation amplitude (compared to 
stimulation at the therapeutic voltage) and system delay were 
also used to evaluate performance.

Additionally, a video of the tremor assessment task was 
scored by three blinded clinicians to evaluate the effect of the 
different stimulation conditions. Scores from each clinician 
were normalized to be a percent reduction in score compared 

Figure 2.  In the CL system, neural activity is sensed by the cortical electrode and streamed onto a laptop computer. Power features 
are extracted from the time-series cortical signal and are used by the pair of classifiers to determine if any tremor-evoking movement 
is detected. If so, a command is sent back to the implant to increase the stimulation voltage (up to a safe limit set by a clinician); if no 
movement is detected, a command is sent back to decrease the stimulation voltage (down to a minimum of 0 V). A smartwatch also collects 
movement data from the right arm to provide a ground truth for movement/rest detection.

Figure 3.  Subject-specific changes in neural activity during rest 
(blue) and tremor-evoking movement (red) are captured by each 
subject’s classifier coefficients (black) when stimulation is OFF (left 
panels) and ON (right panels). Non-normalized spectra are shown 
as median (dark line) and inter-quartile interval (shading). Dashed 
vertical lines indicate boundaries for the frequency band containing 
features for the classifiers (due to the presence of artifacts at 
frequencies outside of these ranges).

J. Neural Eng. 16 (2019) 016004
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to the off-stimulation score, and then averaged across the three 
clinician’s scores. Kolmogorov–Smirnov tests did not reveal 
a significant departure from normal distributions (p  >  0.05), 
so standard parametric statistical tests were used. Statistical 
packages for R and python were used for analyses.

3.  Results

3.1.  CL system performance

Using neural data recorded during the PM task, the PSD 
was calculated and used as a feature set for creating logistic 
regression classifiers. There were large, consistent differences 
in spectra during rest and movement, both with stimulation 
OFF and ON (figure 3). However, the shape of the spectra, 
and the differences between rest and movement spectra, were 
different across subjects, both in power and frequency. These 
differences in neural activity between subjects are reflected in 
the coefficients learned by each subject’s trained classifiers 
(figure 3, black traces).

Using the stimulation off and stimulation on classifiers cre-
ated with the training data, each subject first repeated the PM 
task to assess the performance of the CL system when detecting 
the same tremor-evoking movements that were used to train 
the classifiers. During this task, the classifiers detected tremor-
evoking movements in real time from cortical activity and the 

system altered stimulation voltage accordingly (figure 4, see 
supplementary video online at stacks.iop.org/JNE/16/016004/
mmedia). To quantify the performance of the system, accuracy 
and sensitivity were calculated using the predictions from the 
classifiers. Across all subjects, the accuracy and sensitivity of 
the classifiers were 75.0%  ±  5.6% and 76.5%  ±  9.3%, respec-
tively (table 2, Prompted movement (Fast)). Across all subjects, 
the system accuracy and sensitivity were 67.1%  ±  4.6% and 
87.7%  ±  3.7% (table 2, Prompted movement (Fast)). So, the 
system was able to deliver stimulation almost 90% of the time 
that the subjects were performing tremor-evoking movements.

During the test PM task using CL control of DBS, the 
average stimulation voltage decreased by 38.3%  ±  12.7%, 
compared to each subject’s therapeutic stimulation voltage 
(table 2, Prompted movement (fast)). Stimulation was on 
at some voltage (not necessarily the therapeutic voltage 
set by the clinician) during 81.7%  ±  7.0% of the PM task. 
During the PM task, subjects were moving 64.4%  ±  4.9% 
of the time, respectively, so stimulation was on more often 
than the subjects were moving. This was expected since the 
classifiers were optimized for sensitivity (i.e. prioritizing 
detecting all movements at the expense of potentially having 
more false positives) and because of the non-instantaneous 
changes in stimulation voltage. The delay between the initia-
tion of movement and the first increase in stimulation voltage 
was 1.56  ±  0.28 s (movements, which were initiated while 

Figure 4.  The CL DBS system is able to detect tremor-evoking movements (as recorded by a gyroscope, shown in black and gray; classifier 
detection shown in red) from changes in cortical activity (spectrogram) and respond by increasing the stimulation voltage (blue) during the 
PM task. Representative data shown are from subject S2.

Table 2.  The performance of classifiers and the overall system during prompted movement tasks and drawing/writing tasks. Fast and slow 
denote the control policy used during the task to make changes to the stimulation voltage.

Task

Classifier System Stimulation

Accuracy Sensitivity Accuracy Sensitivity Decrease

Prompted movement (fast) 75.0%  ±  5.6% 76.5%  ±  9.3% 67.1%  ±  4.6% 87.7%  ±  3.7% 38.3%  ±  12.7%
Prompted movement (slow) 77.5%  ±  8.5% 80.5%  ±  9.1% 64.8%  ±  3.4% 92.0%  ±  3.4% 27.7%  ±  10.1%
Spiral 85.4%  ±  18.4% 100.0%  ±  0.0% 4.0%  ±  3.8%
Line drawing 85.6%  ±  18.4% 100.0%  ±  0.0% 1.8%  ±  1.7%
Writing 84.4%  ±  17.0% 100.0%  ±  0.0% 4.3%  ±  4.5%
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stimulation was already on, were not used for estimating the 
delay).

To begin investigating possible design choices for opti-
mizing the CL system, the control policy used to update the 
stimulation voltage was altered; instead of decreasing the 
stimulation voltage every time a negative classifier result 
was obtained (fast decrementing), the system only began 
decreasing stimulation after two consecutive negative classi-
fier results were found (slow decrementing). This was done 
to increase the sensitivity of the system. The PM task was 
repeated using this updated control policy and, as expected, 
the sensitivity of the system increased (92.0%  ±  3.4%).

Next, the subjects engaged in drawing and writing tasks 
as part of the Fahn–Tolosa–Marin (FTM) tremor assessment. 
During these tasks, the classifiers that were trained and tested 
during the PM task were used to detect movement as part 
of the CL DBS system. These tasks were used not only to 
examine the therapeutic effect of the CL stimulation, but also 
to assess the performance of the system on movements that 
are more representative of movements the subjects might per-
form during everyday activities. For subjects S1 and S3, the 
fast decrementing control policy was used for updating the 
stimulation voltage during the FTM task, while for subject S2, 
the slow decrementing control policy was used. Different con-
trol policies were used for different subjects to see if they had 
an effect on performance, however, not all policies could be 
evaluated on all subjects due to the constraints on the duration 
of the experiment.

During the drawing/writing tasks, the accuracy of the clas-
sifiers improved compared to the accuracy during the PM 
task with the classifiers correctly detecting movement around 
85% of the time (table 2, Spiral, Line Drawing, Writing). 
Accordingly, because of the non-instantaneous changes in 
stimulation voltage, stimulation was on for the duration of the 
task in all (table 2, Spiral, Line Drawing, Writing). There was 
only a decrease of between 1.8% and 4.3% in average stimu-
lation voltage, compared to the therapeutic voltage set by the 
clinician because stimulation was on at a voltage close to that 
of the actual therapeutic voltage set as a maximum.

3.2. Therapeutic effect

To assess the therapeutic effect of the CL DBS system, sub-
jects engaged in the FTM tremor assessment with stimulation 
under CL control. The classifiers used for movement detec-
tion during the FTM assessment were the same as those used 
during the PM task (for subjects S1 and S3, the PM-fast system 
was used; for subject S2, the PM-slow system was used). For a 
comparison of therapeutic effect, subjects also engaged in the 
FTM assessment with stimulation off and with stimulation on 
at the therapeutic voltage. A video of the subjects performing 
this tremor assessment under the different stimulation condi-
tions was recorded, and three blinded clinicians specializing 
in movement disorders rated the severity of tremor (intra-class 
correlation  =  0.63).

There was a significant group effect of stimulation on 
clinical scores (figure 5) (within-subjects analysis of variance 

(ANOVA); F  =  43.3, p  =  0.0019). Continuous stimulation 
resulted in an improvement of 42.3%  ±  7.5% compared to no 
stimulation (Student’s t-test; toff-on  =  10.0, poff-on  =  0.0154). 
CL stimulation resulted in a significant improvement of 
46.0%  ±  4.9%, compared to no stimulation (Student’s t-test; 
toff-cl  =  13.4, poff-cl  =  0.0055). While CL resulted in slightly 
more improvement in scores than continuous stimulation, this 
result was not significant (Student’s paired t-test; tcl-on  =  0.5, 
pcl-on  =  0.65). This lack of a significant difference between 
CL and continuous stimulation scores is likely attributable to 
subject S2, who was the only subject out of the three whose 
scores during continuous stimulation were better than during 
CL DBS.

4.  Discussion

To date, this work represents the first time that ML has been 
used in a chronically implanted, CL DBS system in human 
ET subjects. The CL system was evaluated on (1) its ability 
to accurately detect movement and deliver stimulation when 
detected (2), the system delay, and (3) the power savings 
achieved. The performance of the CL system was tested 
during a volitional PM task where subjects repeated a ste-
reotyped movement that evoked tremor, as well as during 
more natural movements, such as drawing and writing. The 
system cannot necessarily be described as detecting tremor 
itself, since changes in cortical activity during movement and 
tremor are largely conflated [7–10]. However, these changes 
are robust and consistent and thus provide a feedback signal 
indicating when tremor is possibly occurring and when stimu-
lation should be delivered. So, the system could be described 
as a CL-brain computer interface (BCI) system, but unlike 
typical BCI systems, the CL-DBS system requires no addi-
tional mental effort other than what is normally required to 
move.

Across the subjects, the classifiers were accurate about 
75% of the time during the PM task and 85% of the time 
during the natural movement tasks. While these accuracy 
values are not ideal, it is important to note that this was a pilot 

Figure 5.  Continuous stimulation and CL stimulation resulted in 
significant symptom improvements compared to no stimulation, as 
measured by blinded scores during the Fahn–Tolosa–Marin tremor 
assessment task (Student’s t-test: *p  <  0.05, **p  <  0.01).

J. Neural Eng. 16 (2019) 016004
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study involving only a few subjects, using a single channel 
of cortical data with a simple, linear classifier that was only 
trained using a few minutes of data. Despite these limitations, 
the ML approach taken resulted in classifiers that adequately 
captured each subject’s unique, movement-related changes in 
neural activity. Additionally, the system of classifiers was able 
to cope with stimulation-related changes in neural activity 
that might have confused simple, power-based thresholding 
algorithms.

It is noteworthy that not only was detection robust across 
several different movements, despite only training classifiers 
on data from the PM task, but performance actually improved 
on the more natural movement tasks. A likely reason for this 
improvement is that the classifiers favored features in beta 
band (12–30 Hz; see figure  3 for classifier weights). The 
changes in activity in this band are spatially widespread over 
the motor cortex and other areas and show characteristic 
changes that are not movement-specific [15]. Also, the move-
ments performed during the PM task were tonic in nature for 
two of the three subjects, such as holding a hand to the face. 
When stimulation was off, this resulted in tremors. However, 
when stimulation was on, no tremor was present, and thus 
there was much less movement and therefore less desynchro-
nization in beta bands. Future studies may benefit from using 
data from both tonic and phasic movements to train classifiers.

While the accuracy of classifiers is a common and useful 
metric, sensitivity may be a more appropriate metric since it 
only penalizes false negatives. Sensitivity of the entire CL 
system itself (the percentage of time that stimulation was on 
when movement was occurring) was also used to measure 
performance. The sensitivity of the system was around 90% 
during the PM task and 100% for the writing/drawing tasks. 
So, the system consistently delivered stimulation the majority 
of the time that the subjects were engaging in movements. 
It must be noted that these system sensitivities only reflect 
whether stimulation was on or not and does not consider the 
amplitude of the stimulation. There is typically no linear map-
ping between stimulation amplitude and therapeutic effect, so 
it is hard to know if transient, sub-therapeutic stimulation volt
ages still deliver an effect. However, the stimulation voltage 
typically stayed close to the maximum therapeutic value most 
of the time (see figure 4, for example) and there is also evi-
dence that intermittent, non-constant voltage stimulation may 
be more therapeutically effective than continuous stimulation, 
if delivered at the appropriate time [11, 24].

During both the PM task and the drawing/writing tasks, the 
average stimulation voltage was less than the therapeutic value 
set by the clinician for continuous stimulation. It is important 
to note that all power consumption has only been discussed in 
terms of the average stimulation voltage during a task, which 
is only a fraction of the power consumption from streaming 
data to and from the device. The reason for portraying data in 
this manner is that future iterations of the system will embed 
CL capabilities onto the device itself, removing the power 
consumption due to telemetry from the equation.

Across subjects, the time between detecting the onset of a 
movement during the PM task and the response of the system 
to increase stimulation was, on average, about 1.5 s. Ideally, 

this delay should be as small as possible so that symptoms 
are mitigated quickly. A large portion of this delay (at least 
1 s or more [7]) comes from transmission delays between the 
implanted device and external hardware. As aforementioned, 
future systems will circumvent this transmission time by 
using embedded algorithms to detect symptoms and trigger 
stimulation.

The preceding discussion has evaluated the performance 
of the CL system in the context of tremor-inducing movement 
detection, system delays and the correct delivery of stimula-
tion. A related, and more important performance metric for 
a CL DBS system is its therapeutic effect, that is, its ability 
to mitigate the symptoms of the disease that afflicts the DBS 
user. To examine this, the ET subjects underwent a clinical 
tremor assessment under different stimulation conditions and 
their performance on the test was rated by blinded clinicians. 
Across subjects, scores were lowest during CL DBS, although 
the difference in scores between CL DBS and continuous DBS 
was not significant. This result agrees with other published CL 
DBS studies using neural activity as a control signal, which 
also saw CL DBS being more therapeutically effective than 
continuous stimulation [11, 25]. The reason for this apparent 
superiority is not clear, however, the intermittency of CL 
stimulation may prevent adaptation that diminishes the effect 
of the stimulation. More work is necessary to elucidate these 
mechanisms.

For both subjects S1 and S3, FTM scores were lowest 
during the CL stimulation. However, for S2, FTM scores 
were lowest during the constant stimulation. Although dif-
ferent control policies were used for S1/S3 and S3, it seems 
unlikely that this contributes to the different outcomes, since 
simulation was on at the maximum level during the move-
ment portions of the FTM for all three subjects (see table 2). 
The portion of the FTM evaluation that contributed most to 
the difference between CL and constant-stimulation scores 
was left-limb movements, which was worse during CL. For 
all three subjects, stimulation was often on during left-sided 
movements, but varied a little more in amplitude than during 
right-sided movements. It is possible that subject S3 was more 
sensitive to these variations in amplitude or slightly lower 
average amplitude during left-sided movements than the other 
two subjects.

It is important to note that the stimulation ramp rate was 
constant throughout the study (500 mV steps every 400 ms). 
While ramp rate is important for optimizing therapy, it can 
also have the undesirable effect of causing paresthesia when 
too large a value is used. All three subjects reported pares-
thesia during the frequent stimulation changes in the CL 
testing, however, this side-effect was well-tolerated and 
eventually diminished. This issue highlights one of the many 
potential problems that need to be addressed in future CL 
system design.

While the performance of this system may not currently 
be sufficient for replacing continuous stimulation therapy, this 
pilot study shows the transformative potential of ML-based, 
CL DBS systems. Future hardware iterations will provide 
multiple sensing channels and much larger frequency bands, 
making manual threshold tuning, the only other CL-DBS 
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feedback detection algorithm used thus far [11, 13], unten-
able. The ML paradigm used in this system is much more 
amenable to such a large control feature space. Furthermore, 
the ML system used here could easily be altered to construct 
an adaptive system whose parameters change to optimize 
therapy over extended periods of time. The ease-of-use, auto-
mation and adaptability of the ML paradigm to patient-specific 
changes in feedback signals over time are definite benefits 
over threshold-based algorithms. Future hardware will also 
embed these algorithms on the device itself, greatly reducing 
or even eliminating the delay in the system. Several studies 
have used motion sensors or muscle activity from extremi-
ties to trigger stimulation but these systems depend on tremor 
manifesting itself before they can work [24, 26]. However, an 
embedded, brain-controlled system may be able to preempt 
symptoms, given the stereotyped changes in neural activity 
that occurs hundreds of milliseconds before movement [9].

In summary, we demonstrated a novel CL DBS system for 
the treatment of ET that used ML to create subject-specific 
models relating cortical activity and tremor-inducing move-
ment. As a proof of concept work, this system was created to 
be as simple as possible. Despite the simplicity of the system, 
it was able to reliably detect tremor-inducing movement and 
deliver stimulation at the appropriate time during a variety of 
tasks. Because of this, the CL system was able to deliver a 
therapeutic benefit that appears to be as good as that of con-
tinuous stimulation. This work adds to the growing literature 
demonstrating CL DBS systems as a promising technology 
for optimizing the tradeoffs between therapeutic benefit, side-
effect mitigation and power consumption. Furthermore, it 
highlights the growing need for relationships between engi-
neering and neuroscience disciplines to address issues arising 
during the development of next-generation medical devices 
and technologies.
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