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Abstract
Objective. Steady-state visual evoked potentials (SSVEPs) are neural oscillations from the 
parietal and occipital regions of the brain that are evoked from flickering visual stimuli. 
SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are commonly 
used in brain–computer interfaces (BCIs). However, methods for high-accuracy decoding of 
SSVEPs usually require hand-crafted approaches that leverage domain-specific knowledge 
of the stimulus signals, such as specific temporal frequencies in the visual stimuli and their 
relative spatial arrangement. When this knowledge is unavailable, such as when SSVEP 
signals are acquired asynchronously, such approaches tend to fail. Approach. In this paper, 
we show how a compact convolutional neural network (Compact-CNN), which only requires 
raw EEG signals for automatic feature extraction, can be used to decode signals from a 
12-class SSVEP dataset without the need for user-specific calibration. Main results. The 
Compact-CNN demonstrates across subject mean accuracy of approximately 80%, out-
performing current state-of-the-art, hand-crafted approaches using canonical correlation 
analysis (CCA) and Combined-CCA. Furthermore, the Compact-CNN approach can reveal 
the underlying feature representation, revealing that the deep learner extracts additional phase- 
and amplitude-related features associated with the structure of the dataset. Significance. We 
discuss how our Compact-CNN shows promise for BCI applications that allow users to freely 
gaze/attend to any stimulus at any time (e.g. asynchronous BCI) as well as provides a method 
for analyzing SSVEP signals in a way that might augment our understanding about the basic 
processing in the visual cortex.
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1.  Introduction

Evoked potentials are robust signals in the electroencephalo-
gram (EEG) induced by sensory stimuli, and they have been 
used to study normal and abnormal function of the sensory 
cortex [1]. The most well-studied of these are steady-state 
visual evoked potentials (SSVEPs), which are neural oscil-
lations in the visual cortex that are evoked from stimuli that 
temporally flicker in a narrow frequency band [2, 3]. SSVEPs 
likely arise from a reorganization of spontaneous intrinsic 
brain oscillations in response to a stimulus [4]. Paradigms 
leveraging SSVEP responses have been used to investigate the 
organization of the visual system [5, 6], identify biomarkers of 
disease and sensory function [7–9], and probe visual percep-
tion [10, 11].

The robustness of SSVEP has enabled its use as a control 
signal for brain computer interfaces (BCIs) that enable low-
bandwith communication for individuals with catastrophic 
loss of motor functions, bypassing neuro-muscular pathways 
and establishing a communication link directly to the brain 
[12, 13]. In a typical SSVEP BCI, a patient/subject is pre-
sented with a grid of squares on a computer monitor, where 
each square contains semantic information such as a letter, 
number, character, or action. Superimposed on these squares 
are visual flicker frequencies that uniquely ‘tag’ each square, 
thus mapping semantics to visual temporal frequency. As one 
directs their gaze and attention to a particular square with the 
semantic information they wish to convey, an SSVEP signal 
at the corresponding frequency can be measured in the EEG 
with dominant signals in parietal and occipital electrodes. The 
approach, though seemingly simple, has been important for 
enabling communication channels for those that are locked-in 
and have no other means of communication, particularly those 
with late stage amytrophic-lateral sclerosis (ALS) [14].

Central to using SSVEP, whether as a mechanism for 
probing vision or enabling a BCI, is the need to accurately 
decode and analyze the frequency information. Power spec-
tral density analysis (PSDA), for example, is often used to 
identify spectral peaks in the EEG data that map to the flicker 
frequency of the stimulus. More recent approaches have used 
multivariate statistical analysis techniques, such as canonical 
correlation analysis (CCA), that employ a template matching 
scheme between the EEG data and a set of hand-crafted, 
sinusoidal reference signals [15–17]. A recent innovation in 
this approach, called Combined-CCA, uses a unique com-
bination of sinusoidal templates as well as individual tem-
plate responses constructed from SSVEP calibration data 
to improve the standard reference signals used in the CCA  
[18–20]. While Combined-CCA outperforms CCA, it does 
so at the cost of requiring user-specific calibration data to  
construct the reference signals.

To enable more flexible results without the need for a priori 
information, deep learning approaches were leveraged for their 
ability to learn robust feature representations. As such, deep 
learning techniques have surpassed traditional approaches that 
rely on manual feature extraction [21, 22]. Convolutional neural 
networks (CNNs) in particular have become a very popular deep 
learning approach for learning rich feature representations for 
image classification problems [23–26], and their ability to learn 
invariant features has shown promise to advance methods used 
in EEG signal analysis [27–35]. Deep learning approaches, 
however, typically require large amounts of training data in 
order to prevent over-fitting, and this requirement strongly 
limits their viability for SSVEP BCIs which are constrained by 
relatively modest sample sizes in typical BCI datasets. As a con-
sequence, previous attempts at applying CNNs to SSVEP clas-
sification have used domain-specific representations to reduce 
the amount of training data required [36–38]. These approaches 
utilize the fast-fourier transform (FFT) in their deep-learning 
models, thereby transforming EEG signals from the time-
domain to the frequency-domain. These FFT-based approaches 
constrain the model to learn only frequency-based features 
which may be insufficient to capture other task-relevant infor-
mation. Consequently, this approach severely hinders the value 
of deep learning approaches on SSVEP datasets.

In this paper, we employ a deep learning approach that 
allows for the discovery of the underlying representations in 
SSVEP signals that relate flicker to semantics and train on 
relatively small datasets. Specifically, our approach utilizes a 
recently developed deep learning model by our group that is 
a compact convolutional neural network (Compact-CNN) and 
operates on broadly-filtered EEG signals. Its compact nature 
allows it to operate on smaller datasets, while the convolu-
tional structure allows for the automatic extraction of task-
relevant EEG features. Our Compact-CNN was applied to a 
previously collected SSVEP dataset [39] composed of 4 s long 
EEG epochs of data. Without using any user-specific calibra-
tion, our Compact-CNN results in substantially better clas-
sification accuracy compared to CCA and Combined-CCA. 
Furthermore, the underlying feature representations con-
structed by our Compact-CNN revealed that the deep learner 
is able to extract additional phase and amplitude related fea-
tures associated with the SSVEP signals. We discuss how our 
Compact-CNN shows promise for BCI applications that allow 
users to be able to freely gaze/attend to any stimulus at any 
time (e.g. asynchronous BCI) and augments our understanding 
about the underlying cortical processing in the visual cortex.

2.  Methods

Ten healthy participants volunteered for an offline SSVEP 
BCI experiment, and their de-identified data were downloaded 
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from a publicly available repository [39]. The participants sat 
60 cm away from a 27-inch LCD monitor (60 Hz refresh-rate 
and 1280 × 800 resolution) in a dim room, and they looked 
at 12 flashing stimuli arranged in a 4 × 3 grid of 6 cm  ×  6 cm 
squares that represented a numeric keypad. As shown in 
figure 1, the 12 SSVEP stimuli flashed at frequencies ranging 
from 9.25 Hz to 14.75 Hz in steps of 0.5 Hz. For each indi-
vidual trial, a red square was used to cue subjects to visually 
fixate one of the 12 stimulus squares. Each trial was 4 s long 
and was within a block of 12 trials that included each of 12 
unique targets. Each subject underwent 15 blocks of these 12 
trials for a total of 180 trials. During the experiment, EEG 
data was collected from 8 active electrodes placed over occip-
ital-parietal areas using the BioSemi ActiveTwo EEG system 
(Biosemi B.V., Netherlands) with a sampling frequency of 
2048 Hz. All data were first bandpass filtered bidirection-
ally between 9 and 30 Hz using a Butterworth filter and then 
downsampled to 256 Hz. The 4 s epochs were divided in to 1 
s segments for subsequent analysis.

Three classification methods were compared using a leave-
one-subject-out cross validation procedure where data from 
nine participants were pooled together for training and the 
10th participant was used for testing. In this way, user-inde-
pendent models were built that did not use any training data 
from the test participant. The test participant was rotated for 
each fold so that each participant became a test participant. 
For classification, three methods were compared that do not 
require user-specific calibration: our Compact-CNN and two 
baseline methods derived from the conventional multivariate 
statistical analysis technique, Canonical Correlation Analysis 
(CCA). The first method tested was the calibration-free CCA 
that used sinusoidal reference signals [15, 16], while the 
second was our variant of the state-of-the-art Combined-CCA 

method [18, 19] that uses transfer learning to eliminate the 
user-specific calibration but maintains the superior classifica-
tion performance of Combined-CCA [20].

Finally, the learned representation was visualized for our 
Compact-CNN, addressing a scientific aim within the EEG 
deep learning community to understand the diagnostic fea-
tures of the data [32, 40]. As depicted in figure 1, the feature 
activations of the trained deep learner were shown using t-dis-
tributed stochastic neighbor embedding (t-SNE) to project 
individual SSVEP trials onto two dimensions [41]. The t-SNE 
projections were then plotted for each layer to visualize how 
the deep learner separates and clusters EEG trials in a pro-
jected feature-space learned by the deep network. The clusters 
are used to infer the diagnostic features within the test set.

2.1.  Classification methods

2.1.1.  EEGNet: compact convolutional neural network (Com-
pact-CNN).  To assess the utility of deep learning approaches 
for SSVEP BCI, our analysis used our Compact-CNN (the 
EEGNet architecture) that was designed for classifying raw 
EEG when only limited amounts of data are available, such 
as in SSVEP BCI experiments [35]. Our Compact-CNN 
approach efficiently represents EEG signals in a compact 
manner by first performing temporal convolutions, with the 
convolutional kernel weights being identified from the data. 
The first layer of the network then performs a temporal convo-
lution to mimic a bandpass frequency filter, a result supported 
by the convolution theorem [42]. Our approach then uses dep-
thwise spatial convolutions that act as spatial filters to reduce 
the dimensionality of the data. The main benefit of depthwise 
convolutions is reducing the number of trainable parameters 
to fit, as these convolutions are not fully-connected to all 

Figure 1.  Methodological overview. Participants viewed a virtual keypad where each number flickered at a fixed frequency and phase 
(flicker legend). For each 4 s trial, the participant was cued to fixate on a specific number while EEG was recorded from occipital-parietal 
areas (left). The trials were then divided into 1 s segments and used as input to a deep learner, where subject-independent network models 
were trained and tested using a leave-one-subject-out classification procedure to identify the chosen class (the fixated number). Finally, the 
deep learning model activations were plotted using the t-SNE method to project the high-dimensional feature representation of the network 
down to two dimensions, revealing clusters that captured the diagnostic features within the test set (right).
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Table 1.  Compact-CNN architecture, where C  =  number of channels, T  =  number of time points, F1  =  number of temporal filters, F2  =  number of separable filters (here, F1 = F2), 
D  =  number of spatial filters to learn per temporal filter and N  =  number of classes, respectively.

Layer Layer type # filters Size # params Output Activation Options

1 Input (C, T)
Reshape (1, C, T)
Conv2D F1 (1, 256) 256 * F1 (F1, C, T) Linear Mode  =  same
BatchNorm 2 * F1 (F1, C, T)
DepthwiseConv2D D * F1 (C, 1) C * D * F1 (D * F1, 1, T) Linear Mode  =  valid, depth  =  D, 

max norm  =  1
BatchNorm 2 * D * F1 (D * F1, 1, T)
Activation (D * F1, 1, T) ELU
AveragePool2D (1, 4) (D * F1, 1, T // 4)
Dropout (D * F1, 1, T // 4) Rate  =  0.5

2 SeparableConv2D F2 (1, 16) 16 ∗ D ∗ F1 + F2 ∗ (D ∗ F1) (F2, 1, T // 4) Linear Mode  =  same
BatchNorm 2 * F2 (F2, 1, T // 4)
Activation (F2, 1, T // 4) ELU
AveragePool2D (1, 8) (F2, 1, T // 32)
Dropout (F2, 1, T // 32) Rate  =  0.5

3 Flatten (F2 * (T // 32))
Classifier Dense N * (F2 * T // 32) N Softmax
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previous outputs. When used in EEG-specific applications, 
this operation provides a direct way to learn spatial filters 
for each temporal filter, thus enabling the efficient extraction 
of frequency-specific spatial filters. The Compact-CNN also 
uses separable convolutions to more efficiently combine infor-
mation across filters [43]. The main benefits of separable con-
volutions are (1) reducing the number of parameters to fit and 
(2) explicitly decoupling the relationship within and across 
outputs by first learning a kernel summarizing each output 
individually, then optimally merging the outputs afterwards. 
As described in table  1, each convolution layer is followed 
by batch normalization, 2D average pooling, and dropout lay-
ers. In the first two layers, the exponential linear unit (ELU) 
non-linearity (as opposed to other non-linear activation func-
tions such as sigmoids or rectified linear units) was employed 
since it resulted in superior performance for EEG classifica-
tion [35]. The fourth and final layer is connected to a dense 
layer with a softmax activation function for classification. Our 
Compact-CNN is trained using a categorical cross-entropy 
loss function (shown in equation (1)):

Li = −
∑

j

ti,jlog( pi,j)� (1)

where p are the model predictions, t are the true labels, i 
denotes the sample number, and j denotes the class. The model 
was implemented in Tensorflow [44], using the Keras API 
[45]. The model was trained for 500 iterations using the Adam 
[46] optimizer, with a minibatch size of 64 trials. The dropout 
probability was set to 0.5 for all layers. For this application, 
the model learned 96 temporal-spatial filter pairs (F1  =  96, 
F2  =  96 and D  =  1). The complete model architecture of our 
Compact-CNN is shown in table 1; our implementation can be 
found at https://github.com/vlawhern/arl-eegmodels.

2.1.2.  Standard CCA.  Canonical correlation analysis (CCA) 
is a statistical analysis technique that finds underlying cor-
relations between two multidimensional datasets. Given two 
multidimensional variables X and Y, CCA seeks to find weight 
vectors Wx and Wy such that their corresponding linear projec-
tions x = XTWx and y = YTWy have maximal mutual corre-
lation. These projections are found by solving the following 
objective function:

max
Ws,Wx

ρ(x, y) = max
Ws,Wx

E[WT
x XYTWy]√

E[WT
x XXTWx]E[WT

y YYTWy]
.� (2)

For SSVEP detection, CCA computes the canonical correla-
tion between multichannel EEG data and a set of reference sig-
nals Yk composed of sines and cosines matching the fundamental 
and harmonic frequencies of the target stimulus. Reference sig-
nals are made for each of the K frequency stimuli where each set 
contains Nh harmonics of the fundamental frequency fk.

Yk =




sin(2πfkt)
cos(2πfkt)

...
sin(2πNh fkt)
cos(2πNh fkt)




.� (3)

EEG data is canonically correlated with each set of reference 
signals, and SSVEP detection is made on the basis of selecting 
the frequency set which provides the maximum canonical 
coefficient, fk = maxk ρ(x, fk), where fk = f1, f2, ...fK. In this 
analysis, K  =  12 since data was used from a 12-class SSVEP 
BCI [39] with numbers on the virtual keypad flashing at fre-
quencies ranging from 9.25 Hz to 14.75 Hz in steps of 0.5 Hz.

2.1.3.  State-of-the-art Combined-CCA.  Combined-CCA is a 
recent extension to the CCA method that combines the refer-
ence signals from traditional CCA with prototype responses 
derived from participant EEG data to better account for the 
imperfect match between actual brain EEG data and the 
approximate sine and cosine signals [18, 19]. In the Com-
bined-CCA method, participants complete a calibration ses-
sion before using the SSVEP BCI to collect training data for 
each stimulus frequency, and EEG data for each frequency 
is averaged across the training trials. In our recent extension 
of Combined-CCA [20], we introduced a pooled transfer 
approach that averages SSVEP trial data from other subjects 
to eliminate a calibration session for the current user.

To create the prototype responses, X̄k , data were taken from 
9 of the ten subjects and averaged across trials and subjects for 
each stimulus frequency k. Using these prototype responses 
X̄k  as well as the sine and cosine reference signals Yk (equa-
tion (3)), the Combined-CCA classifies the data from the test 
subject, X, by fusing together all pairs of canonical correla-
tions between X̄k , Yk and X using a weighted average resulting 
in a combined correlation coefficient for each class, pk. The 
frequency that maximizes this weighted correlation value is 
selected as the SSVEP target:

fk = max
k

ρ(k), k = 1, 2, . . .K.� (4)

3.  Results

Our analysis compared three classification approaches on a 
12-class SSVEP BCI experiment from a publicly available 
dataset [39]. Participants were cued to fixate one of 12 num-
bers flickering at frequencies ranging from 9.25 to 14.75 Hz 
on a virtual keypad for four seconds (figure 1). The 4 s epoch 
was divided into 1 s segments to augment the number of trials 
used in a 10-fold cross-validation procedure that identified the 
dominant frequency in the EEG and thus determined which 
number was fixated.

3.1.  Compact-CNN outperforms CCA and Combined-CCA

To assess whether deep learning approaches improve classifi-
cation of SSVEP signals, performance of the Compact-CNN 
was compared to the multivariate statistical analysis technique, 
CCA, and its current state-of-the-art variant, Combined-CCA. 
The classification accuracy for each method is shown for each 
of the ten participants in figure 2, and results demonstrate the 
robust performance improvement for Compact-CNN relative 
to the two comparison methods. Compact-CNN proved to be 
particularly beneficial for subjects whose performance was 
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notably poor when CCA based methods were used (i.e. sub-
jects 1, 3, 9 and 10).

When evaluating the overall mean performance (figure 2, 
right), results demonstrated that Compact-CNN significantly 
outperformed CCA and Combined-CCA methods as indicated 
by paired t-tests (Compact-CNN versus Combined-CCA: 
t(9) = −10.5, p < 0.0001; Compact-CNN versus CCA: 

t(9) = −8.7, p < 0.0001). Surprisingly, the state-of-the-art 
Combined-CCA method performed significantly worse than 
CCA, and as subsequent analyses will show, a likely explana-
tion is that the method is not prepared to work with asynchro-
nous data that is not phase locked.

3.2.  Compact-CNN extracts narrow-band frequency activity

Our analysis next examined the underlying learned repre-
sentation of the Compact-CNN, investigating the diagnostic 

features of the data that may account for the superior perfor-
mance. Our first analysis along this effort focused on inter-
preting the learned temporal kernel weights in layer 1. Figure 3 
visualizes a subset of the temporal kernels learned by the 
Compact-CNN model for one randomly-selected fold. Here 
we see that the Compact-CNN identifies narrow-band fre-
quency activity along a spectrum of frequencies, both slow-
wave (Kernel 63, at approx. 9 Hz) and fast-wave (Kernel 95, 
approx. 14 Hz). These frequencies closely align with that of 
the SSVEP experimental stimulus frequencies, suggesting 
that the model is capturing task-relevant oscillatory activity.

3.3.  Compact-CNN reveals differences among classes

Our next analysis uses a data reduction and visualization tech-
nique (t-SNE) to investigate the hidden unit activation struc-
ture across all layers of the Compact-CNN. The activation in 

Figure 2.  Classification accuracy. The SSVEP BCI classification accuracy is shown for each of ten participants for three methods, 
Combined-CCA, CCA, and Compact-CNN. The mean accuracy across participants is shown at the right, with significant paired t-test 
differences between Compact-CNN and each of the multivariate methods denoted with ∗∗, representing a p  <  .0001. Error bars indicate 
SEM across participants. Nominal chance performance with 12 classes is 8.3%.

Figure 3.  Visualization of Compact-CNN temporal kernels. (A–F) Representative subset of the derived temporal kernels. In the subplots, 
the x-axis denotes the length (in msec) of the temporal kernel, and the y-axis denotes the amplitude of the kernel. Kernels selected based on 
suspected frequency separability. (G) Spectral power of the temporal kernels shown in (D–F) that depict the separability of some kernels 
based on the frequency content of the temporal kernels. Figure labels denote the suspected stimulus driven responses (including harmonics, 
e.g., kernel 95, kernel 47).
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each layer was similar, so only the t-SNE projections of the 
activation in layer 3 of the Compact-CNN were plotted in 
figure 4 for all training observations (across the nine training 
subjects) in fold 1.

This visualization is a projection of the data down to two 
dimensions, allowing us to estimate discriminability among 
training trials and to infer the properties of the learned rep-
resentation that account for classification performance. Each 
element of the t-SNE plot represents a single trial with a color 
that indicates different known features. In figure 4, trials were 
labeled based on their class (one of 12 numbers on the virtual 
keypad), the participant ID (one of 10 unique individuals), 
and the trial order (one of 15 trial bins ordered from first to 
last). Only the class plot revealed coherent clusters of colored 
elements, indicating that the learner identified the 12 unique 
classes of the numeric keypad. The lack of clusters in the 
subject plot confirmed that the variability between individual 
participant brain signals does not account for the feature rep-
resentation, and lack of clusters in the trial plot demonstrated 
that there was not a time-on-task effect (e.g. fatigue, drowsi-
ness, inattention) that differentiated the trials across the dura-
tion of the experimental session.

Next, our analysis examined the composition of the clus-
ters themselves. Interestingly, the class plot revealed sepa-
rable clusters that were colored with the same class label. 
In figure 4(A), elements colored yellow belong to the trials 
where the participant fixated on the number 8 that flickered at 
12.25 Hz. This reveals that the learner differentiated different 
trials from the same class. This unexpected separation is not 
predicted from the derivation of the model, as the objective 
function in equation (1) only seeks to separate the 12 classes. 
Consequently, our analysis investigated whether these within-
class clusters may be related to another known feature of 

the dataset, namely the 1 s segments of the original 4 s trial 
epochs.

3.4.  Characterizing features of within-class clusters

In figure  5(A) (right), the elements in the 12.25 Hz class 
(yellow trial elements) were recolored according to their seg-
ment of the original 4 s trial, where 0–1 s is blue, 1–2 s is red, 
2–3 s is green, and 3–4 s is orange. The segments account 
for the separable clusters within-class. This indicates that the 
deep learner is influenced (and learns) EEG features other 
than the trained class-level differences.

Next, our analysis characterized the signal properties of 
raw SSVEP responses for each trial with a phase and ampl
itude analysis shown in figures 5(B) and (C), respectively. The 
radial phase plot in figure 5(B) shows that the EEG trial seg-
ments have separable phases with the 3rd and 4th segments 
clustering at opposite phases to the 1st and 2nd segments of the 
trial. In contrast, figure 5(C) shows similar amplitudes across 
the four trial segments and only Dim2 values of figure 5(A) 
seem to denote trial segment separability.

While figure  5 illustrates phase and amplitude features 
for the 12.25 Hz class from channel Oz, the subplots of 
figure 6 confirm that these patterns are common across other 
stimulus classes and channels. The average estimated phase 
(left column) and amplitude (right column) are depicted for 
the 9.25 Hz class (top row), the 12.25 Hz class (middle row), 
and the 14.75 Hz class (bottom row). The bottom diagram in 
figure 6 shows the corresponding channel layout and coloring. 
Phase and amplitude estimations were averaged over each 
trial and subject for the corresponding stimulus frequency and 
are shown for each electrode as colored line plots. Segment-
wise differences are strongest for phase, but they can also be 

Figure 4.  t-SNE of Compact-CNN layer 3. Each element represents a single trial and the color represents membership for three different 
features: (A) the stimulus class of the 12-class SSVEP numeric keypad; (B) one of the ten participants; and (C) the trial number across 
the 180 trials. The bottom panels are zoomed-in sections of the top images to illustrate whether the individual clusters consist of the same 
colored label. Gray points indicate trials that are not visually separable and represent those least likely to be classified correctly.
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seen for amplitude features across all EEG channels. Here, 
only a few classes were illustrated for brevity, but this pattern 
is consistent across classes and scalp locations.

4.  Discussion

In this research, our analysis investigated whether deep 
learning approaches could improve performance in classifica-
tion of SSVEP BCI trials over state-of-the-art methods. While 
CNNs have shown promise for feature extraction and classi-
fication of EEG signals across a number of domains [27–34], 
there has been very little work in applying deep learning to 
classification of SSVEP signals [36–38]. We demonstrate on 
a representative data set that our Compact-CNN approach can 
outperform both CCA and Combined-CCA. Our approach 
improved classification performance on a group level, but 
also in individuals who had particularly poor performance 
when conventional methods were used. An inspection of the 
learned representation used for classification in layer 3 of the 
Compact-CNN revealed activation clusters that differenti-
ated the 12 classes of numeric stimuli in the virtual keypad. 
In contrast, the clusters did not differentiate individual par-
ticipants from one another or the trial order that may arise 
from time-on-task fatigue, inattention, or other nuisance 

variables. The specificity of the representation in layer 3 
indicates that the superior performance was not dependent 
on task-irrelevant features (participant, time-on-task), indi-
cating that the Compact-CNN did not merely overfit the data 
in the training phase. Instead, the superior performance of the 
Compact-CNN likely arose from diagnostic trial features that 
the deep learner identified were robust in the data, namely 
within-class separability.

Unexpectedly, the activation in layer 3 revealed clusters of 
trials from within the same class, even though the 12-class 
classification task did not require any within-class distinction. 
After further investigation of the trials in the clusters, results 
revealed that the variability in phase across the 1 s segments 
of the original 4 s SSVEP trial accounted for the within-class 
cluster differentiation, and the phase differences across the 
four 1 s segments were robust across channels and almost all 
of the stimulus classes. Although unexpected, these within-
class clusters highlight the strength of the deep learning 
approaches to learn diagnostic features directly from the data.

Our original motivation for the 1 s segments arose from 
the aim to provide more training trials for the Compact-CNN. 
However, the segments led to two unexpected, but likely 
related, results: (1) the identification of phase variability 
across the EEG response in the original 4 s SSVEP trial 

Figure 5.  Phase and amplitude of 1 s trial segments. (A) The yellow 12.25 Hz clusters on the left are recolored on the right based on their 
respective 1 s segment of the original 4 s SSVEP trial, where blue is the first second, red the second, green third, and orange the fourth. (B) 
The polar angle plot of the estimated phase, where angle is represented in degrees within the circular plot and distance from the center of 
the plot represents the amplitude of Dim2 shown in (A). (C) The estimated amplitude of the phases of (B) plotted against the amplitude of 
Dim2 in (A). Data shown is from channel Oz which is located over the center of the visual cortex.
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epoch and (2) the substantial performance impairment 
in classification accuracy for the current state-of-the-art 
method, Combined-CCA. In general, CCA approaches lev-
erage domain knowledge to extract relevant SSVEP features 
embedded in the EEG responses, and our results suggest a 
limitation that may arise from assuming a particular stimulus 
frequency and phase. Most multivariate approaches, including 
Combined-CCA, have thus far only proven effective under 
system-paced or synchronized SSVEP paradigms where pre-
cise stimulus onset information is known ahead of time. Our 
results suggest that this approach may constrain the success of 
these methods to synchronous SSVEP paradigms, while our 
Compact-CNN approach shows promise for asynchronous 
SSVEP classification where the users would be able to freely 
gaze/attend to any stimulus at any time. Here, we discuss how 
our Compact-CNN approach demonstrates the value of deep 
learning for SSVEP BCI, provides a potential innovation for 
asynchronous BCIs, and augments our understanding about 
the underlying cortical processing in the visual cortex.

4.1.  Deep learning allows characterization of EEG features

Deep learning approaches allow computational models to 
learn representations of data with multiple layers of abstrac-
tion. This in turn can allow for the discovery of rich features or 
structure within large datasets. However, since these layers of 
features are learned instead of designed by human engineers, 
interpreting the meaning of these features remains a critical 
challenge in the field of deep learning [47, 48]. In this paper, 
our analysis utilized the representational learning capabilities 
of multilayer CNNs and show that the model learned inter-
pretable features from EEG data that are consistent with the 
SSVEP literature. The Compact-CNN identifies phase fea-
tures that are invariant to both subject and trial (time-on-task) 
differences.

Our results extend previous studies that have applied deep 
learning to SSVEP BCI paradigms. These prior approaches 
leveraged domain specific knowledge when constructing their 
feature extraction layers [36–38]. The first approach applied 
a CNN for the classification of SSVEP signals by using the 
fast-fourier transform (FFT) to convert time-domain repre-
sentations into frequency-domain representations [36]. The 
second, more recent approach transformed SSVEP data into 
the frequency domain as a pre-processing step before clas-
sification with a CNN [37]. A similar approach was taken in 
[38], where the authors used an FFT-based hidden layer for 
classifying SSVEP signals. These approaches incorporate 
domain-specific knowledge of the stimulus frequencies by 
utilizing the FFT to transform raw time-domain EEG signals 
to the frequency domain since spectrally focal power differ-
ences are known to be discriminative features in the context 
of SSVEP-based decoding. All these approaches incorporate 
frequency specific knowledge, but no phase information. In 
contrast, our Compact-CNN operates on broadly-filtered EEG 
signals, and the relevant features (frequency and phase) are 
learned and extracted directly from these input signals. This 

end-to-end approach might be particularly advantageous for 
use-cases where domain-specific knowledge is unavailable.

Additionally, our results demonstrated that the 
Compact-CNN was able to discover deeper structure within 
the SSVEP dataset in the form of phase information that 
reflects features of the 1 s segments of the original 4 s SSVEP 
trial epochs. This learned structure is present in the t-SNE 
projections of the model activations in the hidden layers. 
Thus, the Compact-CNN provides a powerful tool for inter-
preting intrinsic structures within EEG datasets, and critically, 
this type of structure discovery would not be possible using 
standard linear methods, such as CCA or Combined-CCA.

4.2.  Potential benefits of Compact-CNN-based asynchronous 
classification

SSVEP signals can be generated and classified using either 
synchronous or asynchronous temporal coding paradigms 
[49]. In synchronous paradigms, the onset and offset of the 
user gaze towards the stimulus are known: the user is cued 
to look at a flashing stimulus in a specified time-window so 
that the user’s gaze is synchronized with the onset of stim-
ulus flashing. In contrast, asynchronous SSVEP paradigms 
allow users to freely gaze/attend to any stimulus at any time. 
Asynchronous paradigms are generally more flexible and are 
more amenable to practical BCI. For some applications, asyn-
chronous temporal coding paradigms can make BCI interac-
tion faster, more intuitive, and/or ergonomical as the user can 
directly communicate a specific command of choice instead 
of waiting for the respective system cues in synchronized 
approaches. EEG-based decoding however, is typically more 
difficult in asynchronous SSVEP paradigms, particularly if 
phase information of the stimulus is not known.

Here, our division of the 4 s SSVEP trial epoch into 1 s 
segments simulates an asynchronous SSVEP BCI from a dis-
cretized stimulation paradigm. These segments approximate 
a less-controlled paradigm wherein a participant may ran-
domly attend to a stimulus frequency. A segment length of 1 
s represents a fast-paced BCI design where classifications can 
be made every second. On this data set, the Compact-CNN 
method outperformed state-of-the-art approaches in simulated 
asynchronous operation. The Compact-CNN learner extracted 
relevant frequency and phase features directly from the 
broadly-filtered EEG signals even when specific phase infor-
mation of the SSVEP trials was unknown. This improvement 
could potentially benefit a variety of asynchronous SSVEP 
BCI applications including control of wheelchairs [17, 50], 
neuroprosthetics [51], exoskeletons [52], or interaction with 
virtual [53, 54] or augmented reality [55]. The observed per-
formance improvement may also make this asynchronous 
approach attractive for applications like spellers [19], where 
synchronous paradigms have been traditionally preferred 
for their higher information bandwidth at the cost of lower 
flexibility.

Additionally, achieving calibrationless BCI classification 
is paramount for developing more practical BCI systems as it 
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eliminates the need for time-consuming training sessions for 
the user [56]. Using a leave-one-subject out transfer protocol, 
our Compact-CNN approach outperformed the baseline 
CCA approaches without any user-specific calibration. This 
is further reflected in t-SNE projections which indicate that 
our deep learning model is able to learn subject invariant fea-
tures, which is critical for transfer across subjects. Based on 
its promise for asynchronous BCI paradigms and the fact that 
user-specific calibration is not required, this Compact-CNN 
approach gives BCI designers additional options to tailor 
SSVEP BCI systems to the needs of specific user-groups or 
other requirements.

4.3.  Detecting frequency and phase information  
with the Compact-CNN

The Convolution Theorem states that convolutions of signals 
in the time-domain relate to multiplication in the frequency-
domain. Since the first layer of our Compact-CNN is a tem-
poral convolution (whose weights need to be learned from 

the data), our network has the capability to learn frequency-
specific temporal filters, including EEG features as shown 
in our previous work [35]. We showed in figure  3 that the 
Compact-CNN model is capable of extracting narrow-band 
task-specific slow-wave and fast-wave frequency activity. We 
believe that our network is also capturing information cor-
related to frequency through the use of the average-pooling 
layer in layer 1 of our model. The sequence of operations 
in layer 1 (temporal convolution, ELU non-linearity then 
average-pooling) is similar to the methodology of [57] for cal-
culating event-related synchronization and desynchronization 
features. In their work, they narrow-band filter, then square, 
then average over a moving window the signal to obtain an 
estimate of frequency power. The similarity of this approach 
to the operations in layer 1 of the Compact-CNN suggests that 
our model is calculating features at least correlated to that of 
frequency power.

In addition, convolutional neural networks have the prop-
erty of equivariance to local translation [58–60]. In particular, 
when the data is a time-series signal, local translations cor-
respond to phase offsets in the signal. This means that the 
output of the convolution operation (a dot product between the 
convolutional kernel and the signal) will preserve the phase 
information in the signal relative to the phase of the convo-
lutional kernel (i.e. when the convolutional kernel is in phase 
or in anti-phase with the data). The ability of convolutional 
neural networks to capture translation-invariant features (in 
the case of a time-series signal, phase-invariant) was proven 
in [59]; it was also shown that pooling layers and model depth 
were critical to achieve this (additional theoretical treatment 
of convolutional neural networks and their ability to extract 
translation-invariant features can be found in [60]). It is 
through this property that our Compact-CCN approach was 
able to extract phase information from the signals of interest. 
Figure 5, which shows a t-SNE projection of the hidden unit 
activations in layer 3, provides additional evidence that our 
network can capture this phenomena.

4.4.  Phase discrimination for vision neuroscience

While this paper largely focuses on the relevance for BCI 
applications, the Compact-CNN’s ability to detect phase 
holds incredible potential to augment our understanding of 
visual processing in common SSVEP experimental para-
digms. For example, SSVEP experimentation has revealed the 
temporal dynamics and spatial constraints of spatial attention 
when divided across locations, refining theories of how we 
attend to specific locations in our environment [61]. Likewise, 
phase information about oscillations of alpha activity within 
coordinated populations of neurons in the visual cortex has 
been shown to predict whether stimuli will be detected in the 
environment, suggesting that phase information drives coor-
dinated excitation that facilitates perception or synchronized 
inhibition that prevents stimulus detection [62–64].

Here, the Compact-CNN identified phase information in 
the SSVEP response that was irrelevant for the 12-class classi-
fication but robust in the neural response, both across stimulus 
frequencies as well as channels. The ability to detect nuanced 

Figure 6.  Mean phase and amplitude across channels. Phase (left 
column) and amplitude (right column) are shown for three classes: 
the 9.25 Hz class ((A) and (B)), the 12.25 Hz class ((C) and (D)), 
and the 14.75 Hz class ((E) and (F)). Electrodes are represented as 
a separate line and mapped onto the scalp in the legend (bottom). 
Error bars indicate SEM across participants.
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phase variability in EEG signals holds incredible potential 
to augment our understanding of the role of phase informa-
tion in neural processing more generally. Variability in phase 
measured with EEG has been shown to modulate the neural 
response to a stimulus [65–68], influence reaction times  
[69, 70], and determine whether multisensory input is bound 
as a coherent percept [71]. Phase information within the 
neural response has been suggested to carry precise informa-
tional content [72, 73] and may even be a component of the 
neural code [74]. Our results demonstrate that a deep learner 
may provide an innovative way to reveal robust phase vari-
ability between stimuli that underlie the intricate coordination 
of neural activity that gives rise to cognition.

4.5.  Limitations

Within this dataset, the impaired performance of 
Combined-CCA likely arose from insufficient representa-
tion of the precise phase information across the 1s segments. 
Future research could investigate whether Combined-CCA 
could be adapted or used differently to better handle asyn-
chronous operation. For example, provided that the BCI has 
knowledge of the phase of the stimulus, the template could 
be shifted so that its phase matches the phase of the stim-
ulus. This may improve performance of Combined-CCA in 
an asynchronous setup. It is noteworthy though, that phase 
information of the stimulus is not available in all applications. 
Our Compact-CNN does not require phase information, sug-
gesting its versatility for both experimental use and novel BCI 
applications.

Finally, our experimental setup did not include a non-
control state, which is typically utilized in self-paced BCI 
systems. Future work could investigate the efficacy of our 
method in the presence of a non-control state in a closed-loop 
setting, which could lead to even more flexible and intuitive 
SSVEP-based human machine interaction.
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