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1. Introduction

Rapid serial visual presentation (RSVP) is the process of 
sequentially displaying images at the same spatial location 
at high presentation rates with multiple images per second, 

e.g. with a stimulus onset asynchrony no greater than 500 ms 
but often lower than 100 ms, i.e.  >10 stimuli presented per 
second. Brain–computer interfaces (BCIs) are communication 
and control systems that enable a user to execute a task via 
the electrical activity of the user’s brain alone (Vidal 1973). 
RSVP-based BCIs are a specific type of BCI that are used to 
detect target stimuli, e.g. letters or images, presented sequen-
tially in a stream, by detecting brain responses to such tar-
gets. RSVP-based BCIs are considered as a viable approach 
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Abstract
Rapid serial visual presentation (RSVP) combined with the detection of event-related brain 
responses facilitates the selection of relevant information contained in a stream of images 
presented rapidly to a human. Event related potentials (ERPs) measured non-invasively with 
electroencephalography (EEG) can be associated with infrequent targets amongst a stream of 
images. Human–machine symbiosis may be augmented by enabling human interaction with a 
computer, without overt movement, and/or enable optimization of image/information sorting 
processes involving humans. Features of the human visual system impact on the success of the 
RSVP paradigm, but pre-attentive processing supports the identification of target information 
post presentation of the information by assessing the co-occurrence or time-locked EEG 
potentials. This paper presents a comprehensive review and evaluation of the limited, 
but significant, literature on research in RSVP-based brain–computer interfaces (BCIs). 
Applications that use RSVP-based BCIs are categorized based on display mode and protocol 
design, whilst a range of factors influencing ERP evocation and detection are analyzed. 
Guidelines for using the RSVP-based BCI paradigms are recommended, with a view to further 
standardizing methods and enhancing the inter-relatability of experimental design to support 
future research and the use of RSVP-based BCIs in practice.
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to enhance human–machine symbiosis and offers potential for 
human enhancement.

To date, the literature on RSVP-BCIs has not been com-
prehensively evaluated, therefore it is timely to review the lit-
erature and provide guidelines for others considering research 
in this area. In this review we: (1) identify and contextual-
ize key parameters of different RSVP-BCI applications to aid 
research development; (2) document the growth of RSVP-
based BCI research; (3) provide an overview of key current 
advancements and challenges; (4) provide design recommen-
dations for researchers interested in further developing the 
RSVP-BCI paradigm.

This review is organized as follows: section  2 presents 
background information on the fundamental operating proto-
col of RSVP-BCIs. Section 3 details results of a bibliometric 
analysis of the key terms ‘rapid serial visual presentation’, 
‘RSVP’, ‘electroencephalography’, ‘EEG’, ‘brain–computer 
interface’, ‘BCI’, ‘event-related potentials’, ‘ERP and ‘odd-
ball’ found within authoritative bibliographic resources. 
Section  4 provides an overview of performance measures. 
Section 5 outlines existing RSVP-based BCI applications, pre-
senting inter-application study comparisons, and undertakes 
an analysis of the design parameters with inter-application 
study comparisons. Section 6 provides a summary, discussion 
of findings and ongoing challenges.

2. Background

RSVP-based BCIs have been used to detect and recognize 
objects, scenes, people, pieces of relevant information and 
events in static images and videos. Many applications would 
benefit from an optimization of this paradigm, for instance 
counter intelligence, policing and health care, where large 
numbers of images/information are reviewed by professionals 
on a daily basis. Computers are unable to analyze and under-
stand imagery as successfully as humans and manual analysis 
tools are slow (Gerson et al 2005, Mathan et al 2008). In stud-
ies carried out by Sajda et al (2010), Poolman et al (2008) and 
Bigdely-Shamlo et  al (2008), a trend of using RSVP-based 
BCIs for identifying targets within different image types has 
emerged. Research studies show the ability to use RSVP-
based BCIs to drive a variety of visual search tasks including, 
in some circumstances, skills learned for visual recognition. 
Although the combination of RSVP and BCI has proven suc-
cessful on several image sets, other research has attempted to 
establish whether or not greater efficiencies can be reached 
through the combination of RSVP-based BCIs and behavioral 
responses (Huang et al 2007).

2.1. Event related potentials and their use in RSVP-based 
BCIs

Event-related potentials (ERPs) are electroencephalography 
(EEG) signal amplitude variations in the EEG associated with 
the onset of a stimulus (usually auditory or visual) presented 
to a person. ERPs are typically smaller in amplitude (<10 µV) 
in comparison to the ongoing EEG activity (~50–100 µV) 

they are embedded within (Huang et al 2008, Acqualagna and 
Blankertz 2011). As ERPs are locked in phase and time to spe-
cific events, they can be measured by averaging epochs over 
repeated trials (Huang et al 2011, Cecotti et al 2012, 2014). 
Shared EEG signal features are accentuated and noise attenu-
ated (Luck 2005, Cohen 2014). The outcome is represented by 
a temporal waveform with a sequence of positive and negative 
voltage deflections labeled as ERP components. ERPs are rep-
resentative of summated cortical neural processing and behav-
ioral counterparts, such as attentional orientation (Wolpaw 
and Wolpaw 2012, Cohen 2014).

The stream of images presented within an RSVP paradigm 
comprise frequent non-target images and infrequent target 
images; different ERP components are associated with target 
and non-target stimuli (Bigdely-Shamlo et  al 2008, Cohen 
2014, Sajda et  al 2014). BCI signal processing algorithms 
are used to recognize spatio-temporal electrophysiological 
responses and link them to target image identification, ideally 
on a single trial basis (Manor et al 2016).

The most commonly exploited ERP in RSVP-based BCI 
applications is the P300. The P300 appears at approximately 
250–750 ms post target stimulus (Polich and Donchin 1988, 
Leutgeb et al 2009, Ming et al 2010, Zhang et al 2012). As 
specified by Polich and Donchin (1988) during the P300 
experiment (commonly referred to as the ‘oddball’ para-
digm), participants must classify a series of stimuli that fall 
into one of two classes: targets and non-targets. Targets appear 
more infrequently than non-targets (typically ~5–10% of total 
stimuli in the RSVP paradigm) and should be recognizably 
different. It is known that P300 responses can be suppressed 
in an RSVP task if the time between two targets is  <0.5 s, 
which is known as attentional blink (Raymond et  al 1992, 
Kranczioch et al 2003). The amplitude and the latency of the 
P300 are influenced by the target discriminability and the tar-
get-to-target interval in the sequence. The latency of the P300 
is affected by stimulus complexity (McCarthy and Donchin 
1981, Luck et  al 2000). The P300 amplitude can vary as a 
result of multiple factors (Johnson 1986), such as:

 • subjective probability—the expectedness of an event; 
 • stimulus meaning—comprised of task complexity, 

stimulus complexity and stimulus value; 
 • information transmission—the amount of stimulus 

information a participant registers in relation to the infor-
mation contained within a stimulus.

2.2. RSVP-based BCI amongst the BCI classes

BCIs can be of three different types: active, reactive or pas-
sive (Zander et al 2010). An active BCI is purposefully con-
trolled by the user through intentional modulation of neural 
activity, often independent of external events. Contrastingly, 
reactive BCIs generate outputs from neural activity evoked 
in response to external events, enabling indirect control by 
the user. Passive BCI makes use of implicit information and 
generate outputs from neural activity without purposeful con-
trol by the user. Active/reactive BCIs are commonly aimed at 
users with restricted movement abilities who intentionally try 
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to control brain activity, whereas implicit or passive BCIs are 
more commonly targeted towards applications that are also of 
interest to able-bodied users (Zander and Kothe 2011, Sasane 
and Schwabe 2012).

2.3. RSVP-based BCI presentation modes

RSVP-based BCIs have two presentation modes: static mode 
in which images appear and disappear without moving; and 
moving mode where targets within short moving clips have to 
be identified (Sajda et al 2010, Cecotti et al 2012, Weiden et al 
2012). Both presentation modes can be used with or without 
a button press. With a button press, users indicate manually, 
by pressing a button, when they observe a target stimulus. A 
button press is used to establish baseline performance, reac-
tion time and/or to enhance performance (discussed further in 
section 5.1).

2.3.1. Static. In ‘static mode’, images displayed have identi-
cal entry and exit points—the images are transiently presented 
on screen (typically for 100–500 ms) and then disappear. One 
benefit of static mode is that images occupy the majority of 
the display and, therefore, identification of targets is likely 
even if they are only presented briefly. There are a number 
of different possible instructions a participant may be given.

 • Prior to presentation, a target image may be shown to par-
ticipants and participants are asked to identify this image 
in a sequence of proceeding images. Target recognition 
success rates can be achieved with presentation rates as 
high as 10 s−1 (Cecotti et al 2012).

 • Participants may be asked to identify a type of target e.g. 
an animal within a collection of images. In this mode, the 
rate of presentation should be slowed down (4 s−1) (Wang 
et al 2009).

 • Immediately after image sequence presentation, the 
participant may be shown an image and asked: ‘did this 
image appear in the sequence you have just seen?’ (Potter 
et al 2002).

2.3.2. Moving. There has been relatively little research 
regarding neural signatures of a target and/or anomalies in 
real world or simulated videos. In ‘moving mode’, short video 
clips are shown to participants, and within one video clip 
participants may be asked to identify one or more targets. It 
is important that these targets are temporally ‘spread out’ to 
avoid P300 suppression. There are different possible instruc-
tions a participant may be given:

 • Prior to presentation, participants may be given a descrip-
tion of a target, i.e. asked to identify, say a ‘person’ or 
‘vehicle’ in a moving scene (Weiden et al 2012).

 • Participants can be asked to identify a target event; in this 
case, the target is identified across space and time. The par-
ticipant is required to integrate features from both motion 
and form to decide whether a behavior constitutes a target, 
for example, Rosenthal et al (2014) defined the target as a 
person leaving a suspicious package in a train station.

2.4. Cognitive blindness

When designing an RSVP-based BCI, three different types 
of cognitive blindness should be considered namely, the 
attentional blink, change blindness and saccadic blindness. 
Generally, RSVP is a paradigm used to study the attentional 
blink, which is a phenomena that occurs when a participant’s 
attention is grabbed by an initial target image and a further 
target image may not be detectable for up to 500 ms after the 
first (Raymond et al 1992). Depending upon the duration of 
stimuli presentation the ration of target images/total images 
will change (e.g. if images are being presented at a duration of 
100 ms then there must be a minimum of five images between 
targets 1 and 2. In a sequence of 100 images there can be a 
maximum of 20 target images. Whereas if images are pre-
sented at 200 ms this limits the maximum number of targets to 
10/100 images in total).

Change blindness occurs when a participant is view-
ing two images that vary in a non-trivial fashion, and has to 
identify the image differences. Change blindness can occur 
when confronted by images, motion pictures, and real world 
interactions. Humans have the capacity to get the gist of a 
scene quickly but are unable to identify particular within-
scene features (Simons and Levin 1997, Oliva 2005). For 
example, when two images are presented for 100 ms each and 
participants are required to identify a non-trivial variation as 
the images are interchangeably presented, participants can 
take between 10–20 s to identify the variation. This latency 
period in identifying non-trivial variations in imagery can 
be augmented through use of distractors or motion pictures 
(Rensink 2000). In the context of designing an RSVP para-
digm change blindness is of interest, as it will take longer for 
a user to identify a target within an image if it does not pop 
out from the rest of the image. Distractors within the image 
or cluttered images, will increase the time it takes a user to 
recognize a target, reducing the performance of the RSVP 
paradigm.

Saccadic blindness is a form of change blindness described 
by Chahine and Krekelberg (2009) where ‘humans move 
their eyes about three times each second. Those rapid eye 
movements called saccades help to increase our perceptual 
resolution by placing different parts of the world on the high-
resolution fovea. As these eye movements are performed, 
the image is swept across the retina, yet we perceive a sta-
ble world with no apparent blurring or motion’. Saccadic 
blindness thus refers to the loss of image when a person sac-
cades between two locations. Evidence shows that saccadic 
blindness can occur 50 ms before saccades and up to 50 ms 
after saccades (Diamond et  al 2000). Thus, it is important 
that stimuli have a duration greater than 50 ms to bypass sac-
cadic blindness, unless participants are instructed to attend a 
focus point and the task is gaze independent and thus does not 
demand saccades (such as during the canonical RSVP para-
digm (section 5.4)).

Having considered some of the factors influencing RSVP-
based BCI designs, the remainder of the paper focuses on 
a bibliometric study of the RSVP literature highlighting the 
key methodological parameters and study trends. Studies are 
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compared and contrasted on an intra- and inter-application 
basis. Later sections  focus on study design parameters and 
provide contextualized recommendations for researchers in 
the field.

3. Bibliometric study of the RSVP related literature

A bibliometric review of the RSVP-based BCIs was con-
ducted. The inclusion criteria for this review were studies 
that focused on EEG data being recorded while users were 
performing visual search tasks using an RSVP paradigm. 
The studies involved various stimulus types presented using 
the RSVP paradigm where participants had to identify target 
stimuli. All reported studies where not simply theoretical and 
had at least one participant. One or more of the keywords BCI, 
RSVP, EEG or ERP appeared in the title, abstract or keyword 
list. Only papers published in English were included. The liter-
ature was searched, evaluated and categorized up until August 
2017. The databases searched were Web of Science, IEEE, 
Scopus, Google Scholar, and PubMed. The search terms used 
were: ‘rapid serial visual presentation’, ‘RSVP’, ‘electroen-
cephalography’, ‘EEG’, ‘brain–computer interface’, ‘BCI’, 
‘event-related potentials’, ‘ERP and ‘oddball’.

Papers were excluded for the following reasons: 1. the 
research protocol had insufficient detail; 2. key aspects needed 
to draw conclusive results were missing; 3. the spectrum of BCI 
research reported was too wide (i.e. review papers not specific 
to RSVP), 4. a ‘possible’ research application was described 
but the study was not actually carried out; 5. the study was a 
repeated study by original authors with only minor changes. 
Due to the immaturity of RSVP-based BCI as research topic, 
conference papers were not excluded. Inclusion of conference 
papers was considered important in order to provide a com-
prehensive overview of the state-of-the-art and trends in the 
field. Fifty-four papers passed initial abstract/title screening; 
these were then refined to the 45 most relevant papers through 
analysis of the entire paper contents. The date of the included 
publications ranged from 2003–2017.

The relevant RSVP-based BCI papers are presented in 
table 1 when a button press was required, and table 2 when 
no button presses were conducted. RSVP-based BCIs were 
evaluated in terms of the interface design. Tables 1 and 2 show 
that there is considerable variation across the different studies 
in terms of the RSVP-BCI acquisition paradigm, including the 
total number of stimuli employed, percentage of target stimuli, 
size of on-screen stimuli, visual angle, stimulus presentation 
duration, and the number of study participants. Performance 
was measured using a number of metrics: the area under the 
receiver operating characteristic (ROC) curve (Fawcett 2006), 
classification accuracy (%) and information transfer rate. 
ROC curves are used when applications have an unbalanced 
class distribution, which is typically the case with RSVP-BCI, 
where the number of target stimulus is much smaller than that 
of non-target stimuli. Many studies report different exper-
imental parameters and some aspects of the studies have not 
been comprehensively reported. From tables 1 and 2, it can be 
seen that the majority of applications using a button press as a 
baseline may be classified as surveillance applications while 

applications that do not use a button press are more varied. 
This may be because often surveillance applications have an 
industry focus, and quantified improvement relative to man-
ual labeling alone is crucial for acceptance. In the majority of 
the applications where a button press was used, participants 
undertake trials with and without a button press and the differ-
ence in latency of response between the two is calculated to 
compare neural and behavioral response times. The results of 
the bibliometric analysis are further discussed in sections 4–6, 
following the analysis of key papers identified in the follow-
ing section.

4. Validating inter-study comparison through  
performance measures

When comparing RSVP studies it is important to acknowl-
edge that researchers use different measures of performance. 
Before going into depth about signal processing techniques 
(section 5.7) it is important to discuss, firstly, the variations in 
approaches used to measure performance. To encourage valid 
inter-study comparison within and across RSVP application 
types, it is crucial to emphasize that we are, on the whole, 
reporting classification accuracy when it is calculated in terms 
of the number of correctly classified trials. Classification 
accuracy can be swayed by the imbalanced target and non-
target classes, with targets being infrequently presented, e.g. 
with a 10% target prevalence; if all trials are classed as non-
targets, correct classification rate would be 90%. Hence, ROC 
values are also reported in this review where relevant informa-
tion was provided in the publications reviewed.

In the literature, there are many variations on how perfor-
mance is estimated and reported. The studies cited in the current 
section provide examples of performance measure variations 
from the literature. The intention of Files and Marathe (2016)  
with respect to the reference list provided. Please check.]was 
to develop a regression-based method to predict hit rates and 
error rates whilst correcting for expected mistakes. There is 
a need for such methods, due to uncertainty and difficulty in 
correctly identifying target stimuli. The regression method 
developed by Files and Marathe (2016), had relatively high 
hit rates, which spanned 78.4%–90.5% across all participants. 
Contrastingly, as a measure of accuracy, Sajda et  al (2010) 
used hit rates expressed as a fraction of total targets detected 
per minute. Sajda et al (2010) discussed an additional experi-
ment that employed ROC values as an outcome measure. In 
Alpert et al (2014), where the RSVP application was catego-
rization based, accuracy was defined as the number of trials 
in which the classifier provided the correct response divided 
by the total number of available trials, with regards to target/
non-target classification. Yazdani et al (2010) were concerned 
with surveillance applications of RSVP-based BCI and used 
the F-measure to evaluate the accuracy of the binary classifier 
in use. Precision (fraction of occurrences flagged that are of 
relevant) and recall (fraction of relevant occurrences flagged) 
were reported, as the F-measure considers both these values.

Different variations in ROC value calculations were also 
discovered across the studies evaluated. Variability in the 
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distribution of accuracy outcome measures is also founded 
upon whether the dataset is non-parametric, e.g. median AUC 
is reported as opposed to the mean AUC (Matran-Fernandez 
and Poli 2014). As a measure of accuracy, Rosenthal et al 
(2014) conducted a bootstrap analysis: to show the sampled 
distribution of AUC values for HDCA classifiers were 1000 
times over, labels were randomized, classifiers were trained 
and AUC values calculated through a ‘leaving-one-out cross-
validation’ technique. Cecotti et al (2012) presented a com-
parison of three class classifiers in a ‘one versus all’ strategy. 
The focus of Cecotti et al (2012) was to compare the AUC 
to the volume under the ROC hyper-surface and the authors 
found an AUC of 0.878, which is suggestive of the possibility 
for discrimination between greater than two types of ERPs 
using single-trial detection. Huang et  al (2006) reported 
the AUC for session one of two experiments during button 
press trials. This paper demonstrates that the three classifiers 
approach produces a similar performance with AUC of  >0.8 
across the board (Huang et  al 2006). Moreover, accuracy 
reportedly increases through collating evidence from two 
BCI users, and reportedly yielded a 7.7% increase in AUC 
compared to a single BCI user (Matran-Fernandez and Poli 
2014) using collaborative BCIs. This process was repeated 
20 times to achieve an average accuracy measurement that 
would not be relatable to other studies included in the biblio-
metric analysis that involved average performance over sin-
gle trial test. Cecotti et al (2011) carried out a study where 
they compared varying target stimuli probability. Target 
probability has a significant effect on both behavioral perfor-
mance and target detection. The best mean AUC is achieved 
with target probability of 0.10 AUC  =  0.82. The best target 
stimuli probability for optimal detection performance were 
5%  =  78.7%.

This above review exemplifies how performance meas-
ures are used. The variability of accuracy analytics limits the 
extent to which inter-study comparability is feasible, nonethe-
less a high proportion of studies use AUC values and percent-
age accuracy as outcome measures, therefore these measures 
provide the basis for comparisons in section 5. In the RSVP-
based BCI application sections that follow, we provide addi-
tional information about the values reported in tables 1 and 2, 
the intention being to validate why these performance metrics 
were selected when a number of different results are reported 
by the specified study, and to highlight inter-study idiosyncra-
sies that may need to be considered whilst comparing find-
ings. In the next section, the different design parameters for 
the studies identified in tables 1 and 2 are reviewed and a num-
ber of recommendations are suggested for the parameters that 
should be considered for RSVP-based BCI applications.

5. Design parameters

RSVP-based BCI applications to date can be grouped into 
surveillance, data categorization, RSVP speller, face recog-
nition and medical image analysis applications. Often EEG-
based RSVP-BCI system studies are multifactorial by design 
and report numerous results in the form of different outcome 

measures. In the RSVP-based BCI application section that fol-
lows, we provide examples of the different application types 
and examples of their design parameters.

When designing an RSVP paradigm, there are eight crite-
ria that we recommend be taken into consideration.

 (1) The type of target images and how rapidly these can be 
detected, e.g. picture, number of words.

 (2) The differences between target and non-target images 
and how these influence the discrimination in the RSVP 
paradigm.

 (3) The display mode—static or moving stimuli and the 
background the images are presented on, e.g. single color 
white, mixed, textured.

 (4) The response mode—consideration should be given as 
to whether a button press is used or not to confirm if a 
person has identified a target.

 (5) The number of stimuli/the percentage of target stimuli—
how many are presented throughout the duration of a 
session and the effect this could have on the ERP.

 (6) The rate at which stimuli are presented on screen 
throughout the duration of a session and the effect this 
has on the ERP.

 (7) The area (height  ×  width), visual angle and the overt or 
covert attention requirement of the stimuli.

 (8) The signal processing pipeline—determine the features, 
channels, filters, and classifiers to use.

5.1. Display and response modes

A button press may be used in conjunction with either of the 
aforementioned presentation modes (section 2.2), and entails 
users having to click a button when they see a target. This 
mode is used as a baseline to estimate the behavioral perfor-
mance and the difficulty of the task. In most research studies, 
participants undergo an experimental trial without a button 
press and a follow-on trial with a button press.

A button press can be used in RSVP-based BCI research 
in combination with the participant’s EEG responses in order 
to monitor attention (Marathe et al 2014). The combination 
of EEG and button press can lead to increased performance 
in RSVP-based BCIs. Tasks that require sustained attention 
can cause participants to suffer from lapses in vigilance due 
to fatigue, workload or visual distractors (Boksem et al 2005). 
The button press can be used to determine if there is a tipping 
point during the presentations when participants are unable to 
consciously detect target stimuli, while still identifying tar-
gets via EEG recordings (Potter et al 2014). However, the core 
advantage of the RSVP-based BCIs is the enhanced speed of 
using a neural signature instead of a behavioral response to 
determine if a user has detected an intended image of interest.

Forty of the studies reported use static mode as a method 
of presentation; six of these papers used moving mode in con-
junction with static mode while one study exclusively used 
moving mode. Moving mode is more complex than static 
mode as participants have to take in an entire scene rather than 
specific images. Moving mode uses motion onset in conjunc-
tion with the P300 for scenes in which the targets are moving, 

J. Neural Eng. 15 (2018) 021001
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yielding a more realistic setting to validate RSVP-based BCIs 
(Weiden et  al 2012). All papers employing moving mode 
were found within the surveillance application category; this 
is unsurprising as the moving mode offers the opportunity to 
detect targets in realistic surveillance situations where move-
ments of people or vehicles are of interest. For the other appli-
cation areas, i.e. medical, categorization, etc the static mode is 
likely to be the most appropriate.

Won et  al (2017) compared motion RSVP to standard 
RSVP, with the motion-type RSVP being the rapid presenta-
tion of letters of the alphabet, numbers 1–9 and a hyphen ‘-’ 
used to separate words, in six different color groups in one 
of six directions in line with the hands of a clock, i.e. 2, 4, 
6, 8, 10, 12, whilst participants focused on a central point. 
An increase in performance accuracy with motion-type 
RSVP versus static-type was demonstrated, which could be 
accounted for by the shorter latency and greater amplitudes 
of ERP components in the motion-type variation (Won et al 
2017).

Out of the studies found, 22 used a button press while 23 
did not. 70% of surveillance applications used a button press. 
In categorization studies and face recognition studies the 
majority of applications used a button press. 89% of RSVP-
speller applications did not use a button press. Typically, the 
BCI studies that involve spellers focus on movement-free 
communication and high information transfer rates. Having a 
button press for confirmation of targets is not standard practice 
in such applications (Orhan et al 2012, Oken et al 2014). In 
many of the studies that did not utilize a button press, research-
ers were focused on different aspects of the RSVP paradigm 
other than reaction time. For example, researchers focused on 
the comparison of two classification methods, image duration, 
etc (Sajda et  al 2010, Cecotti et  al 2014). Combining EEG 
responses with button press can improve accuracy although 
more signal processing is required in order to remove noise 
that occurs as a result of participant movement (Healy and 
Smeaton 2011). Button press confirmation is unnecessary 
unless an assessment of physical reaction time is an important 
aspect of the study.

Maguire and Howe (2016) instructed participants to use a 
button press following image blocks to indicate if a target was 
consciously perceived as present or absent. Such an approach 
is useful when studying RSVP-based parameters and the lim-
its of perception. However, button press responses might be 
less useful than EEG responses during RSVP for data labeling 
or image sorting, where the focus is to label individual images 
within the burst. Nonetheless, Bigdely-Shamlo et  al (2008) 
applied an image burst approach where a button press at the 
end of the image burst was used to determine if the participant 
saw a target image or not. The authors showed that airplanes 
could be detected in aerial shots with image bursts lasting 
4100 ms and images presented at 12 Hz. The button press 
served well in determining correct and incorrect responses. 
In practice, however, a button press may be superfluous or 
infeasible.

A body of researchers is of the opinion that RSVP-related 
EEG accuracy must surpass button press accuracy in order to 
be useful. However, this need not be the case as Gerson et al 

(2006) report no significant differences in triage performance 
based on EEG recordings or button presses. Nevertheless 
button-based triage performance is superior for participants 
that correctly respond to a high percentage of target images. 
Conversely, EEG-based triage alone is shown to be ideal for 
the subset of participants who responded correctly to fewer 
images Gerson et  al (2006). Hence, the most reliable strat-
egy for image triaging in an RSVP-based paradigm may 
be through reacting to the target image by real-time button 
presses in conjunction with an EEG-based detection method. 
Target identification reflected in EEG responses can be con-
firmed by a button press, and through signal processing tech-
niques both reported and missed targets can be identified.

Studies such as Marathe et  al (2014) proposed methods 
for integrating button press information with EEG-based 
RSVP classifiers to improve overall target detection perfor-
mance. However, challenges arise when overlaying ERP and 
behavioral responses, such as issues concerning stimulation 
presentation speed and behavioral latency (Files and Marathe 
2016). Crucially Files and Marathe (2016) demonstrated that 
techniques for measuring real-time button press accuracy 
start to fail at higher presentation rates. Given evidence of 
human capacity for semantic processing during 20 Hz image 
streams (approximately 50 ms per image) and response times 
(RTs) often being an order of magnitude greater than EEG 
responses, button presses may be unsuitable for faster RSVP-
based image triaging.

Pending further studies investigating the reliability of fast 
detection of neural correlates, EEG-based responses have the 
potential to exceed button press. However, it is not neces-
sary for EEG-based RSVP paradigms to surpass button press 
performance and evidence suggests that a complement of 
both modalities at comfortable lower presentation rates may 
indeed be the best approach. Nevertheless, ideally studies 
would contain an EEG-only block and EEG plus button press 
block, where the button press follows the target and not the 
image burst. This would facilitate more accurate evaluation 
of differences and correlations between behavioral and neural 
response times. Interesting, Bohannon et al (2017), presented 
a heterogeneous multi-agent system comprising computer 
vision, human and BCI agents, and showed that heteroge-
neous multi-agent image systems may achieve human level 
accuracies in significantly less time than a single human agent 
by balancing the trade-off between time-cost and accuracy. In 
such cases a human–computer interaction may occur in the 
form of button press if the confidence in the response of other, 
more rapid agents such as RSVP-BCI agents or computer 
vision algorithm is low for a particular sequence of stimuli.

5.2. Type of stimuli

Surveillance is the largest RSVP BCI system application 
reported in this review, reflected as such by the discussion 
length of this subsection (Sajda et al 2003, Erdogmus et al 
2006, Gerson et al 2006, Poolman et al 2008, Bigdely-Shamlo 
et al 2008, Sajda et al 2010, Huang et al 2011, Cecotti et al 
2012, Weiden et al 2012, Matran-Fernandez and Poli 2014, 
Marathe et  al 2014, Rosenthal et  al 2014, Yu et  al 2014, 
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Marathe et al 2015, Barngrover et al 2016, Cecotti 2016, Files 
and Marathe 2016).

In a surveillance application study carried out by Huang et al 
(2011) the targets were surface-to-air missile sites. Target and 
non-target images shared low-level features such as local tex-
tures, which enhanced complexity. Nonetheless target images 
were set apart due to large-scale features such as unambiguous 
road layouts. Another example of surveillance targets denoted 
by Bigdely-Shamlo et al (2008) is where overlapping clips of 
London satellite images were superimposed with small target 
airplane images, which could vary in location and angle within 
an elliptical focal area. Correspondingly, in Barngrover et al 
(2016), the prime goal was to correctly identify sonar images 
of mine-like objects on the seabed. Accordingly, a three-stage 
BCI system was developed whereby the initial stages entailed 
computer vision procedures, e.g. Haar-like feature classifica-
tion whereby pixel intensities of adjacent regions are summed 
and then the difference between regions is computed, in order 
to segregate images into image chips. These image chips were 
then fed into an RSVP type paradigm exposed to human judg-
ment, followed by a final classification using a support vector 
machine (SVM).

In the categorization, application type images were sorted 
into different groups (Cecotti et al 2011). Alpert et al (2014) 
conducted a study whereby five image categories were pre-
sented: cars, painted eggs, faces, planes, and clock faces 
(Sajda et  al 2014). A second study by Alpert et  al (2014), 
containing target (cars) and non-target image (scrambled 
images of the same car) categories, was conducted. In both 
RSVP experiments, the proposed spatially weighted Fisher 
linear discriminant–principal component analysis (SWFP) 
classifier correctly classified a significantly higher number of 
images than the hierarchical discriminant component analy-
sis (HDCA) algorithm. In terms of categorization, empirical 
grounds were provided for potential intuitive claims, stating 
that target categorization is more efficient when there is only 
one target image type, or distractors are scrambled variations 
of the target image as opposed to different images all together 
(Sajda et al 2014).

Face recognition applications have been used to seek out 
whether a recognition response can be delineated from an 
uninter rupted stream of faces, whereby each face cannot be 
independently recognized (Touryan et  al 2011). Two of the 
three studies evaluated utilized face recognition RSVP para-
digm spin offs with celebrity/familiar faces as targets and novel, 
or other familiar or celebrity faces as distractors (Touryan et al 
2011, Cai et al 2013). Cecotti et al (2011) utilized novel faces 
as targets amongst cars with both stimuli types presented with 
and without noise. Utilizing the RSVP paradigm for face rec-
ognition applications is an unconventional approach; nonethe-
less the ERP itself has been used exhaustively to study neural 
correlates of recognition and declarative memory (Yovel and 
Paller 2004, Guo et al 2005, MacKenzie and Donaldson 2007, 
Dias and Parra et al 2011). Specifically, early and later comp-
onents of the ERP have been associated with the psychological 
constructs of familiarity and recollection, respectively (Smith 
1993, Rugg et al 1998). There is thus substantial potential for 
the utility of the RSVP-based BCI paradigm for applications 

in facial recognition. In the future, RSVP-based BCI face rec-
ognition may be apposite in a real world setting in conjunction 
with security-based identity applications to recognize people 
of interest. Furthermore, Touryan et al (2011) claimed that, 
based on the success of their study, RSVP paradigm-based 
EEG classification methods could potentially be applied to 
the neural substrates of memory. Indeed, some studies show 
augmentation in the posterior positivity of ERP components 
for faces that are later remembered (Paller and Wagner 2002, 
Yovel and Paller 2004). That is to say, components of ERPs 
triggered by an initial stimulus may provide an indication 
of whether memory consolidation of the said stimulus will 
take place, which provides an interesting avenue for utilizing 
RSVP-based BCI systems for enhancing human performance. 
Based on these studies, it is clear that relatively novel face 
recognition paradigms have achieved success when used in 
RSVP-based BCIs.

RSVP-based BCIs that assist with finding targets within 
images to support clinical diagnosis has received attention 
(Stoica et al 2013), for example, in the development of more 
efficient breast cancer screening methods (Hope et al 2013). 
Hope et al (2013) is the only paper evaluated from the field 
of medical image analysis and hence described in detail. 
During an initial sub-study participants were shown mam-
mogram images, where target lesions were present or absent. 
In a subsequent study, target red or green stimuli were dis-
played among a set of random non-target blobs. These studies 
facilitated comparison between ‘masses’ and ‘no masses’ in 
mammograms, and strong color-based images versus random 
distractors. Images were presented against a grey background 
in three-second bursts of 30 images (100 ms per image). A dif-
ference in the amplitude of the P300 potential was observed 
across studies, with a larger amplitude difference between 
target and non-target images in the mammogram study. The 
researchers attributed this to the semantic association with 
mammogram images, in contrast to the lack thereof in the 
colored image-based study.

5.3. Total stimuli number and prevalence of target stimuli

The number of stimuli refers to the total number of stimuli, 
i.e. the same stimulus can be shown several times. An excep-
tion to this is RSVP-speller studies where researchers only 
report on the number of symbols used, i.e. 28 symbols—26 
letters of the alphabet, space and backspace (Hild et al 2011). 
In the RSVP-speller studies reviewed, the number of times 
each symbol was shown was not explicit. RSVP-speller appli-
cations are likely to have significantly fewer stimuli than the 
other aforementioned applications as participants are spelling 
out a specific word or sentence, which only has a small num-
ber of target letters/words. The integration of language mod-
els into RSVP-speller applications enables ERP classifiers to 
utilize the abundance of sequential dependencies embedded in 
language to minimize the number of trials required to classify 
letters as targets or non-targets (Orhan et al 2011, Kindermans 
et  al 2014). Some systems, such as the RSVP keyboard 
(described in Hild et al (2011), Orhan et al (2012a), Oken et al 
(2014)) display only a subset of available characters in each 
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sequence. This sequence length can be automatically defined 
or be a pre-defined parameter chosen by the researcher. The 
next letter in a sequence becomes highly predictable in spe-
cific contexts, therefore it is not necessary to display every 
character in the RSVP speller. Studies show that target charac-
ters are generally displayed more than once before the charac-
ter is selected. The length of a sequence and the ratio of target 
to non-target stimuli can have an effect on the typing rate/per-
formance. In an online study by Acqualagna et al (2011), par-
ticipants were shown 30 symbols that were randomly shuffled 
ten times before a symbol was selected through classification 
and presented on screen. Orhan et al (2012), carried out an 
offline study whereby two healthy participants where shown 
three sequences (consisting of 26 randomly ordered letters of 
the alphabet). The results of this study showed that the number 
of correctly identified symbols more than doubled when using 
three sequences instead of one sequence to identify targets.

Task complexity is enhanced by the multiplicity of target 
categories. In Poolman, et al (2008) there were two blocks of 
target presentations: a helipad block with a 4% target preva-
lence; and a surface-to-air missile and anti-aircraft artillery 
block with a 1% target prevalence. Additionally, in Cecotti 
et  al (2012) the targets were 50% vehicles, 50% people, 
with 50% being stationary and 50% moving. Further to this, 
(Weiden et  al 2012) demonstrated that presenting kinetic 
images during the RSVP paradigm as opposed to stationary 
images increased the performance of EEG-based detection, 
and that this is negatively correlated with the cognitive load 
associated with the presented stimuli. In RSVP-speller appli-
cations task complexity varies based on what instructions par-
ticipants are given, e.g. (1) participants may be asked to ‘spell 
dog’; (2) ‘type a word related to weather’; (3) participants can 
be given a word bank containing 20 words and asked to ‘spell a 
word found within this word bank’. Half of the RSVP-speller-
based BCI studies evaluated involved user-defined sequence 
lengths (instructions 2 and 3) (Acqualagnav et al 2010, Hild 
et al 2011, Orhan et al 2012, Oken et al 2014), while the other 
half involved users being given a target word/sentence to spell 
(instruction 1). If a participant has to remember the sentence 
or how to spell a long or unfamiliar word this can increase 
the complexity of a task (i.e. dog is much easier to spell than 
idiosyncrasy) (Primativo et al 2016). Note however that these 
different complexities in instructions are only present for eval-
uation/training tasks with the RSVP-BCI spellers. For their 
real use, participants choose themselves what they want to 
spell. The RSVP-based text application allows the number of 
stimuli before a target stimulus be reduced (i.e. letters such as 
‘z’ that are less commonly used can be shown less frequently).

Excluding RSVP-speller applications, as it is already 
known that they do not require the same number of stimuli 
as the other applications, the number of stimuli used typically 
varied between studies from approximately 800 in the surveil-
lance application study by Sajda et al (2010) to 26 100 in a 
categorization application study by Sajda et  al (2014). The 
most common target stimuli percentage range was 1–10% 
found in 61% of the studies reviewed, followed by 11–20% 
then  >20%. There are a number of studies that focus specifi-
cally on the percentage of target stimuli. In a study by Cecotti 

et al (2011), researchers investigated the influence of target 
probability when categorizing face and car images. In this 
study, researchers used spatially filtered EEG signals as the 
input for a Bayesian classifier. Using eight healthy partici-
pants, this method was evaluated using four probabilities of 
target stimuli conditions, i.e. 0.05, 0.10, 0.25, or 0.50. It was 
found that the target probability had an effect on the partici-
pant’s ability to detect targets and on behavioral performance. 
The best mean AUC (0.82) was achieved using the 0.1 prob-
ability condition. The results showed that the percentage of 
targets shown in an RSVP paradigm has an effect on partici-
pants’ performance. As number and percentage of target stim-
uli used can have an effect on the complexity of a task, it is 
important to keep the percentage of targets to  <10% to evoke 
the P300 and maximize detection rates. This was proposed to 
be in line with well-established P3 measures, whereby bigger 
gaps between target trials reduce peak latency and increase 
ampl itude (Gonsalvez and Polich 2002).

5.4. Duration of stimuli presentation

A key factor of the RSVP paradigm is the rate of presentation, 
as the focus of this paradigm is presenting data at a rapid rate 
so that large datasets can be analyzed in short periods. The 
duration for which stimuli were presented varied from 50 to 
500 ms (Sajda et al 2003, Touryan et al 2011, Cai et al 2013). 
The upper limits for the presentation time of stimuli during 
the RSVP paradigm is ill-defined in the literature; however we 
found 500 ms per image to be the maximum RSVP duration 
used across all RSVP studies. The duration of stimuli typically 
differs between applications. Table 3 shows that the most com-
mon duration of stimuli was between 100–199 ms per image. 
The quickest duration of 50 ms per image was used in a study 
by Sajda et al (2003) where two participants were asked to iden-
tify scenes containing people in natural scenes. In each trial, the 
duration of the stimulus presentation was decreased from 200 
to 100 to 50 ms per image. The results of this study showed that 
both participants had reduced performance for faster stimulus 
presentations, i.e. 50 ms. This would suggest that the most suit-
able duration for RSVP-based BCI applications is 100–200 ms, 
to balance the trade-off between accuracy and speed.

Overall, these limited findings are suggestive of pres-
entation rates of  >10 Hz being infeasible for identification 
of neural correlates that allow successful identification of 
targets. Despite the low a participant number in Sajda et al 
(2003), validation for this upper cut-off presentation rate may 
be provided by Raymond et al (1992), where the attentional 
blink was first described. An RSVP paradigm was undertaken 

Table 3. Variation of image duration in RSVP studies.

Duration (ms) Number of studies Accuracy % range

<100 7 66–93
100–199 22 70–92
200–299 11 70–96
300–399 — —
400–499 2 85–94
500+  8 78.4–90

J. Neural Eng. 15 (2018) 021001



Topical Review

15

whereby the participant must register a target white letter in 
a stream of black letters and a second target ‘X’ amongst this 
stream. It was found that if the ‘X’ appeared within ~100–
500 ms of the initial target, errors in indicating whether the 
‘X’ was present or not were likely to be made even when the 
first target was correctly identified (Raymond et al 1992). This 
is not to say that humans cannot correctly process information 
presented at  >10 Hz. Forster (1970), has shown that partici-
pants can process words presented in a sentence at 16 Hz (16 
words per second). However, the sentence structure may have 
influenced the correct detection rate, which has an average of 
four words per second for simple sentence structures and three 
words for complex sentences. Detection rates improve when 
presented at a slower pace, e.g. four relevant words per sec-
ond, with masks (not relevant words) presented between rel-
evant words. Additionally, Fine and Peli (1995) showed that 
humans can process words at 20 Hz in an RSVP paradigm.

Potter et  al (2014) assessed the minimum viewing time 
needed for visual comprehension using RSVP of a series of 6 
or 12 pictures presented at between 13 and 80 ms per picture, 
with no inter-stimulus interval. They found that observers could 
determine the presence or absence of a specific picture even 
when the pictures in the sequence were presented for just 13 ms 
each. The results suggest that humans are capable of detecting 
meaning in RSVP at 13 ms per picture. However, the finding 
challenges established feedback theories of visual perception. 
Specifically, research assert that neural activity needs to prop-
agate from the primary visual cortex to higher cortical areas and 
back to the primary visual cortex before recognition can occur 
at the level of detail required for an individual picture to be 
detected, Maguire and Howe (2016). Maguire and Howe (2016) 
supported Potter et al (2014) in that the duration of this feedback 
process is likely  ⩾50 ms, and suggest that this is feasible based 
on work done by Lamme and Roelfsema (2000). Explicitly, 
Lamme and Roelfsema (2000) estimated that response laten-
cies at any hierarchical level of the visual system are ~10 ms. 
Therefore, assuming that a minimum of five levels must be 
traversed as activity prop agates from the V1 to higher cortical 
areas and back again, this feedback process is unlikely to occur 
in  <50 ms. However, Maguire and Howe (2016) suggested a 
potential confound of Potter et al (2014), which was that pic-
tures in the RSVP sequence, on occasion, contained areas with 
no high-contrast edges and hence may not have adequately 
masked proceeding pictures. Consequently, Maguire and Howe 
(2016) replicated the study rectifying the edges to ensure high-
contrast covering the entire image. They were unable to find 
any evidence that meaning can be detected in an RSVP stream 
at 13 ms, or even 27 ms, per image but at 53 and 80 ms this is 
possible. Upon this basis, the limits of RSVP processing could 
be reduced to a minimum of ~20 Hz. Nonetheless, further study 
is needed to investigate the limits of human capability to rapidly 
distinguish target from non-target information, in comparison 
to the limit in detecting target related ERPs versus non-target 
ERPs at 20 Hz presentation rates.

In all three face recognition studies, each face image was 
displayed for 500 ms (Cecotti et al 2011, Touryan et al 2011, 
Cai et al 2013). In two of the studies there was no ISI (Cecotti 
et  al 2011, Touryan et  al 2011), and in the other an ISI of 

500 ms was given to ensure ample time for image processing 
(Cai et al 2013). The speed at which face images were shown 
was reduced in comparison to the other RSVP applications. 
RSVP spellers most commonly use a duration of 400 ms; 
RSVP-spellers can benefit from slower stimulus duration with 
the incorporation of a language model to enable the predic-
tion of relevant letters. The estimation of performance can be 
challenging in the RSVP paradigm when the ISI is small, as 
assigning a behavioral response (i.e. button press) to the cor-
rect image cannot be done with certainty. A solution to this 
problem is to assign behavioral responses to each image, 
therefore researchers are able to establish hits or false alarms 
(Touryan et al 2011). When two targets are temporally adja-
cent with a SOA of 80 ms, participants are able to identify 
one of the two targets but not both. SOA should be at least 
400 ms and target images should not be shown straight after 
each other (Raymond et al 1992). Acqualagnav et al (2010), 
had a four factorial design looking at classification accuracy 
when the letters presented as no-color or color letters at either 
83 or 133 ms with an ISI of 33 ms (Acqualagnav et al 2010). 
The number of sequence stimuli was presented for enhanced 
accuracy rate in selecting letter of choice. After 10 sequences 
~90% mean accuracy was reached in 133 ms color presenta-
tion mode (100% for 6/9 participants). After ten sequences 
in 133 ms no color presentation mode ~80% mean accuracy 
was reached (100% in 3/9 participants). Whilst at presentation 
rates of 83 ms mean accuracy rate was ~70% and the there was 
no significant effect of color. This formulation is based on the 
chance rate of 3.33% (i.e. 1 in 30). This implies that cultured 
letters enhances performance accuracy but not past a certain 
speed of stimulus presentation.

There is likely a significant interaction between the diffi-
culty of target identification and presentation rate. For exam-
ple, the optimal presentation rate for a given stimulus set is 
highly dependent on the difficulty of identifying targets within 
that set (Ward et al 1997). Image sets with low clutter, high 
contrast, no occlusion, and large target size are likely ame-
nable to faster presentation rates; while image sets with high 
clutter, low contrast, high levels of occlusion, with small tar-
get sizes will require slower presentation rates (Rousselet et al 
2004, Serre et al 2007, Hart et al 2013, Liu and Kwon 2016). 
A more conclusive analysis of the effect of stimulus presenta-
tion duration for each application type could be derived by 
varying the presentation rate duration between 100, 200, and 
500 ms, whilst other parameters remain fixed. With regards to 
temporal proximity of target images, 500 ms should be taken 
to be the minimum to maximize performance.

5.5. Image size/visual angle

Another RSVP design aspect to be considered is stimulus 
size. There is a large variation in image sizes ranging from 
256  ×  256 pixels in a categorization application to 960  ×  600 
pixels in a surveillance applications. In general, surveillance 
applications use larger images than the other applications 
described. The most common image size used is 500  ×  500 
pixels. This is only used in static surveillance applications and 
all surveillance studies using this image size achieved a high 
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accuracy (>80%). The other applications used smaller image 
sizes such as 360  ×  360 pixels and achieved high accuracies 
(i.e. 91% and 89.7%). Therefore, it can be concluded that for 
surveillance studies, image size should be at least 500  ×  500 
pixels, although for all other applications the image size may 
be smaller. A more complex task is where a target stimulus is 
presented in the background of a larger image eliciting the N2 
ERP. Early components such as the P1 and N2 are sensitive 
to the spatial location of the stimuli (Saavedra and Bougrain 
2012).

One issue with reporting only image size is that it is always 
relevant to the distance viewed from screen and its location on 
the screen with respect to the viewer, i.e. the visual angle. The 
visual angle is the angle an image subtends at the eye, reported 
in degrees of arc. In a study by Dias and Parra (2011) it was 
shown that participants performed best (90%) when the target 
stimulus was centered. Performance consistently decreased to 
50% in all participants as target stimulus were placed further 
away from the center (4° of visual angle), this dropped fur-
ther when target stimulus was placed at 8° of visual angle. 
Although performance drops significantly participants are 
still able to detect target stimulus shown in their peripheral 
visual field even at such rapid paces. Many papers report that 
the visual angle of the stimuli can have an effect on perfor-
mance. As a general principle, targets must appear larger or 
be more distinct for detection at the outer edge of the visual 
field. The visual angle can thus be deemed the most important 
measure as it accounts for distance from screen, image loca-
tion on screen and image size. Authors are therefore encour-
aged to report visual angle, as reporting image size alone is 
not useful without the availability of distance from the screen. 
For RSVP-speller studies, none of the papers found reported 
on the size of the image or font, however some reported the 
visual angle.

5.6. Target versus non-target stimuli

Many different types of target images have been identified 
within this review. The majority of research focuses on a two-
class problem, i.e. detecting target images in sequences of non-
target images that are completely different from each other. 
However, in real-life situations, non-target images are likely 
to share some of the same characteristics as target images 
(Marathe et al 2015). These presentation sequences appear to 
be more like moving images than static images. In Marathe 
et al (2015) a more complex surveillance task was carried out 
where, in the first task, participants were required to detect 
targets when targets are the only infrequent image whilst, in 
the second task, targets were presented with non-targets (i.e. 
the target image could be found in the background of a larger 
image). Participants were required to ignore everything else 
in the image, a much more difficult task, and consequently the 
amplitude of the P300 was reduced. The results of this study 
found that the introduction of the infrequent non-target stim-
uli in the scene yielded a substantial slowing of the reaction 
time. Surveillance applications commonly use stimuli that are 
more complex where trained participants, such as intelligence 
analysts, outperform novice participants, as they are able to 

give meaning to the stimuli. The RSVP-speller applications 
present their letters as images one at a time on screen (Hild 
et  al 2011). Due to the nature of the RSVP paradigm, it is 
important that these letters are shown in a random order as 
participants pre-empting a target can have an effect on ERP 
responses (Oken et al 2014). Data categorization applications 
had the most variance between the different types of stimuli 
presented to a participant. However, these stimuli tend to be 
everyday items that participants can easily recognize.

5.7. Signal processing

All applications have certain requirements in terms of speed 
and type of images displayed, which, as outlined above, can 
influence the ERP and therefore also variations in perfor-
mance as measured by detection accuracy. The signal pro-
cessing framework plays an important role in being able to 
cope with variations in ERP and maximizing performance. 
There is a likely tradeoff between the design parameters used 
as described above and the level of sophistication built into the 
signal processing framework, which often varies across stud-
ies. Here we review some of the approaches applied.

5.7.1. Pre-processing. To extract the relevant features, data 
is first pre-processed to improve the signal to noise ratio 
(SNR). The signal is pre-processed using varying band pass 
filters, depending on the application, in order to remove high 
frequency noise or artifacts (such as muscle activity). Gener-
ally, lower and upper cut-off frequencies of around 0.1 Hz and 
30–40 Hz are used, respectively. The data is then often downs-
ampled, and, for offline analyses, electrodes with substantial 
noise are removed through visual inspection of the EEG data 
or automated approaches based on thresholding or correlating 
artifacts in EEG channels with simultaneously recorded elec-
trooculography or electromyography. Data is then epoched 
into segments typically lasting ~600 ms, from 100 ms prior to 
stimulus onset and the 500 ms post-stimulus onset. The start-
ing point and duration of the epochs selected for further analy-
sis vary from study to study.

5.7.2. Feature extraction. Feature extraction is applied to the 
data for dimensionality reduction and to extract discriminant 
and non-redundant features. It can be difficult to carry out fea-
ture extraction due to the low SNR in single trial analysis. 
Conventionally, averaging over multiple repeated trials is often 
used to overcome this. Many studies employ spatial filtering 
to extract ERPs from EEG. Some of the spatial filtering meth-
ods used include principal component analysis (PCA) (Sajda 
et al 2003, Alpert et al 2014), independent component analy-
sis (Bigdely-Shamlo et al 2008, Blankertz et al 2011, Kumar 
and Sahin 2013), or the xDAWN algorithm, which maximizes 
the SNR between target and non-target stimuli classes (Rivet 
et al 2009, Rivet and Souloumiac 2013, Cecotti et al 2014). In 
the case of image triage where the intention is to classify sin-
gle-trial ERPs, spatial filters are used to enhance the SNR and 
exploit spatial redundancy (e.g. Parra et al (2005)). Yu et al 
(2011) went a step further by utilizing a methodology that 
considers spatial and temporal features to ensure augmented 
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single-trial detection accuracy (Yu et  al 2011). A bilinear 
common spatial pattern (BCSP) was suggested to outperform 
common spatial pattern (CSP) filters (composite and common 
spatial pattern filters) (Yu et al 2011). It should be noted how-
ever that CSP spatial filters were not designed to classify ERP 
but to classify oscillatory EEG activity. CSPs, indeed, ignore 
the EEG time course—i.e. the ERP—and are thus subopti-
mal for RSVP-BCI. We would recommend using spatial filters 
dedicated to ERP classification, such as xDAWN, which were 
used successfully in many RSVP-BCI. Spatial filtering is nor-
mally only performed on high-density EEG data, which might 
be impractical in certain real-life applications (Parra et  al 
2005). High-density EEG data has been reported to increase 
accuracy (Ušćumlić et al 2013). Table 4 shows the most com-
mon method used for different application types.

Face recognition applications differ from other applica-
tions as face images evoke different ERPs, in addition to the 
P300. Faces typically evoke a N170 component that changes 
between targets and non-targets (Maurer et al 2008, Luo et al 
2010). The vertex positive potential is also associated with 
face recognition (Zhang et al 2012). The midfrontal FN400 
and later parietal FP600 components have been associated 
with familiarity and recollection, respectively (MacKenzie 
and Donaldson 2007). Specifically, the amplitude of FP600 (a 
positive deflection  >500 ms post-stimulus) was found to sig-
nificantly correlate with the extent of face familiarity (Touryan 
et al 2011). The use of spatial filters that utilize spatial and 
temporal features may act as an advantage over conventional 
spatial filters that only exploit spatial redundancy, e.g. Yu et al 
(2011). However, spatial filters can only be performed on 
high-density EEG data, which might be impractical in certain 
real-life applications (Parra et al 2005).

5.7.3. Classification. This review found many different clas-
sification methods had been used in the acknowledged studies, 
however some conclusions can be drawn. Linear classifiers 
are most populous within RSVP-based BCIs. Often EEG can 
contain information that enables classification of the stimuli 
correctly even when a participant’s behavioral response is 
incorrect (Sajda et al 2003, Bigdely-Shamlo et al 2008). The 
two most commonly used classifiers were linear discrimi-
nant analysis (LDA) and SVM, or variations of the two, such 
as Bayesian LDA (BLDA) and radial basis function SVM, 
respectively. Parra et al (2008) presented an RSVP framework 
that projects the EEG data matrix bi-linearly onto temporal 

and spatial axes (Parra et al 2008). This framework is versatile 
upon implementation, for example, it has been applied to clas-
sify target natural scenes and satellite missile images (Gerson 
et al 2006, Sajda et al 2010). Contrastingly, Alpert et al (2014) 
presented a two-step linear classifier, which achieved classifi-
cation accuracy suited to real-world applications (Sajda et al 
2014). Whilst Sajda et al (2010) proposed a two-step system 
utilizing computer vision and EEG subsequently to optimize 
the classification (Sajda et al 2010). The performance of an 
ensemble LDA classifier diminished when eight centro-pari-
etal EEG channels were utilized as opposed to the full 41 
EEG channels (Ušćumlić et  al 2013). Contrastingly, Healy 
and Smeaton (2011) claimed that consideration of additional 
channels might introduce noise as opposed to advancing cat-
egorical information, as indicated by results from one study 
participant.

For the surveillance application, SVM achieved the high-
est percentage accuracies (Huang et  al 2011, Weiden et  al 
2012). For the RSVP-speller application, the most common 
method of classification used was regularized discriminant 
analysis (RDA). RDA achieved an AUC performance of 
0.948–0.973 (Orhan et al 2011). Step-wise LDA (SWLDA) 
was also used in RSVP-speller applications with high AUC 
performance and accuracies (0.82, 0.84, 86%, 89%) (Hope 
et  al 2013). In face recognition applications, the best AUC 
performance was produced using an SVM classifier (Cai et al 
2013). Within this review, only one medical application was 
identified (Hope et al 2013) and the researchers had achieved 
high accuracy using a Fisher discriminant analysis. BLDA 
classifiers were also used, achieving high levels of accuracy 
(79%). The SWFP algorithm outperformed the HDCA algo-
rithm by 10% in categorization applications. Touryan et  al 
(2011) demonstrated that EEG classification methods applied 
to categorization procedures can be adapted to rapid face rec-
ognition procedures (Touryan et al 2011). Window sizes post 
stimulus onset of 128, 256 and 512 ms were fed into the clas-
sifiers. AUC values (average AUC  =  0.945) were reported for 
the customized PCA models utilized to describe the changes 
in ERPs seen between familiar (famous and personal) and 
novel faces displayed for 500 ms at a time. It is the custom-
ized version of these models, i.e. the models developed for 
each participant using only that participant’s data, which were 
shown to improve classification performance through the 
acknowledgment of discrete variability in the windowed ERP 
components.

Table 4. Parameter and recommendations for RSVP-based BCIs.

Parameter Surveillance
RSVP-
speller

Face 
recognition Categorization/medical

Stimuli number >5000 >5000 2000 >4000
% targets ~5–10 ⩽5 ~10 10–25
Stimulus presentation duration (ms) 100–200 500 500 100–200
Target examples Helipads, planes, vehicles, people, etc Letters Faces Animals, mammograms, etc
ERP component P300 P300 N170 P300
Feature extraction XDAWN — XDAWN BCSP/XDAWN
Classifier BLDA, SVM, LP, SP RDA/

SWLDA
SVM BLDA
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Many of the BCI algorithms presented in tables 1 and 2 are 
linear, enabling simple/fast training with resilience to overfit-
ting often caused by noise, implying suitability to single-trial 
EEG data classification. Nonetheless, linear methods can limit 
feature extraction and classification, and non-linear methods, 
e.g. neural networks, are more versatile in modeling data of 
greater variability, also implying suitability to single-trial 
EEG data classification (Erdogmus et  al 2006, Huang et  al 
2006, Lotte et al 2007). The use of neural networks, in par-
ticular deep neural network for the RSVP-based BCI frame-
work, represents an attractive venture, and has shown promise 
over standard linear methods (Manor et al 2016, Huang et al 
2017). A convolution neural network was shown to outper-
form a two-step linear classifier using the same dataset (Sajda 
et al 2014, Manor and Geva 2015).

The majority of studies reviewed investigated the effective-
ness of classifiers in identifying single-trial EEG correlates 
for target stimuli presented through an RSVP-type paradigm. 
However, the spatial filtering technique, as well as the type 
of classifier used, has an impact on proficiency in detecting 
EEG of single trials (Bigdely-Shamlo et  al 2008, Cecotti 
et  al 2014). For example, independent component analysis 
reportedly identifies and divides multiple classes of non-brain 
response artifacts associated with eye and head movements, 
which would be useful for EEG de-noising during real-world 
applications when operators are mobile (Bigdely-Shamlo et al 
2008).

Additionally Cecotti et al (2014) evaluated three classifi-
ers using three different spatial filtering methods, so all in all 
twelve techniques were compared for three different RSVP 
paradigms. Marathe et  al (2015) utilized an active learning 
technique in a bid to reduce the training samples required to 
calibrate the classifier. Active learning is a partially supervised 
iterative learning technique reducing the amount of labeled 
data required for training. Recalibration depends on param-
eters such as human attentiveness, physical surroundings or 
task-specific factors. Looking at the real world applicabil-
ity of RSVP-based BCI systems, Marathe et al (2015) built 
upon work addressing the issue of the thorough recalibration 
required for real-time BCI system optimization.

There is growing interest in the use of transfer learning 
(TL) for calibration reduction or suppression to encourage the 
real-world applicability of BCIs (Wang et al 2011). With TL, 
the EEG data or classifiers from a given domain are trans-
formed in order to be applied to another domain, hence trans-
ferring data/classifiers from one domain to another, possibly 
increasing the amount of data for the target domain (Wang 
et  al 2011). For RSVP-BCI, this typically consists in com-
bining EEG data or classifiers from different participants, in 
order to classify EEG data from another participant, for which 
very little or even no calibration EEG data is available. An 
unsupervised transfer method, namely spectral transfer with 
information geometry (STIG), ranked and collated unlabeled 
predictions from a group of information geometry classifiers, 
which was established through training on individual partici-
pants (Waytowich et al 2016). Waytowich et al (2016) showed 
that STIG can be used for single-trial detection in ERP-based 
BCIs, eliminating the requirement for taxing data collection 

for training. With access to limited data, STIG outperformed 
alternative zero-calibration and calibration reduction algo-
rithms (Waytowich et  al 2016). Within the BCI community 
conventional TL approaches still necessitate training for 
each condition, however methodologies have been applied 
to eradicate the need for subject-specific data calibration, 
where large-scale data is leveraged from other participants 
(Wei et al 2016). This demarcates the potential for single-trial 
classification via unsupervised TL and user-independent BCI 
technology deployment.

5.8. Suggested parameters

The parameters reviewed here have been selected because 
they have an effect on one or all of the following aspects of the 
RSVP paradigm: task complexity, stimulus complexity, stimu-
lus saliency or information transmission. Performance within 
RSVP-based BCIs is measured as the participant’s ability to 
correctly identify oddball images in a sequence. RSVP-based 
BCIs use two different measurements of performance such as 
accuracy (percentage of targets that are correctly identified 
using EEG) and ROC curves. 10% of papers assessed in this 
review did not report at least one out of these performance 
measures (ROC/percentage accuracy). The accuracies of the 
different studies need to be put in context, as all the reviewed 
parameters and other observed parameters i.e. number of tri-
als and participants will influence study accuracy. In table 4 
parameter recommendations are provided for designing 
RSVP-based BCIs within the different application types and 
these have been discussed thoroughly throughout section 5. 
In particular, table 4 suggests the parameters to use for each 
application, according to those leading to the best detection 
performances (accuracy or AUC) in studies comparatively. If 
no formal comparisons between parameters were available for 
a specific application or parameter, the most popular param-
eter values that yield good performances are mentioned.

Applying BCI systems commercially and outside the lab 
in real-world scenarios will ideally require the system to be 
robust during the execution of tasks of increasing difficulty. 
Section  5 summarized the five applications areas that have 
been studied to the greatest extent in the context of RSVP-
based BCIs. Specifically, this section tackles intra-application 
comparisons of various aspects of the papers that met the 
inclusion/exclusion criteria. A few of the papers found in this 
review carried out more than one study in different applica-
tion types. The most common type of application found was 
surveillance applications, followed by RSVP-speller applica-
tions and categorization applications; after this were face rec-
ognition and lastly medical applications. Although there is are 
a relatively limited number of studies, the design parameters 
and the focal points of different applications vary widely.

6. Discussion and conclusions

With the increasing intensity in RSVP-based BCI research 
there is a need for further standardization of exper imental 
proto cols, to compare and contrast development of the 
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different applications described in this review. This will 
aid the realization of a platform that researchers can use to 
develop RSVP paradigms and compare their results and 
determine the optimal RSVP-based BCI paradigm for their 
application type. This paper presents a review of the avail-
able research, the defining elements of the research and a cat-
egorization approach that will facilitate coordination efforts 
among researchers in the field. Research has revealed that 
using a combination of RSVP with BCI technology allows 
the detection of targets at an expedited rate without detriment 
to accuracy.

Understanding the neural correlates of visual information 
processing can create symbiotic interaction between human 
and machine through BCIs. Further development of RSVP-
based BCIs will depend on both basic and applied research. 
Within the last five years there have been advancements in 
how studies are reported, and a sufficient body of evidence 
exists in support of the development and application of RSVP 
BCIs. However, there is a need for the research to be developed 
further, and standardized protocols applied, so that compara-
tive studies can be done for progressive research. Many ERP 
reviews have been carried out; however, this paper focuses on 
RSVP visual search tasks with high variability in targets and 
the parameters used. This paper gives guidelines on which 
parameters impact performance but also on which param-
eters should be reported so that studies can be compared. It is 
important that the design aspects shown in tables 1 and 2 are 
reported and described within each research study. It has been 
shown that RSVP-based BCIs can be used in processing target 
images in multiple application types with a low-target prob-
ability, but consistency of reporting method renders it difficult 
to truly compare one paradigm to another or one param eter 
setup to another.

There has been profuse reporting of percentage accuracy 
and area under the ROC curve values, nonetheless there is 
room for more studies to utilize this unofficial standardization 
across RSVP-based BCI research.

To maximize relatability to pre-existing literature in terms 
of keeping one feature that contributes to cognitive load con-
stant, it is recommended that studies utilizing more than one 
category type as targets to conduct the same study with just 
one target category in the first instance.

For all applications, it is of course necessary to choose an 
epoch for single trial ERP classification corresponding to the 
temporal evolution of the most robust ERP components that 
are, on the whole, pre-established in the literature as associ-
ated with the specified task at hand, i.e. target stimuli identi-
fication due to their infrequency, recognizability, relevancy or 
contents. However, whether the duration of stimuli presenta-
tion must extend beyond the latency between ERP component 
appearances relative to stimuli presentation is questionable.

This review found a single medical application. More 
research in applying the RSVP-based BCI paradigm to high 
throughput screening within medicine is highly encouraged 
upon the basis that similarly complex imagery has been cat-
egorized relatively successfully in other applications, e.g. 
side scan sonar imagery of mines or aircraft amongst birds 
eye view of maps in surveillance (Bigdely-Shamlo et  al 

2008, Barngrover et  al 2016). The medical application of 
RSVP-based BCIs has immense potential in diagnostics and 
prognostics through recognition and tracking of established 
disease biomarkers, and accelerating high throughput health 
image screening.

Studies utilized varying image sizes, visual angles and par-
ticipant distance from the screen. Researchers are encouraged 
to report visual angle as it accounts for both image size and 
distance of the participant from the screen. A potential way 
to facilitate uniformity of these variables is to utilize a head 
mounted display (HMD) or virtual reality (VR) headset such 
as an oculus rift (Foerster et al 2016). The rapid visual infor-
mation processing capacity is heavily dependent on visual 
parameters and use of an HMD headset would enable stand-
ardization of viewing distance, room lighting and visual angle 
(Foerster et al 2016). Use of a VR headset could distort elec-
trode positions; nonetheless this affect could be easily miti-
gated. BCIs employing motion-onset visual evoked potentials 
(mVEP) have been utilized with VR headsets in neurogaming, 
and shown to be feasible (Beveridge et al 2016). The mVEP 
responses were evaluated in relation to mobile, complex and 
varying graphics within game distractors (Beveridge et  al 
2016). Foerster et  al (2016) used the VR device oculus rift 
for neuropsychological assessment of visual processing capa-
bilities. This VR device is head-mounted and covers the entire 
visual field, thereby shielding and standardizing the visual 
stimulation, and therefore may improve test–retest reliability. 
Compared to a CRT screen performances, visual process-
ing speed, threshold of conscious perception and capacity 
of visual working memory did not differ significantly using 
the VR headset. VR headsets may therefore be applicable for 
standardized and reliable assessment and diagnosis of ele-
mentary cognitive functions in laboratory and clinical settings 
and maximize the opportunity to compare visual processing 
comp onents between individuals and institutions and to estab-
lish statistical norm distributions. Recently, a new VR-EEG 
combined headset with electrodes embedded in occipital areas 
for ERP detection has been reported for neurogaming (www.
neurable.com). RVSP-based BCI paradigms may therefore 
benefit from the head mounted visual displays however a 
vision obscuring headset may not be appropriate in some con-
texts as it could limit the ability of the users, e.g. a person with 
disabilities, to communicate with their peers and environment. 
Such a headset may prevent the expressive or receptive use 
of non-verbal communication skills, such as eye movement 
and facial expressions, that are vital for users with non-verbal 
communication skills.

Advancements towards RSVP of targets during moving 
sequences have shown promising results, although it is more 
difficult to study movie clips since the stimulus start event is 
not as clear. A remaining challenge in this area is for research-
ers to design signal processing tools that can deal with impre-
cise stimulus beginning/end (Cecotti 2015). However, an 
advantage of moving mode is that the target stimulus remains 
on the screen for longer than with static mode, allowing par-
ticipants the opportunity to confirm a target stimulus. Moving 
stimuli studies to date have been limited to surveillance appli-
cations so there is a need for further investigation in this area. 

J. Neural Eng. 15 (2018) 021001

http://www.neurable.com
http://www.neurable.com


Topical Review

20

Just over half the papers used the button press mode in con-
junction with one of the other modes, as not all of the stud-
ies are concerned with comparing EEG responses to motor 
responses. It is important to develop a scale in order to rank 
the difficulty of tasks. This will enable the comparison of 
paradigms that are at the same level. The key outcomes of 
this study are shown in table 4, provided as suggested guide-
lines. These are suggested parameters that may be useful to 
researchers when designing RSVP-based BCI paradigms 
within the different application types. From this review, we 
can conclude that using these parameters will enable more 
consistent performance for the different application types and 
will enable improved compariso n with new studies.

In acknowledgment of the need for standardization of 
parameters for RSVP-based BCI protocols, Cecotti et  al 
(2011) raise an interesting proposal, stating that other param-
eters could be automatically prescribed in accordance with the 
chosen target likelihood, such as the optimal ISI length, clas-
sifiers and spatial filters (Cecotti et al 2011). Such an infra-
structure for parameter choices does not currently exist with 
studies focusing on the impact of different parameters.

Future studies would benefit from engaging with iterative 
changes in design parameters. This would allow for a compar-
ative study of the different design parameters and enable the 
identification of parameters that most affect the experimental 
paradigm. A study involving increasing the rate of presentation 
until classification starts to deteriorate significantly for various 
types of stimulus categories may indicate the maximum pos-
sible speed of RSVP-BCI. Additionally, a future development 
for RSVP-based BCIs might be to use real life imagery with 
numerous distractor stimuli amongst the target stimuli. This is a 
more difficult task but it would enhance paradigm relatability to 
real-life applications. Hybridizing RSVP BCIs with other BCI 
paradigms has also started to receive more attention (Kumar 
and Sahin 2013). Users of this system navigate using motor 
imagery movements (left, right, up and down). Search queries 
are spelt using the Hex-O-Speller and results retrieved from a 
web search engine may be fed back to the user using RSVP. This 
study shows the potential benefits of the RSVP paradigm and 
how it may be used in order to aid physically impaired users. 
Eye tracking can be used as an outcome measure to assess and 
enhance RSVP stimuli and presentation modes. Specifically, 
using eye-tracking researchers can establish where the partici-
pant’s gaze is focused during erroneous trials and explore cor-
relations between gaze variability and performance. With the 
RSVP-based BCI paradigm there is much scope to evaluate 
different data types/imagery. This is a fast-growing field with a 
promising future. There are multiple opportunities and a large 
array of potential RSVP-BCI paradigm setups. Researchers in 
the field are therefore recommended to consider the literature 
to date and the comparative framework proposed in this paper.
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