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1. Introduction

In a typical falling cube gravimeter, whose purpose is to 
measure the acceleration of gravity g with precision, a refer-
ence beam passes through a beam splitter where part of the 
beam is sent vertically to a falling corner cube reflector in an 
evacuated chamber. The cube is accelerated by gravity so the 
reflected beam suffers first- and second-order Doppler shifts 
as well as other effects; upon mixing with the reference beam 
back at the beamsplitter a beat frequency is generated having 
a rapidly increasing frequency chirp. In the gravimeter ana-
lyzed in this paper, a time stamp is recorded repeatedly after 
some fixed increment in the number of zero crossings of the 
beat signal. The time series depends on the strength g of the 
acceleration of gravity and on its gradient, on the structure of 

the retroreflector, and the position and velocity of the cube at 
the initial instant of release; the initial position and velocity 
and g are then extracted from the data. Typically a great many 
drops are averaged to obtain the value of g; fractional uncer-
tainties of the order of 10−6 cm s−2 are currently obtained 
after applying several corrections that are of microgal order; 
(1 Gal = 1 cm s−2).

A freely falling, locally inertial system can provide an 
application of the Principle of Equivalence: after expanding 
the gravitational potential in a Taylor series about the origin 
of local freely-falling coordinates and transforming the metric 
to local coordinates, the linear contribution cancels out and 
the local gravitational field consists primarily of tidal terms, 
or gravity gradients. The corner cube is an extended body with 
more mass near the flat face, so the net gravitational force on 
the body acts at a point above the face. For an ideal solid cube, 
the center of mass is at a point d = D/4 from the face, where 
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D is the cube depth from face to corner. Choosing the ret-
roreflector’s center of mass as the origin of local coordinates 
simplifies the metric tensor in the freely falling frame, but 
complicates the analysis of light propagation within the cube.

Light propagation within the cube can be described as 
though a reference frame fixed in the falling cube were iner-
tial; this entails a small time delay, during which the cube 
continues to accelerate in the laboratory. A wave front with 
a particular phase that enters the cube then leaves the cube 
at a lesser height and the fitted value of the initial center of 
mass position Z0 is diminished. The extra path can amount to 
several thousand wavelengths. A smaller measured value of g 
results when this is accounted for; appendix B gives a detailed 
discussion of this effect in the ‘non-relativistic’ limit.

We construct a reference frame fixed in the cube using 
normal Fermi coordinates, which are very close to the 
Minkowski coordinates of special relativity. We derive a 
simple expression for the correction to the measured value of 
g that accounts for the dimensions and refractive index of the 
cube; the correction can amount to several microgals, com-
parable to many other commonly applied corrections such as 
those due to polar motion, and earth tides.

The calculation is carried to first order in the gravity gra-
dient parameter γ ≈ 3 × 10−6 s−2 near earth’s surface; terms 
of order γ2  have been investigated but found to have negligible 
influence on the phase of electromagnetic waves in the inter-
ferometer beams. Also, the reciprocal of the speed of light, 
c−1 provides a parameter that is sufficiently small that Taylor 
expansions in powers of c−1 converge rapidly. Contributions 
of order c−3 have been investigated and terms of order c−2 in 
the phase difference of the test and reference beams have been 
retained.

The purpose of the present article is to provide a relativ-
istic theory of a falling cube gravimeter, which fully respects 
relativistic principles such as the equivalence principle, light 
propagation along null geodesics, relativity of simultaneity 
and Lorentz contraction between moving frames. Tan et al [9] 
have used normal Fermi coordinates to treat relativistic effects 
in an absolute gravimeter; they have studied earth rotation 
effects, and motion of the falling mass perpendicular to the 
laser beam; neither of these phenomena are investigated here. 
They have not, however, treated the optical path of laser light 
in the cube, which is the most important topic discussed here. 
In this paper we account for the phase change of the reflected 
beam due to its propagation in the glass. We process data from 
5000 drops in a gravimeter of this type, both with and without 
the assumption that reflection occurs at the face, and find a 
difference of several microgals in the value of g. An additional 
issue treated here in full is dependence of the coordinate speed 
of light on gravitational potential and the time delays of the 
test beam upward from the beamsplitter, through the glass, 
and down to the beamsplitter.

In section 2 we discuss the action of a gravity field gradient 
on a cube of pyramidal shape. Section 3 applies the result to the 
construction of a cube-fixed locally inertial frame; this work is 
supported by detailed derivations in appendix A. In section 4 
the coordinate speed of light is shown to depend on the gravita-
tional potential, and the phase of the upward-propagating test 

beam reflected from the beam splitter is calculated. Section 5 
completes the derivation of the test beam phase and its inter-
ference with the reference beam. Results of data analysis of 
5000 drops are discussed in section  7. The ‘speed of light’ 
correction is briefly discussed in section 8.

2. Free fall of an extended body

For a freely-falling point mass, the gravitational potential gra-
dient at the position of the mass is equal to (except for a nega-
tive sign) the mass’s acceleration. Construction of local normal 
Fermi coordinates with origin at the mass’s position, results in 
the elimination of linear terms in the Taylor expansion of the 
gravitational potential, so that in the local coordinate system 
the mass is not accelerated; only quadratic (and possibly higher 
order) terms in the gravitational potential remain. This is a con-
sequence of the Equivalence Principle: the acceleration a of 
the local coordinate system results in an additional local gravi-
tational potential a · r; the negative gradient of this additional 
potential cancels the negative gradient of the original potential 
so that the mass is ‘weightless’ in the local coordinate system. 
For an extended body, however, the center of mass may not fall 
along a geodesic. Below we show the center of mass follows a 
geodesic if terms no higher than quadratic order in the Taylor 
expansion of the gravitational potential are retained, as is the 
case in the present work. If the total gravitational force on the 
body equals the (negative of the) gradient of the gravitational 
potential evaluated at the center of mass, then the center of 
mass will follow a geodesic [7].

The linear mass density of a corner cube of depth D, along 
the symmetry axis, increases quadratically with distance 
along the axis from the corner. We use capital letters to denote 
coordinates in the laboratory frame. We assume that the gravi-
tational potential is approximated by

Φ(Z) = gZ − γZ2/2, (1)

with the gravity gradient parameter γ ≈ 3 × 10−6s−2 near 
earth’s surface. The gradient parameter γ represents the rate of 
decrease of g, per meter of vertical distance upwards. Let dM 
be the mass in a slice of retroreflector material between Z and 
Z + dZ . The gravitational force on dM will be (−g + γZ)dM . 
Let the cube be placed at rest with its face at Z and its corner at 
Z + D. The center of mass Z  is defined by

MZ =

∫
ZdM, (2)

so the net force per unit mass on the retroreflector is

−g + γZ = −∂Φ

∂Z

∣∣∣∣
Z=Z

. (3)

Thus the net gravitational force on the retroreflector is iden-
tical to the (negative) gradient of the potential evaluated at 
the center of mass, so the center of mass will follow the same 
trajectory as that of a point mass at the center of mass posi-
tion. Then if the center of mass, at distance d above the face, 
should be chosen as the origin of locally inertial coordinates, 
quadratic terms will survive in the Taylor expansion of the 
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local metric. This is proved explicitly in appendix A. For a 
perfect solid cube with face ground normally to the (1, 1, 1) 
axis, d = D/4.

3. The falling cube

Figure 1 illustrates the operation of a gravimeter that is 
analyzed in this paper. A solid retroreflector is diagrammed 
schematically in figure  2, showing an incoming ray, fol-
lowed by three total internal reflections, and an exiting ray. 
We take as the reference point and origin of laboratory coor-
dinates the point where the beams recombine. We assume 
the beamsplitter is perfectly aligned so that the optical path 
differences in vacuo in the two arms, from the point where 
the beam is split, to the recombination point, are compen-
sated and do not have to be considered explicitly. The cube 
is assumed to be perfectly aligned and to fall without rota-
tion. In the laboratory the gravitational potential is given by 
equation (1). We use lower case letters to denote coordinates 
fixed in the frame of the falling cube, and take the center 
of mass of the falling cube to be the origin of coordinates 
z = 0 in the falling frame. Both Z and z are measured posi-
tive upwards. The equation of motion of the center of mass 
of the retroreflector is

Z̈ = −g + γZ. (4)

The solution corresponding to release from position Z0 of the 
center of mass, with initial velocity V0 at T = 0 is

Z(T) = Z0 + V0T − gT2

2
+ γ

(
Z0T2

2
+

V0T3

6
− gT4

24

)
.

 (5)
The velocity of the center of mass is

V(T) = V0 − gT + γ

(
Z0T +

V0T2

2
− gT3

6

)
. (6)

Given the gravitational potential in equation (1), the geodesic 
equations  of free fall vertical motion give equation  (4), but 
with relativistic corrections of order c−2 that can be neglected. 
Also, in computing quantities such as V(T)2 terms that are of 
order γ2  or higher are neglected throughout this paper.

To fully describe the physics within the falling cube we 
need to introduce a transformation relating coordinates and 
time between the laboratory frame (T , Z), and the accelerating 
falling frame (t, z). We begin by computing the proper time τ 
of a reference clock at the center of mass, elapsed from the 
drop instant T = 0.

Let the metric tensor in the laboratory frame be:

G00 = −
(
1 +

2Φ(Z)
c2

)
; (7)

GZZ =
(
1 − 2Φ(Z)

c2

)
, (8)

where c is the speed of light at Z = 0 determined with the aid 
of an atomic reference clock. The potential is assumed to be 
static in the laboratory frame during the time required for one 
drop. The fundamental scalar invariant is

ds2 = (cdτ)2 = −GµνdXµdXν . (9)

We have adopted the metric signature −1, 1, 1, 1 so dτ 2 > 0; 
repeated Greek indices are summed from 0 to 3, except that 
only two components of the metric tensor need to be consid-
ered. Transverse motion is neglected in this paper; we do not 
consider Coriolis forces or rotation of the retroreflector.

The proper time of a falling clock at the origin of cube-
fixed coordinates is then

τ =
1
c

∫ T

0

√
−(G00(c dT)2 + GZZdZ2)

≈
∫ T

0

(
1 +

Φ(Z(T))
c2 − V(T)2

2c2

)
dT

= T
(

1 +
1
c2

(
Z0g − V2

0

2
))

+
V0g
c2 T2 − g2T3

3c2

+
γ

c2

(
− Z2

0T
2

− Z0V0T2

+
(
− V2

0

3
+

2gZ0

3
)
T3 +

gV0T4

3
− g2T5

15

)
,

 

(10)

where here and throughout the paper we keep the leading 
relativistic correction terms of order c−2, but keep only the 
contrib utions linear in γ.

This has an application to atomic fountain clocks, since 
equation  (10) applies to an atom launched upwards. For 
atomic fountains, we neglect γ. Suppose an atom is projected 
upwards from Z0 = 0 with velocity V0 sufficient to reach 
height H, with V2

0 = 2gH. A total time 2V0/g is required 
for the atom to fall back down to the starting point. During 
this interval the proper time elapsed on the atom from equa-
tion (10), is

τ =
2V0

g

(
1 +

V2
0

6c2

)
. (11)

Figure 1. Simplified diagram of a freely falling cube gravimeter.
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The ratio of the relativistic part of this, to the non-relativistic 
part, is just the fractional frequency shift of the hyperfine 
splitting of the atom, due to relativistic effects, and is

∆τ

τ
=

∆f
f

=
V3

0/(3gc2)

2V0/g
=

V2
0

6c2 =
1
3

gH
c2 . (12)

Including γ in this calculation yields only tiny additional 
corrections.

Equation (10) for the proper time can be solved for T in 
terms of τ at the center of mass by iteration:

T = τ

(
1 +

V2
0

2c2 − gZ0

c2

)
− gV0τ

2

c2 +
g2τ 3

3c2

+
γ

c2

(
Z2

0τ

2
+ Z0V0τ

2 +
(V2

0 − 2gZ0)

3
τ 3 − gV0τ

4

3
+

g2τ 5

15

)
.

 (13)
As can be seen, the derivations are straightforward but the 
expressions are algebraically lengthy. Therefore the complete 
calculation of the transformation equations, including the 
transformation function Z(t, z), is provided in appendix A and 
we proceed mostly by quoting the results of those calculations.

In addition to the terms in equation  (13), there is a cor-
rection V(T)z/c2 arising from the relativity of simulta-
neity. Adding this term (see appendix A) gives the net time 
transformation

T(t, z) = t
(

1 +
V2

0

2c2 − gZ0

c2 − gz
c2

)
+

V0z
c2 − gV0t2

c2 +
g2t3

3c2

+
γ

c2

((Z2
0

2
+ Z0z

)
t +

(
V0Z0 +

V0z
2

)
t2

+
(V2

0

3
− gz

6
− 2gZ0

3
)
t3 − gV0t4

3
+

g2t5

15

)
.

 (14)
The symbol τ is reserved for the proper time on an ideal clock 
at the origin of falling coordinates, while t represents the time 
variable extended to the region including the interior of the 

retroreflector, the vertical arm of the interferometer, and the 
beamsplitter. At the center of mass, z = 0 and t = τ .

The transformation for coordinate Z(t, z) is derived in 
appendix A and is

Z(t, z) = Z0 + z(1 +
V2

0

2c2 +
gZ0

c2 ) +
gz2

2c2

+ t(V0 +
V3

0

2c2 − gV0Z0

c2 ) + t2(−g
2
− 3gV2

0

2c2 +
g2Z0

c2 ) +
4g2V0t3

3c2 − g3t4

3c2

+ γ

(
− Z2

0z
2c2 − Z0z2

2c2 + t(
Z2

0V0

2c2 − V0z2

2c2 ) + t2(
Z0

2
+

3V2
0 Z0

2c2 − 3gZ2
0

2c2 +
gz2

4c2 )

+ t3(
V0

6
+

7V3
0

12c2 − 19gZ0V0

6c2 ) + t4(− g
24

− 5gV2
0

4c2 +
7g2Z0

6c2 )

+
11g2V0t5

15c2 − 11g3t6

90c2

)
.

 

(15)

It is shown in the appendix A that these transformations elimi-
nate the term in g in the gravitational potential in the falling 
frame, with a small contribution remaining from the gravity 
gradient; in the falling frame the gradient contribution to the 
gravitational potential is −γz2 where z is measured upwards 
from the center of mass. The term γz2 is precisely the contrib-
ution needed for the cube to remain unaccelerated in the 
falling frame. The inverses of these transformations are given 
in appendix A.

4. Signal phase and propagation speed

The output signal of the gravimeter can be analyzed in sev-
eral ways. One way is to follow the frequency from source 
through the beamsplitter, through the cube and back down 
to the beamsplitter where it is combined with the refer-
ence beam. Another way is to follow the phase of a mono-
chromatic signal through the apparatus. Another way is to 
imagine sharp pulses emitted from the source, and to cal-
culate the propagation time to the recombination point. One 
useful fact in such analyses is, because the gravitational 
field is static, coordinate frequency during propagation up or 
down through the gravitational field is conserved. Another 
useful fact is: the wavevector of a monochromatic wave is a 
null fourvector in vacuum. The approach we choose here is 
to follow the phase of the test signal from the beamsplitter, 
through the cube, and back down to the beamsplitter. This 
is simpler in some respects since phase is a relativistic 
invariant. We shall neglect dispersion and make no distinc-
tion between group and phase speeds of signals. Also, we 
are justified in treating propagation of signals in the cube 
neglecting gravitational potentials, provided that analysis is 
done in the freely falling frame.

In the lab, a signal propagating in a vacuum in the upwards 
direction is null and at each point along its path satisfies:

0 = G00c2dT2 + GZZdZ2. (16)
The coordinate speed of the signal will therefore be:

Vs =
dZ
dT

=
√

−G00/GZZ ≈ c
(
1 +

2Φ(Z)
c2

)
.

 (17)
We choose the reference point to be at the beam splitter and 
set Φ(0) = 0 there; the speed of light at this point in the lab 

Figure 2. An ideal solid retroreflector showing an entering ray, 
three reflections, and an exiting ray. Most such retroreflectors will 
have the points near the entry/exit face ground away, so the center 
of mass is closer to the corner than is the case for the cube shown 
here.
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is assumed to be the defined speed, 299 792 458 m s−1. The 
coordinate speed of light above the reference point will be 
greater than c.

Suppose the angular frequency of the reference signal is 
Ω, and that the signal from the reference beam that stikes 
the splitter and is reflected up has phase φ(T0) = −ΩT0 
at the origin Z = 0 . The wavelength of the light will be 
Λ = 2πc/Ω. The phase propagates upwards with coordinate 
speed given by equation (17), and will reach height Z at time 
T given by

T = T0 +

∫ Z

0

dZ
Vs

= T0 +
1
c

∫ Z

0

(
1 +

2gZ
c2 − γZ2

c2

)
dZ

= T0 +
1
c

(
Z +

gZ2

c2 − γZ3

3c2

)
.

 

(18)

The phase of the signal at (T , Z) is therefore

φ(Z, T) = φ(0, T0) = −Ω

(
T − 1

c

(
Z − gZ2

c2 +
γZ3

3c2

))
.

 (19)
The signal four-vector Kµ can be obtained from this phase by 
differentiation:

Kµ =
∂φ(Z, T)
∂Xµ

, (20)

where X0 = cT , X3 = Z. This is a null fourvector satisfying

G00(K0)
2 + GZZ(KZ)

2 =
(K0)

2

G00
+

(KZ)
2

GZZ
= 0. (21)

The wavevector components obtained from equation (20) are 
consistent with equation (21) to the order c−2 of the present 
calcul ation. In particular, the coordinate frequency K0 = −Ω/c 
in the lab is conserved in the static gravitational field.

5. Phase in the falling cube

We now follow the phase of the signal through the cube until 
it exits going in the −z direction. The phase of the signal 
impinging on the front face of the falling cube is denoted by 
φin and will be

φin = φ(Z(t,−d), T(t,−d)) (22)

where Z(t,−d) is the position of the face at time T(t,−d) 
given by the transformation equations  (15) and (14). This 
substitution naturally gives the phase entering the cube 
in terms of the time t in the local frame. Substituting and 
expanding to order c−2, the signal phase at the retroreflector 
face is

φin(t) = Ω

(
Z0 − d

c

)
+Ωt

(
− 1 +

V0

c
− dg

c2 − V2
0

2c2 +
gZ0

c2

)

+Ωt2
(
− g

2c
+

gV0

c2

)
+

ΩdV0

c2 − Ωt3g2

3c2 + γΩ

(
t(− Z2

0

2c2 +
dZ0

c2 ) +
Z0

2c

+ t2
(
+

dV0

2c2 − V0Z0

c2

)
+ t3

(
+

V0

6c
− dg

6c2 − V2
0

3c2 +
2gZ0

3c2

)

+ t4
(
− g

24c
+

gV0

3c2

)
− t5g2

15c2

)
.

 

(23)

The value of φ in equation (23) is labeled with a subscript 
‘in’ since it corresponds to the phase that strikes the cube 
face. The phase is a relativistic invariant, so this is the phase 
entering the retroreflector in the local freely falling frame. 
In this frame (but in vacuum outside the glass) at this point, 
the coordinate speed of light differs slightly from c because 
z = −d  and the metric tensor still has gravity gradient terms. 
However, the difference is negligible, see (A.9) and (A.10). 
We shall neglect dispersion in the cube and assume that the 
coordinate phase speed of light in the glass is reduced by a 
factor 1/n. The phase speed is therefore

vz =
dz
dt

=
c
n

√
−g00/gzz =

c
n

(
1 − γz2

c2

)
. (24)

In the falling frame, the local time interval needed to reach 
height z going upwards is then

δt =
∫ z

−d

dz
vz

≈ n
c

∫ z

−d
dz
(
1 +

γz2

c2

)
=

n
c
(z + d +

γ

3c2 (z
3 + d3)

)
.

 (25)
We denote the distance from the face at z = −d  to the corner 
by D. The total local time required for the phase front to prop-
agate to the corner and back to the face is then double the 
amount calculated just above:

δt+ =
2n
c

(
D +

γ

c2 (d
2D − dD2 +

1
3

D3)

)
. (26)

This time interval is the same for every ray entering the face 
normally. The phase φout exiting the face is numerically equal 
to φin, but the local time at which the phase front exits is at a 
later local time. Therefore the replacement

φout = φin|t→t−δt+ (27)

will give an outgoing phase that represents the phase at a later 
t. In making this replacement, the last terms in γ in equa-
tion (26) do not contribute, to the order of the present calcul-
ation, so

φout = −Ωd
c

+
ΩZ0

c
+

2DnΩ
c

− 2DnΩV0

c2 +
ΩdV0

c2

+ tΩ(−1 +
V0

c
− V2

0

2c2 +
2Dng

c2 +
gZ0

c2 − dg
c2 )

+ t2Ω(− g
2c

+
gV0

c2 )− Ωg2t3

3c2 + γΩ

(
t(− Z2

0

2c2 − 2DnZ0

c2 +
dZ0

c2 )

+ t2(
Z0

2c
+

dV0

2c2 − V0Z0

c2 − DnV0

c2 ) + t3(
V0

6c
− dg

6c2 +− V2
0

3c2 +
2gZ0

3c2 +
Dng
3c2 )

+ t4(− g
24c

+
gV0

3c2 )− t5 g2

15c2

)
.

 

(28)

Viewed from the falling frame, the phase front propagates 
in vacuum downward to negative values of z with a phase 
velocity

vz = −c(1 − γz2

c2 ). (29)

The local time required to propagate to z < −d  is

δt− = −1
c

∫ z

−d
dz(1 +

γz2

c2 ) = −1
c
(z + d +

γ(z3 + d3)

3c2 ).

 (30)
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The phase field in the region below the cube is then

φ(t, z) = φout|t→t−δt− . (31)

Substituting and expanding to order c−2 gives

φ(t, z) =
ΩZ0

c
+

2DnΩ
c

+ z(−Ω

c
+

ΩV0

c2 )− 2DnΩV0

c2

+ t(−Ω+
ΩV0

c
+

2DgnΩ
c2 − ΩV2

0

2c2 +
gΩZ0

c2 − gΩz
c2 ) + t2(−2dDn

c2 − gΩ
2c

+
gΩV0

c2 )

− t3 g2Ω

3c2 + γΩ
(
t(−2dDn

c2 − 2DnZ0

c2 − Z2
0

2c2 ++
dz
c2 +

Z0z
c2 )

+ t2(
d
2c

− dV0

2c2 +
Z0

2c
− DnV0

c2 − V0Z0

c2 +
V0z
2c2 )

+ t3(
dg
2c2 +

Dgn
3c2 +

V0

6c
− V2

0

3c2 − gz
6c2 +

2gZ0

3
c2)

+ t4(− g
24c

+
gV0

3c2 )− t5 g2

15c2

)
− γΩnD2t

2c2 .

 
(32)

This phase needs to be evaluated at the reference point Z = 0 
and expressed as a function of the time T. Substituting from 
the transformation equations  equation (A.5) and (A.6) and 
then setting Z = 0 yields the phase to be combined with the 
reference phase at the splitter:

φ(T , 0) =
2(Dn − d)Ω

c
+

2ΩZ0

c
− 2(Dn − d)ΩV0

c2 − 2ΩZ0V0

c2

+ T(−Ω+
2ΩV0

c
− 2ΩV2

0

c2 +
2Ωg(Dn − d)

c2 +
2gΩZ0

c2 )

+ T2(−gΩ
c

+
3gΩV0

c2 )− g2ΩT3

c2

+ γΩ

(
T(−2(Dn − d)Z0

c2 − 2Z2
0

c2 ) + T2(
Z0

c
− (Dn − d)V0

c2 − 4V0Z0

c2 )

+ T3(
V0

3c
+

g(Dn − d)
3c2 − 4V2

0

3c2 +
7gZ0

3c2 ) + T4(− g
12c

+
5gV0

4c2 )− g2T5

4c2

)
.

 (33)
To the order of this calculation, solving the relativistic 

equations for the hyperbolic center of mass motion of the cube 
gives additional terms of order c−2 in equations (5) and (6). 
These terms contribute to the transformation equations  but 
because of their high order have no effect on the final phase, 
equation (33).

Not all of the relativistic correction terms are important; 
for example many of the terms multiplying γ are very small. 
Within the falling cube, z is usually no more than a few centim-
eters; with a nominal value of the gravity gradient at Earth’s 
surface γ ≈ 3 × 10−6, then γz2/(2c2) ≈ 10−26 and could be 
neglected. Nevertheless these terms are included since they 
may be important in other applications.

The signal is mixed with the reference signal, which has 
phase −ΩT , and fringes are counted. The phase difference is 
obtained from equation (33) by omitting the term −ΩT  in the 
second line. It is possible to absorb some of the terms in the 
cube depth D in the difference by redefining the initial posi-
tion Z0, however it is not possible to eliminate all such terms 
and a significant effect remains, which will be discussed in 
Sect. 6.

The transformations between laboratory coordinates and 
freely falling coordinates provide alternative descriptions of 
phenomena, which must agree when results are expressed in 
terms of observables such as numbers of interference fringe 
counts. For example, in the above calculation of the test beam 
phase at the detector the calculation treated the source at 
z = −d  as at rest and the detector as moving. Alternatively, 

one may calculate the test beam phase at the detector in labo-
ratory coordinates considering the source (the cube face) to be 
moving while the detector is at rest. In the latter case, how-
ever, one must take care to compute the time delay between 
the source and arrival at the detector accounting for the finite 
speed of light. This is analagous to computing the propagation 
time of a signal sent from a moving transmitter to a receiver 
at rest.

Let the face of the cube at transmission time TT be Zface(TT) 
and let the time required for the signal to reach the detector at 
Z = 0 at time T be denoted by ∆(Zface(TT)). Then the time of 
transmission is determined by a retarded time:

TT = T −∆(Zface(TT)). (34)

This can be solved by iteration:

TT = T −∆(Zface(T −∆(Zface(T −∆(Zface(T − ...)))))).
 (35)
Each iteration introduces terms having one more factor of c in 
the denominator; convergence is rapid.

We denote the phase out of the cube as a function of TT in 
laboratory coordinates as Φout(TT). This may be obtained by 
solving the equation TT = T(t,−d) from the time transforma-
tion, for t in terms of TT and substituting for t in favor of TT 
into the scalar, equation (28). The phase at the detector is then

Φ(T) = Φout(TT)

= Φout(T −∆(Zface(T −∆(Zface(T −∆(Zface(T − ...))))))).
 (36)
The result agrees with the test beam phase at the splitter, 
equation (33).

5.1. Origin of time

The choice of zero of time is arbitrary; in the present work we 
have chosen to make T = 0 at the instant the cube is dropped, 
introducing initial position Z0 and velocity V0 to account 
for imperfections in release. Suppose instead the cube were 
dropped at a different instant T0. The center of mass position 
and velocity at this instant will be:

Z(T0) = Z0 + V0T0 −
1
2

gT2
0 + γ

(Z0T2
0

2
+

V0T3
0

6
− gT4

0

24
)
;

V(T0) = V0 − gT0 + γ
(
Z0T0 +

V0T2
0

2
−

gT3
0

6
)
.

 

(37)

Solving for the original position and velocity, keeping linear 
terms in γ, gives

Z0 = Z(T0)− V(T0)T0 −
gT2

0

2
+ γ

(Z(T0)T2
0

2
−

V(T0)T3
0

6
− gT4

0

24
)
;

V0 = V(T0) + gT0 + γ
(
− Z(T0)T0 +

V(T0)T2
0

2
+

gT3
0

6
)
.

 

(38)

If one substitutes the replacements indicated in equations (38) 
into (33) or one lets T → (T − T0), and makes the replace-
ments Z0 → Z(T0), V0 → V(T0), then upon neglecting 
powers of γ higher than 1 it is found that the interference 
phase difference is form-invariant with respect to this change 
of time origin. For example, consider only the terms propor-
tional to c−1 in equation (33). These are
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Ω

c

(
− 2d + 2Dn − gT2 + 2Z0 + 2V0T + γ

(
− 1

12
gT4 +

1
3

V0T3 + Z0T2
)

.

 (39)
Making the replacements given in equation (38) and keeping 
terms of order γ, this becomes

Ω

c

(
− 2d + 2Dn − gT2 + 2gTT0 + gT2

0 + 2TV(T0)− 2T0V(T0) + 2Z(T0)

+
1

12
γ
(
g(T − T0)

4 − 4(T − T0)
2V(T0) + 3Z(T0)(T − T0)

2)
)

,

 (40)
which is of the same form as equation (39) upon making the 
replacements Z0 → Z(T0), V0 → V(T0), T → T − T0 . The 
remaining contributions in equation (33) behave similarly, as 
do all the terms proportional to D. This is a useful self-consis-
tency check of the theory.

6. Dispersion and modulation

6.1. Dispersion

As the cube falls, the wavelength of laser radiation within 
the cube decreases slightly. This results in a change of phase 
velocity that is negligibly small, as can be seen from the fol-
lowing argument. The acceleration g acts for a time T that 
is only a few tenths of a second, causing the velocity to 
build up to gT ≈ 5 m s−2. The first-order Doppler shift of 
the laser wavelength within the cube is then no more than 
∆λ = −Vλ/c = −gTλ/c ≈ −10−14 m. Chromatic disper-
sion for typical corner-cube glass is dn/dλ ≈ 5 × 104 m−1, 
[10] so ∆n ≈ 5 × 10−10. The change in time delay within the 
cube due to dispersion is negligible.

6.2. Modulation

Low-frequency modulation may be applied to the laser signal 
to aid in locking the laser to a frequency reference–e.g. a 
Rubidium oscillator. This modulation produces sidebands 
whose strength depends on the amplitude of the modulation. 
Every term in the beat frequency is proportional to the orig-
inal laser frequency of the source, Ω, so both reference beam 
and retroreflected beam will have sidebands that undergo a 
chirp proportional to the frequency chirp of the main signal. 
We shall write the unmodulated phase of the signal Φ(T , 0) in 
(33) in the form

Φ(T , 0) = ΩF(Z0, V0, g, γ, T) = ΩF. (41)

Assuming the signal is frequency modulated with rela-
tively low frequency ωm, and has a small modulation index 
β, the modulated reference beam signal at distance x from the 
origin can be represented by

Eref = E0e(iΩx/c−iΩT)(1 − β

2
e(−ixωm+iωmT) +

β

2
e(ixωm−iωmT)).

 (42)
The electric field of the retroreflected beam may have a slightly 
attenuated amplitude, but will have sidebands such that

Etest = E1eiΩF(1 − β

2
eiωmF +

β

2
e−iωmF). (43)

These signals are superimposed and sent into a photodiode. 
The measurements consist of time stamps of zero-crossings of 
the time varying quantity

EtestE∗
ref + c.c. (44)

The sideband frequencies also suffer from the frequency 
chirp that occurs as the cube falls and can be described by the 
phase function equation (33) with an appropriate frequency. 
However, unless the frequency modulation index is large we 
find there is almost no effect on the interference fringe counts.

7. Data analysis

Three data sets produced by a falling cube gravimeter were 
analyzed. These were characterized by differing numbers of 
drops, and differing numbers of zero-crossings of the interfer-
ence signal between time stamps. These details are summa-
rized in table 1.

The data were processed using the result in equation (33), 
with the term −ΩT  in the second line omitted, and refrac-
tive index n = 1.52. An estimated value of gravity gradient 
γ = 3.072 4615 × 10−6 s−2 was used for all drops; the data 
is not sufficiently robust to determine γ itself as the covari-
ance matrix becomes singular if γ is included as a variable to 
be determined by the drop data. For each drop in each ‘pro-
ject’, the data were first processed with D = 0, as though the 
reflection from the falling cube occurred at the cube face. The 
variables Z0, V0, and g were determined by the fit with a fixed 
value of γ. Then the data were processed with D = 0.0175 
m corresponding to the distance from cube face to corner of 
a typical ‘1 inch’ cube, and d = D/4. (The values of D and d 
for the particular gravimeter from which this data were taken 
were not available.) None of the usual corrections such as 
those arising from polar motion or tides were applied since 
such corrections would be the same whether D was or was 
not included in the calculation. The value of g obtained when 
D �= 0 was invariably smaller than the value obtained when 
D = 0.0175 m. In fact the difference for all drops in all pro-
jects, including short drops obtained by selecting fewer time 
stamps, was found to be

δg = g(D = 0.0175 m)− g(D = 0 m) = −6.828 54 µ Gal.
 (45)
with negligible variation. The same number arises if all terms 
of order c−2 in equation (33) are neglected.

This is a significant correction, comparable to the magni-
tudes of other corrections such as arise from polar motion, or 
earth tides.

The fact that the difference δg was found to be the same for 
all drops implies this constant difference should be derivable 
from equation (33). Suppose that fitting the drop data to equa-
tion (33) with D = 0 results in values Z0, V0, g for these three 
parameters. Then suppose that fitting the drop data with D �= 0 
results in the values Z0 + δZ0, V0 + δV0, g + δg. All these 
quantities are constants independent of T, so the two phase func-
tions at an arbitrary value of T must match. Let us denote the 
phase given in equation (33) by φ(D, Z0, V0, g, T). Linearizing 
the phase with respect to the small increments δZ0, δV0, δg 
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then upon subtracting the phase without D the difference 
should be identically zero. Thus we expect

φ(D, Z0 + δZ0, V0 + δV0, g + δg, T)− φ(0, Z0, V0, g, T) = 0.
 (46)
Carrying out the calculation, we find neglecting terms of order 
γ2  but without further approximation, that

δZ0 = −Dn + d;
δV0 = 0;
δg = −γ(Dn − d).

 (47)

It is remarkable that these replacements reduce both non-rel-
ativistic terms and terms proportional to c−1 in equation (46) 
to negligible levels. This value of the correction to g is indeed 
equal to that found by fitting the data:

δg = −6.828 54 µ Gal. (48)

The changes in Z0 and V0 as given in equation (47) are simi-
larly verified by fitting. Although equation  (46) is a fourth-
order polynomial involving five coefficients, the adjustment of 
only three quantities as in equation (47) is sufficient because 
δV0 = 0 eliminates all odd terms in T. The residuals after 
applying the remaining two adjustments in equation (47) are 
proportional to γ2  and are negligible.

8. ‘Speed of light’ corrections

One of the more controversial issues surrounding measure-
ments with falling cube gravimeters is the so-called ‘speed 
of light’ correction. Many measurement models of gra-
vimeters of this type attempt to account for propagation 
delays between the instant the waves are reflected from the 
cube and the instant they are delivered to the detector, due 
to the finite value of the speed of light [5, 6]. A review of 
such speed of light corrections has been given in [8]. It 
should be emphasized that the result given in equation (33) 
does not require any such correction as light propagation 
has been fully described in that expression using relativ-
istic principles.

Suppose one nevertheless attempts to derive a ‘speed of 
light correction’ by analogy with equation (46) by first fitting 
only with the leading c−1 terms, then linearizing. To compare 
with earlier treatments we take D = 0 and separate the phase 
contributions into c−1 and c−2 contributions:

φ(0, Z0, V0, g) =
1
c
φ1(Z0, V0, g) +

1
c2 φ2(Z0, V0, g). (49)

Let Z0, V0, g be determined by data fitting using only φ1, the 
non-relativistic part of the phase. Then one might expect cor-
rections to satisfy

1
c
φ1(Z0 + δZ0, V0 + δV0, g + δg)− 1

c2 φ2(Z0, V0, g) = 0.
 (50)
However, this is a fourth-order polynomial in the time having 
five constant coefficients and cannot be satisfied by adjusting 
three fitting parameters. Even if terms in γ/c were neglected, 
there are still four constant coefficients. Thus it appears to be 
infeasible to derive speed-of-light corrections in this way. In 
case of a three-level schema in which only three fringe shifts 
are recorded at three times, one can imagine obtaining relativ-
istic corrections by adjusting only three parameters.

In any case, such corrections are unnecessary; the full rela-
tivistic phase difference including propagation delays of light 
through the apparatus is available in equation (33).

9. Conclusions

The large value of the correction in equation  (47), obtained 
from data analysis as well as from theory, supports the conten-
tion that in falling cube gravimeters, the time delay entailed 
by penetration of the light into the cube cannot be ignored. It 
also points up the need for a better value of the gravity gra-
dient-not just a ‘standard’ value-at the position of the appa-
ratus, as well as a precise value for the refractive index of 
the glass and an accurate position for the center of mass. No 
additional ‘speed of light’ correction is needed in this picture, 
as relativistic corrections including Lorentz contraction of the 
falling cube, dependence of the coordinate speed of light on 
gravitational potential, relativity of simultaneity, propagation 
along null geodesics, and first- and second-order Doppler 
shifts have been accounted for. The correction for time delay 
within the falling cube has been shown to be several microgals 
and to depend on properties of the cube; this correction can 
simply be added to other relevant corrections that are com-
monly applied.
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Appendix A. Coordinate transformations

The prescription for constructing accelerated cube-fixed 
normal Fermi coordinates that cover the falling cube, extending 
to a space-time patch containing the cube and beamsplitter, is 
developed in [1]. Normal Fermi coordinates[2–4], similar to 
Cartesian coordinates falling with the cube, are constructed 

Table 1. Description of data processed using equation (33).

Project 
#

Number 
of drops

Number of 
time stamps

Number of zero-cross-
ings between time stamps

#1 200 1200 1000
#2 2400 1400 800
#3 2400 1000 1200
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by parallel propagation of a tetrad of orthonormal four-vec-
tors along the trajectory of the freely falling test object. In 
the present case the trajectory is that of the center of mass 
of the falling cube. The 0th member of the tetrad is just the 
four-velocity, tangent to the trajectory of the center of mass. 
The time in the falling frame is the proper time on an imagi-
nary ideal atomic clock carried along at the center of mass. 
The other members of the tetrad are obtained by solving equa-
tions for spacelike geodesics that intersect the trajectory of the 
center of mass orthogonally. In the present case the only addi-
tional coordinate of interest is the Z-coordinate so only two 
members of the tetrad are relevant: these are the 0-member 
of the tetrad tangent to the center of mass trajectory, and the 
spacelike 3-vector directed along the vertical Z-axis. The con-
struction yields the following expression for the time transfor-
mation (equation (A.12) in [1]):

T(t, z) =
∫ t

0

dt√
−GµνdXµdXν

+
V · r

c2 .
 

(A.1)

The integral has already been calculated in equation (13). The 
last term in equation (A.1) representing relativity of simulta-
neity is

V(T)z
c2 =

1
c2

(
V0z − gzT + γz(Z0T +

V0T2

2
− gT3

6
)

=
1
c2

(
V0z − gtz + γ(Z0zt +

V0zt2

2
− gt3z

6
)
.

 
(A.2)

where to the order of the calculation T can be replaced by t in 
equation (A.2). Combining equations (13) and (A.2) gives the 
transformation from time in the lab to the falling coordinates 
in the cube, equation (14).

We also need the transformation of vertical coordinates 
from the lab coordinate Z to the cube-fixed coordinate z, 
which is given by (equation (A.10) in [1]):

Z = Z(t, z) =
(

Zcm(T) + z
(
1 − Φ(Z(T))

c2 − A(T)z
c2

)

+
V(T)2z

2c2 +
z2A(T)

2c2

)∣∣∣∣
T=T(t,0)

.
 

(A.3)

Here quantities such as Z(T) and Φ(T) are evaluated at the 
cube’s center of mass, which is the origin of locally inertial, 
freely falling coordinates. Then T is replaced by its value at 
the center of mass given by equation  (14). The acceleration 
A(T) of the cube is obtained by differentiating equation (6). 
The first term in equation  (A.3) is the accelerating value of 
the Z−coordinate at the center of mass. The coefficients of 
z include a change of scale arising from the earth’s gravita-
tional potential, a Lorentz contraction term, and additional 
acceleration contributions. These contributions arise during 
construction of normal Fermi coordinates, while solving for 
spacelike geodesics that intersect the trajectory orthogonally 
[1]. In General Relativity, arbitrary coordinate transforma-
tions are allowed; of course then the physics in the resulting 
coordinate system must be interpreted in terms of coordinate-
independent observables.

After expanding equation (A.3) to order c−2, the transfor-
mation for the Z coordinate is

Z(t, z) = Z0 + z(1 +
V2

0

2c2 +
gZ0

c2 ) +
gz2

2c2

+ t(V0 +
V3

0

2c2 − gV0Z0

c2 ) + t2(−g
2
− 3gV2

0

2c2 +
g2Z0

c2 ) +
4g2V0t3

3c2 − g3t4

3c2

+ γ

(
− Z2

0z
2c2 − Z0z2

2c2 + t(
Z2

0V0

2c2 − V0z2

2c2 ) + t2(
Z0

2
+

3V2
0 Z0

2c2 − 3gZ2
0

2c2 +
gz2

4c2 )

+ t3(
V0

6
+

7V3
0

12c2 − 19gZ0V0

6c2 ) + t4(− g
24

− 5gV2
0

4c2 +
7g2Z0

6c2 )

+
11g2V0t5

15c2 − 11g3t6

90c2

)
.

 

(A.4)

The relativistic correction terms are easily identified by the 
factors of c in the denominators. The inverses of these trans-
formations, obtained by an iterative process, are

t(T , Z) =
V0Z0

c2 − V0Z
c2 + T(1 +

V2
0

2c2 +
gZ
c2 )−

gV0T2

2c2 +
g2T3

6c2

+ γ

(
T(

Z2
0

2c2 − Z0Z
c2 ) + T2(

V0Z0

c2 − V0Z
2c2 )

+ T3(−gZ0

2c2 +
V2

0

3c2 +
gZ
6c2 )−

7gT4V0

24c2 +
7g2T5

120c2

)
;

 

(A.5)

z(T , Z) = −Z0 −
V2

0 Z0

2c2 +
gZ2

0

2c2 + (1 +
V2

0

2c2 )Z − gZ2

2c2 − 3g2T3V0

2c2 +
3g3T4

8c2

+ T(−V0 −
V3

0

2c2 +
2gV0Z0

c2 − gV0Z
c2 ) + T2(

g
2
+

7gV2
0

4c2 − g2Z0

c2 +
g2Z
2c2 )

+ γ

(
− Z2

0Z
2c2 +

Z0Z2

2c2 + T(−V0Z2
0

c2 +
V0Z2

2c2 )

+ T2(−Z0

2
− 7V2

0 Z0

4c2 +
3gZ2

0

2c2 − gZZ0

2c2 − gZ2

4c2 )

+ T3(−V0

6
+

10gV0Z0

3c2 −
7V3

0

12c2 − gV0Z
6c2 )

+ T4(
g

24
+

61gV2
0

48c2 − 29g2Z0

24c2 +
g2Z
24c2 )

− 3g2V0T5

4c2 +
g3T6

8c2

)
.

 

(A.6)

These transformations can be used to investigate transfor-
mations of laser light wavevectors from the laboratory frame 
to the cube frame. Partial derivatives such as

∂Xi

∂xi , (A.7)

where Xi = {cT , Z} and xi = {ct, z} can be easily evaluated 
from the polynomials given in equations (14) and (A.4). For 
example, the time-time-component of the metric tensor in the 
falling frame will be

g00 =

(
∂cT
∂ct

)2

G00 +

(
∂Z
∂ct

)2

GZZ . (A.8)

Carrying out the partial differentiations and evaluating equa-
tion  (A.8), expanding to order c−2, keeping linear contrib-
utions in γ, and quadratic contributions in z, we obtain

g00 = −(1 − γ
z2

c2 ). (A.9)

A similar calculation gives:

gzz =

(
∂cT
∂z

)2

G00 +

(
∂Z
∂z

)2

GZZ = 1 + γ
z2

c2 . (A.10)
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There are no linear terms in g00 or gzz in the local z− coordi-
nate because the origin was chosen to be at the point where the 
net force acts. In the cube-fixed frame the center of mass is at

zcm =
1
M

∫ D−d

−d
z dm = 0, (A.11)

while the force per unit mass at z is proportional to −γz. The 
total force is then proportional to

−γ

∫ D−d

−d
z dm = 0, (A.12)

so the retroreflector is unaccelerated in the local freely falling 
frame. If one should choose the flat face of the falling object 
as origin of the local frame, the local metric tensor would have 
linear terms in z.

Such features express the equivalence principle: in a freely 
falling reference frame, the linear term in the expansion of the 
gravitational potential is cancelled by terms arising from the 
acceleration. This is primarily an algebraic consequence of 
the simultaneity term equation  (A.2) that was added into the 
time transformation equation (14). The time derivative of this 
term is proportional to the acceleration of the origin of falling 
coordinates, times a; in carrying out the standard tensor trans-
formations of the components of the metric tensor, this term 
cancels the linear term in the Taylor expansion of the gravita-
tional potential.

Although one may have questions about the transformations 
quoted in equations (14) and (A.4), the result clearly describes 
the physics in a freely-falling, locally inertial system with a static 
gravity gradient, with coordinates that are locally very similar to 
those used in Special Relativity. The linear term in the potential 
involving g has been transformed away in the local frame.

Appendix B. Non-relativistic derivation  
of corrections

The corrections given in equation (47) do not involve the con-
stant c explicitly, and can be derived by taking the non-relavit-
istic limit of the equations presented above. It is instructive to 
summarize the argument. For example, the difference between 
the time coordinates in the lab and in the falling frame can be 
neglected. From the transformation equations, the position of 
the cube face is then approximately

Zface(T) = Zcm(T)− d. (B.1)

The phase of the signal penetrating the cube is then

φin(T) = −Ω
(
T − Zface(T)

c

)
. (B.2)

The time delay during signal propagation within the cube is 
2Dn/c so the phase of the signal leaving the cube is

φout(T) = φin(T − 2Dn/c)

= −Ω
(
T − 2Dn

c
− Zface(T − 2Dn/c)

c

)

≈ −Ω
(
T − 2Dn

c
− Zface(T)

c

)
,

 (B.3)

where in the last term the higher-order relativistic corrections 
can be neglected. The time required for the signal to reach the 
origin Z = 0, to leading order in c−1, is Zface(T)/c, so the 
phase of the signal at the detector is

− Ω
(
T − Zface(T)

c
− 2Dn

c
− Zface(T − Zface(T)/c)

c

)

= −Ω
(
T − 2Dn

c
− 2Zface(T)

c

)
.

 (B.4)
Replacing Ω by 2πc/λ, the ‘nonrelativistic’ contributions to 
the phase are

−2πc
λ

(
T − 2Dn

c
− 2Zface(T)

c

)
. (B.5)

The first term is removed by interference with the reference 
beam so the net nonrelativistic phase difference is

2π
(

2Dn
λ

+
2Zface(T)

λ

)
. (B.6)

Combining this with equations (B.1) and (5) and rearranging 
terms gives the phase difference

2π
(

2(Dn − d + Z0)

λ
+

2V0(T + γ T3

6 )

λ
+

T2

2λ
(γZ0 − g)− gγT4

12λ

)
.

 (B.7)
In particular, the constant term gives rise to the correction in 
the first line of equation (47). This correction inserted into the 
T2 term in equation (B.7) then leads to the last line of equa-
tion (47). The remaining terms have no effect on the conclu-
sions stated in equation (47).
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