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Abstract We present a novel method to reconstruct the temporal evolution of the speed of light c(z) in a

flat Friedmann-Robertson-Walker (FRW) Universe using astronomical observations. After validating our

pipeline with mock datasets, we apply our method to the latest baryon acoustic oscillations (BAO) and

supernovae observations, and reconstruct c(z) in the redshift range of z ∈ [0, 1.5]. We find no evidence of a

varying speed of light, although we see some interesting features of ∆c(z), the fractional difference between

c(z) and c0 (the speed of light in the International System of Units), e.g., ∆c(z) < 0 and ∆c(z) > 0 at

0.2 . z . 0.5 and 0.8 . z . 1.3, respectively, although the significance of these features is currently far

below statistical importance.
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1 INTRODUCTION

In this era of precision cosmology, we are fortunately

equipped with high quality observational data of various

kinds, which enable testing the fundamental laws of the

Universe. The physical laws of the Universe are built with

a few “constants,” including the gravitational constant G,

electron charge e, speed of light c and so on. Actually, as-

suming the constancy of these “constants” at all cosmic

times and scales is a significant extrapolation of our knowl-

edge on rather limited temporal and spacial scales, which

is subject to observational scrutiny.

Theorists including Dirac started thinking about build-

ing models for varying G or e, well before any obser-

vational tests became feasible (Dirac 1937; Bekenstein

1982). However, the constancy of c was much more sa-

cred (Barrow 1999), as it is the pillar of special relativity,

built by Einstein in 1905. Making c vary is much more de-

structive to the structure of formalisms in modern physics

than varying other constants. Nevertheless, a varying speed

of light (VSL) may solve the cosmological constant prob-

lem and build a new framework of cosmic structure forma-

tion, as an alternative to inflation. This is sufficiently at-

tractive for theorists to develop viable VSL theories (see

Magueijo 2003 for a review of recent developments in

VSL). Meanwhile, techniques for testing VSL observa-

tionally have been developed in parallel. Recently, a new

method to constrain VSL at a single redshift using baryon

acoustic oscillations (BAO) was developed (Salzano et al.

2015) and has been applied to cosmological observations

(Cao et al. 2017; Cai et al. 2016).

The method developed in (Salzano et al. 2015) is

briefly summarised as follows. Given the relation between

angular diameter distance DA(z) and Hubble function

H(z), the speed of light c at a specific redshift z = zM

is just a product of DA(zM) and H(zM), i.e.,

c(zM) = DA(zM)H(zM), (1)

where zM is the peak location of DA(z), i.e.,

∂DA/∂z|z=zM
= 0. Note that the exact value of zM

is model-dependent, and zM ∼ 1.7 for a flat ΛCDM
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model, which is consistent with the Planck 2018 observa-

tions (Planck Collaboration et al. 2018).

This method has both pros and cons. On the positive

side,

– It is model-independent, simply because it does not re-

quire any theoretical modeling at all in the first place.

As shown in Equation (1), it only needs the peak red-

shift zM, and the product of DA and H measured at

zM, which can be derived from the BAO data alone;

– It is free from degeneracy with other cosmological pa-

rameters such the fractional matter density, the equa-

tion of state of dark energy, etc., because what we need

is essentially a product of DA and H , which is directly

observable.

However, this method has also drawbacks, including,

– It is difficult to determine zM accurately, as DA(z) is

rather flat around its peak;

– For a wide range of cosmologies, zM is as large as ∼

1.7, making it unaccessible for most current BAO ob-

servations. Even for future deep BAO surveys, includ-

ing that by the Dark Energy Spectroscopic Instrument

(DESI) (DESI Collaboration et al. 2016), it is chal-

lenging to get decent DA or H measurements at such

high redshifts;

– This method only constrains c at one single redshift,

which is far from sufficient for tests against various

VSL models.

In this work, we generalise (Salzano et al. 2015) to

propose a new method for testing VSL at multiple red-

shifts in the framework of a flat Friedmann-Robertson-

Walker (FRW) Universe. After presenting the methodol-

ogy in Section 2, we perform validation tests using mock

datasets, before applying to observational data and present-

ing our main result in Section 4. We conclude and discuss

our results in Section 5.

2 METHODOLOGY

We start from the relation between the angular diameter

distance DA(z), the Hubble function H(z) and the general

speed of light function c(z) in a flat FRW Universe1, i.e.,

DA(z) =
1

1 + z

∫ z

0

c(z′)

H(z′)
dz′. (2)

1 Note that in non-flat Universes, the Friedmann equations get modi-

fied by the time derivative of c(z) so Equation (2) does not hold (Barrow

& Magueijo 1999). In this work, we consider a flat Universe for simplic-

ity.

Differentiating both sides with respect to redshift z yields,

c(z) = χ′(z)H(z), (3)

where χ is the comoving distance so that χ(z) = (1 +

z)DA(z). Our aim is to reconstruct the entire evolution his-

tory of c(z), thus we parametrise the redshift-dependence

of χ(z) and H(z) as follows,

χ(z)

χfid(z)
= α0

(

1 + α1x +
1

2
α2x

2 +
1

6
α3x

3

)

, (4)

Hfid(z)

H(z)
= β0 + β1x +

1

2
β2x

2 +
1

6
β3x

3. (5)

The variable x ≡ χfid(z)/χfid(zp)− 1 where the subscript

fid denotes the fiducial cosmology used, and zp is the pivot

redshift at which we apply the Taylor expansion. In this

work, the fiducial cosmology is chosen to be a flat ΛCDM

model with ΩM,fid = 0.31.

To test against the constancy of the speed of light, we

define a deviation function of c as,

∆c(z) ≡
c(z)

c0

− 1, (6)

where c0 is the speed of light in the International System

of Units (SI), i.e., c0 = 299 792 458 m s−1.

Combining Equations (3), (4), (5) and (6), we have,

∆c(z) =

α0

[

1 + α1 + (2α1 + α2)x +
(

3
2
α2 + 1

2
α3

)

x2
]

β0 + β1x + 1
2
β2x2

− 1.

(7)

In particular, at zp where x vanishes,

∆c(zp) =
α0(1 + α1)

β0

− 1. (8)

Although ∆c does not explicitly depend on other

cosmological parameters, its measurement does implicitly

rely on how well we are able to model DA and H using

Equations (4) and (5) for general cosmologies. The expan-

sion in Equation (4) was actually proposed by Zhu et al.

(2015) for implementing the optimal redshift weighting

method for BAO analyses, and it was demonstrated that

expansions up to the quadratic order in x can precisely re-

cover a wide range of cosmologies at the sub-percent level

in the redshift range of z ∈ [0.5, 1.5]. Note that in Zhu et al.

(2015), the speed of light was assumed to be a constant,

thus H(z) was derived from χ(z). In our case, as c(z) is

promoted to a general function of z, we have to double the

number of expansion coefficients for H(z). Also, we are
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Fig. 1 The absolute residual |R| defined in Eq. (11) as a function

of |z − zp|. As shown, the residuals are below the 1% level for

|z − zp| < 1, although H(z) is less accurately modeled than

DA(z). For larger |z − zp|, say, 1 < |z − zp| < 2, R for DA(z)
can still be controlled at the per cent level, while the residual for

H approaches the 4% level.

more ambitious on the valid redshift range for these ex-

pansions, since we plan to employ all the available obser-

vations probing the background expansion of the Universe

from z = 0 to z = 2. This has motivated us to utilize ex-

pansions to higher order to achieve the precision we need.

To validate our parametrisations for χ(z) and H(z),

we attempt to fit two cosmologies which sufficiently devi-

ate from the fiducial cosmology we use for the expansion.

Specifically,

Cosmo. Model I : a flat ΛCDM model with ΩM = 0.2;

(9)

Cosmo. Model II : a flat wCDM model with ΩM = 0.31;

w = −0.8.
(10)

Both models are excluded by Planck 2018 observations,

making them representative of “extreme” models that

may be later sampled in the parameter space. For each

model, we first choose a pivot redshift zp, and then tune

the α and β coefficients to minimise the difference be-

tween our model prediction for DA and H calculated with

Equations (4) and (5), and the exact quantities calculated

using models I and II. We then compute the residual R for

DA(z) and H(z), i.e.,

Ro(z, zp) ≡ 100 ×

[

Omodel(z, zp)

Oexact(z, zp)
− 1

]

%, (11)

where O stands for DA or H .

The resulting residuals are displayed in Figure 1 for

various |z − zp| values, and we find that our model with

third-order expansions is sufficiently accurate for our anal-

ysis: the residuals in most cases are below the 1% level,

although H(z) is less accurately modeled than DA(z).

Larger residuals appear when |z − zp| gets larger, which is

naturally expected as the accuracy of the Taylor expansion

decays with distance to the expansion point. Quantitatively,

|R| . 1% for |z − zp| . 1 for both models, and |R| can

approach 4% for H in the worst case, e.g., |z − zp| = 2,

but as we will explain later, this does not affect our re-

sult, if we only take the reconstructed values at zp (so that

|z − zp| = 0).

Before applying our method to actual observations,

there is another step missing: an actual mock test for vari-

ous VSL models, which is presented in the next section.

3 MOCK TESTS

This section is devoted to a robustness test of our pipeline,

before applying to actual observations, as presented in the

next section.

To begin with, we choose four phenomenological VSL

models for ∆c(z) to cover various possible features, in-

cluding a constant, a linear function, a quadratic function

and an oscillatory function, i.e.,

– VSL model 1: ∆c(z) = 0.05;

– VSL model 2: ∆c(z) = 0.05z;

– VSL model 3: ∆c(z) = 0.05z + 0.01z2;

– VSL model 4: ∆c(z) = 0.05 sin(zπ).

These VSL models are then combined with two cos-

mological models, corresponding to Equations (9) and

(10), to make eight toy models for the mock test (see

Table 1 for the labelling of the toy models).

For each toy model, we can first generate mock

H(z) data points using cosmological models shown

in Equations (9) and (10), and then produce mock

DA(z) datasets by combining H(z) and ∆c(z) using

Equation (2).

In practice, we produce two kinds of mock datasets,

a combined BAO data sample assuming the sensitivity of

the Euclid mission (Font-Ribera et al. 2014) and DESI

survey (DESI Collaboration et al. 2016), and a com-

bined supernova sample predicted for the Large Synoptic

Survey Telescope (LSST) (LSST Science Collaboration

et al. 2009) and Euclid (Astier et al. 2014).

For the BAO sample, we follow Font-Ribera et al.

(2014) and DESI Collaboration et al. (2016) to produce

DA and H pairs at 15 and 18 effective redshifts for Euclid

and DESI, respectively, so that our combined BAO sam-

ple consists of 33 pairs of DA and H covering the red-

shift range of z ∈ (0, 2.1). For the supernova sample, we

produce luminosity distances assuming the sensitivity of
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Table 1 Toy Models Used for the Mock Test

Toy model VSL model Cosmological model

1 VSL model 1 ΛCDM; Equation (9)

2 VSL model 2 ΛCDM; Equation (9)

3 VSL model 3 ΛCDM; Equation (9)

4 VSL model 4 ΛCDM; Equation (9)

5 VSL model 1 wCDM; Equation (10)

6 VSL model 2 wCDM; Equation (10)

7 VSL model 3 wCDM; Equation (10)

8 VSL model 4 wCDM; Equation (10)

the Deep Drilling Fields and low-redshift sample to be ob-

served by LSST, and of the Dark Energy Supernova Infra-

Red Experiment (DESIRE) supernova survey with Euclid.

The Deep Drilling Fields will observe 8800 supernovae at

z ∈ [0.15, 0.95], and an additional 8000 supernovae below

redshift 0.35. This sample is complemented by the high-z

sample to be collected by the DESIRE survey, which will

provide 1740 supernovae at z ∈ [0.75, 1.55].

For a given zp, these datasets can be fitted with theoret-

ical models listed in Equations (4) and (5) for parameters α

and β respectively, using a modified version of CosmoMC

(Lewis & Bridle 2002). We could then substitute the resul-

tant α’s and β’s to reconstruct ∆c(z) with Equation (7).

However, this result may be subject to systematic errors in

∆c(z) at redshifts that are far away from zp, as we have

seen in Figure 1. It is true that the residual |R| is as low as

3% in the worst case as discussed in Section 2, but it can

be further improved.

The way out is to abandon the reconstructed ∆c(z) at

all redshifts except for z = zp, where the Taylor expan-

sion is error free, and repeat the fitting process for every zp

(with equal spacing for ∆z = 0.01 in z) running over the

entire redshift range. This is computationally expensive,

and the errors in ∆c(z) at different redshifts are highly cor-

related, but this approach is much more accurate.

The result of this mock test is summarised in Figure 2.

As depicted, the input VSL models are reconstructed per-

fectly for all toy models, with negligible bias compared to

the statistical error budget.

4 IMPLICATION ON THE LATEST

OBSERVATIONAL DATASETS

Now it is time to apply our pipeline for measuring ∆c(z)

to actual observational data. We will first introduce the

datasets that we utilize, and then present the result.

4.1 The Observational Dataset

The datasets employed in this analysis include,

– The BAO measurements. Because we are inter-

ested in reconstructing the time evolution of ∆c,

we use tomographic BAO measurements from the

Baryonic Oscillation Spectroscopic Survey (BOSS)

Data Release (DR) 12 sample, which provides mea-

surement of DA/rd and Hrd pairs at nine effec-

tive redshifts in the range of z ∈ [0.31, 0.64] (Zhao

et al. 2017). To approach the high-z end, we also

utilize tomographic BAO measurement from the ex-

tended BOSS (eBOSS) DR14 quasar sample, which

includes four additional DA/rd and Hrd pairs at red-

shifts z ∈ [0.98, 1.94] (Zhao et al. 2019). Note that as

Equation (3) shows, the speed of light is a product of

H and dχ/dz, and rd cancels out.

– The observational H(z) data (OHD). The OHD, as

‘cosmic chronometers’, are measured using the ages of

passively evolving galaxies, and we consider a compi-

lation of 30 data points as listed in Table A.1.

– The supernova data. We also include the ‘joint light-

curve analysis (JLA)’ sample (Betoule et al. 2014),

which is a re-anaylsis of 740 data points consisting of

samples from the three year SDSS-II supernova survey

(Sako et al. 2018) and the Supernova Legacy Survey

(SNLS) samples presented in Conley et al. (2011).

4.2 The Final Result

We apply our pipeline to the actual observational data, in

the same way as we performed on the mock data, and dis-

play the result in Figure 3. Again, this is a compilation of

∆c(zp) for numerous zp’s that are equally spaced in z with

∆z = 0.01.

As depicted, the uncertainty of ∆c(zp) gets minimised

at z ∼ 0.2, where the Universe is best probed by current

supernova and BAO experiments. The constraints on the

low-z and high-z ends are looser, because of the small

volume at low-z and the sparsity of galaxy distributions

at high-z, which dilute the BAO constraints. Furthermore,

current supernova surveys can barely access the Universe

at z & 1.

The result is consistent with ∆c(z) = 0 given the

level of uncertainty, but interesting features show up at

0.2 . z . 0.5 and 0.8 . z . 1.3 where ∆c(z) < 0 and

∆c(z) > 0, respectively, which await further investigation

using future observations.
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Fig. 2 The result of the mock test for eight toy models listed in Table 1. The black solid lines and red dots represent the input and

reconstructed values of ∆c(zp), respectively, and the error bars illustrate the 68% confidence limits (CLs).

Fig. 3 A reconstruction of ∆c(zp) derived from a compilation of current observations described in Sect. 4.1. The black horizontal line

shows ∆c(zp) = 0 as a guide.

Fig. 4 The reconstructed ∆c(z) using three values of zp, as illustrated in the legend. The shaded bands signify the 68% CLs.
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We are interested in quantifying the signal-to-noise ra-

tio of ∆c(z) 6= 0, yet it is not straightforward because the

error bars are highly correlated, but a covariance matrix is

unavailable as we performed the parameter constraints at

various zp individually.

However, for a given zp, we are able to quantify the de-

viation of ∆c(z) from zero with the reconstructed ∆c(z)

using Equation (7), as the covariance for the α and β pa-

rameters is available. Before proceeding, we show the re-

constructed ∆c(z) in Figure 4 using three values of zp at

0.05, 0.2 and 1.5, which cover a reasonable choice of zp

(0.2) and two extreme values (0.05 and 1.5). As is appar-

ent, these results agree reasonably well with what is dis-

played in Figure 3, although the result using zp = 1.5 over-

estimates the uncertainty (but the central value remains ac-

curate).

We then quantify the difference between ∆c(z) and

zero utilizing the α’s and β’s derived by applying a specific

zp. Note that ∆c(z) = 0 means the numerator is identical

to the denominator of the fraction in Equation (7), which

translates into,

∆0 ≡ β0 − α0(1 + α1) = 0,

∆1 ≡ β1 − α0(2α1 + α2) = 0, (12)

∆2 ≡ β2 − α0(3α2 + α3) = 0.

Given the measured α’s and β’s and the corresponding

covariance matrix, we can easily evaluate the following χ2,

χ2
zp

= ∆T C∆∆ , (13)

where ∆ ≡ {∆0, ∆1, ∆2}
T and C∆ is the derived covari-

ance matrix for vector ∆. We average over the χ2 for all

zp’s and compute the mean and variance, yielding,

χ2 = 3.2 ± 1.1 , (14)

which is statistically expected for fitting a fixed value, 0, to

three data points (∆i, i = 1, 2, 3). The error in χ2 quan-

tifies the fluctuation of the result using various zp, thus it

can be viewed as systematic. So, the conclusion is that the

constant speed of light measured in SI is consistent with

current cosmological observations.

5 CONCLUSIONS AND DISCUSSION

As a competitor to inflation, viable VSL theories deserve

serious investigation both theoretically and observation-

ally. The speed of light, under the assumption that c is

a universal constant, was measured extremely well using

laser interferometry in 1972 (Evenson et al. 1972), but it is

a significant extrapolation to assume that c takes the same

value across cosmic time scales2. With the accumulation

of high quality cosmological datasets, it is time to develop

theoretical and numerical tools to put constraints on the

VSL scenario.

In this work, we propose a new method to constrain

the speed of light using astronomical observations for the

background expansion history of the Universe, including

BAO, OHD and supernovae. Our method enables an accu-

rate reconstruction of the temporal evolution of the speed

of light c(z) in a flat FRW universe, with no dependence

on other cosmological parameters. Note that the time-

evolution of c(z) can be further constrained by observa-

tions probing the structure growth of the Universe includ-

ing cosmic microwave background (CMB) surveys, as a

variation in c means a variation in the fine-structure con-

stant α, which leaves an imprint on the CMB. We will ex-

pand our work in the near future to combine it with the

CMB constraint.

After validating our method and pipeline using mock

datasets of BAO and supernovae, we apply our method

to the latest astronomical observations including the

anisotropic BAO measurements from BOSS (DR12) and

eBOSS (DR14 quasar), and the JLA supernova sample,

and reconstruct c(z) in the redshift range of z ∈ [0, 1.5].

We find no evidence of a VSL, although we see some inter-

esting features of ∆c(z), the fractional difference between

c(z) and c0 (the speed of light in SI), e.g., ∆c(z) < 0

and ∆c(z) > 0 at 0.2 . z . 0.5 and 0.8 . z . 1.3,

respectively, which are primarily driven by the BAO and

supernovae data. Note that the significance of these fea-

tures is far below statistical importance, and it may be sub-

ject to unknown observational systematics. Future obser-

vations including DESI (DESI Collaboration et al. 2016),

LSST (LSST Science Collaboration et al. 2009) and Euclid

(Font-Ribera et al. 2014) should be able to confirm or fal-

sify our result in this work, up to deeper redshifts3.
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Appendix A: THE OHD DATA

We summarise the OHD data considered in this work in

the following table.

Table A.1 H(z) Measurements (in unit of [km s−1 Mpc−1])
Applied in This Work

z H(z) σH(z) Reference

0.07 69.0 19.6 Zhang et al. (2014)

0.09 69 12 Simon et al. (2005)

0.12 68.6 26.2 Zhang et al. (2014)

0.017 83 8 Simon et al. (2005)

0.179 75 4 Moresco et al. (2012)

0.199 75 5 Moresco et al. (2012)

0.20 72.9 29.6 Zhang et al. (2014)

0.27 77 14 Simon et al. (2005)

0.28 88.8 36.6 Zhang et al. (2014)

0.352 83 14 Moresco et al. (2012)

0.3802 83 13.5 Moresco et al. (2016)

0.4 95 17 Simon et al. (2005)

0.4004 77 10.2 Moresco et al. (2016)

0.4247 87.1 11.2 Moresco et al. (2016)

0.44497 92.8 12.0 Moresco et al. (2016)

0.4783 80.9 9 Moresco et al. (2016)

0.48 97 62 Stern et al. (2010)

0.583 104 13 Moresco et al. (2012)

0.68 92 8 Moresco et al. (2012)

0.781 105 12 Moresco et al. (2012)

0.875 125 17 Moresco et al. (2012)

0.88 90 40 Stern et al. (2010)

0.9 117 23 Simon et al. (2005)

1.037 154 20 Moresco et al. (2012)

1.3 168 17 Simon et al. (2005)

1.363 160 33.6 Moresco (2015)

1.43 177 18 Simon et al. (2005)

1.53 140 14 Simon et al. (2005)

1.75 202 40 Simon et al. (2005)

1.965 186.5 50.4 Moresco (2015)
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