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Abstract We study drag-driven instability in a protoplanetary disc consisting of a layer of single-sized

dust particles which are coupled to the magnetized gas aerodynamically and the particle-to-gas feedback is

included. We find a dispersion relation for axisymmetric linear disturbances and growth rate of the unstable

modes are calculated numerically. While the secular gravitational instability in the absence of particle-to-

gas feedback predicts the dust layer is unstable, magnetic fields significantly amplify the instability if the

Toomre parameter for the gas component is fixed. We also show that even a weak magnetic field is able to

amplify the instability more or less irrespective of the dust-gas coupling.
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1 INTRODUCTION

Although the outer parts of protoplanetary discs are prone

to gravitational instability, the inner parts are stable with

respect to gravitational perturbations (e.g., Rafikov 2005).

It is known that the onset of gravitational instability in an

accretion disc occurs when the Toomre parameter becomes

less than a threshold value around unity and the survival of

the newly formed fragments is guaranteed when the cool-

ing time-scale is less than a few dynamical time-scales

(e.g., Gammie 2001). Although dissipationless gravita-

tional instability is able to explain some of the obser-

vational features of structure formation in protoplanetary

discs (e.g., Matzner & Levin 2005), the presence of dust

particles can introduce new physical mechanisms that al-

low dust particles to clump together so that larger objects

that may eventually grow into planetary embryos (e.g.,

Chiang & Youdin 2010). This is mainly because of the

interactions between dust particles and gas. Drag force is

proportional to the relative velocity of dust and gas compo-

nents. However, the effect of this exchange of momentum

is much stronger on the dust component simply because the

mass of gas is much larger than the total mass of dust par-

ticles. Dynamics of dust particles in a protoplanetary disc

are not necessarily the same as those of the gas component.

They rotate more slowly than the local Keplerian velocity

because of the pressure gradient which acts opposite to the

direction of the central gravitational force. But an individ-

ual particle does not accelerate by the pressure gradient

when its internal density is much larger than gas density

and thereby dust particles rotate at their full Keplerian ve-

locity.

Although a few authors have already studied gravita-

tional stability of accretion discs consisting of dust parti-

cles and gas (e.g., Coradini et al. 1981; Noh et al. 1991),

during recent years specific types of instabilities have

been identified for clumping of dust particles in proto-

planetary discs which are actually driven by the move-

ment of dust particles through the gas (e.g., Youdin &

Goodman 2005; Youdin & Lithwick 2007; Jacquet et al.

2011; Armitage 2011; Laibe & Price 2014) or dust-gas in-

teraction (e.g., Sekiya 1983; Shariff & Cuzzi 2011; Youdin

2011). Streaming instability has been studied by many au-

thors during recent years in the linear regime and its non-

linear evolution investigated via direct numerical simula-

tions.

Drag driven instability is known as secular gravita-

tional instability which is actually the dissipative version of

classical gravitational instability for a dust layer in a fixed

background gas component. Dynamics of the dust particles

are mostly affected by gas-dust friction driven instabilities.

Irrespective of the strength of the self-gravity, this instabil-

ity is unconditional and can give raise to clumping of dust

particles. There are simple theoretical explanations for this

trend as have been clarified by Goodman & Pindor (2000)

and Shariff & Cuzzi (2011). Radial perturbation leads to

concentric rings of dust particles with slightly larger den-

sity compared to their ambient dust density. Particles at the

outer edge of a ring feel larger gravitational force due to

the accumulated mass of the ring and thereby will rotate

faster. Since the drag force is proportional to velocity, in-

flow of dust particles increases at the outer edge of the ring.

At the inner edge, the particles are orbiting at less than the

Keplerian velocity because of the extra outward gravita-

tional force. Thus, the particles will therefore be energized
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by gas drag and will drift toward the ring. No matter how

weak self-gravity is, the mentioned process will eventually

give rise to clumping of dust particles.

Most of the previous linear studies of secular gravi-

tational instability assume that dust particles are moving

in a fixed background gaseous component (e.g., Shariff

& Cuzzi 2011; Youdin 2011; Michikoshi et al. 2012;

Shadmehri 2016). In these models, dust grains are treated

as pressure-less fluid. The nondimensional gas friction

time or dimensionless stopping time, which are defined as

the product of the gas friction time and the Keplerian an-

gular velocity, determines gas-dust coupling via the drag

force. When dimensionless stopping time is greater than

unity, dust particles are decoupled from the gas component

and it would not be adequate to describe their dynamics

using a fluid approximation (e.g., Jalali 2013).

Neglecting gas dynamics is justified by the fact that

the total mass of dust particles is much smaller than the

mass of the gaseous component of the disc and so only

dynamics of dust particles are modified because of drag

force. Although this argument seems to be reasonable, just

recently Takahashi & Inutsuka (2014) showed that long-

wavelength perturbations are stable when the dynamical

feedback from dust grains in the gas component is consid-

ered. Their analysis implies that we cannot neglect small

terms in the equation of motion for small growth rates.

Thus, any physical agent that can modify gas dynamics

may also affect dust dynamics indirectly via the drag force.

Considering the important role of magnetic fields in the

structure of protoplanetary discs, it is our motivation to

study gravitational instability of a dust layer in a magne-

tized gaseous disc which has not been studied before to the

best of our knowledge.

The structure of a protoplanetary disc strongly de-

pends on the level of ionization and magnetic fields.

External ionization sources such as X-ray radiation from

the central star and cosmic rays can efficiently ionize sur-

face layers of a disc. Most regions of a protoplanetary disc

are weakly ionized, however, which implies that the cou-

pling between the disc material and the magnetic field is

incomplete. This will eventually lead to non-ideal MHD

effects which appear because of the drift velocity between

neutral particles and ionized species. There are three non-

ideal MHD effects, i.e. the Ohmic resistivity, Hall effect

and ambipolar diffusion. When the density is high and the

ionization is very low, the Ohmic term is dominant, but the

ambipolar diffusion term influences in the opposite limit.

Between these extreme cases, the Hall term plays a signif-

icant role. All these non-ideal terms not only significantly

modify the growth rate of magnetorotational instability

(MRI) and its non-linear evolution, but also the dynamical

structure of the disc and the launching of winds and out-

flows are affected by these effects. In this study, we neglect

the possible role of non-ideal effects for simplicity. An im-

portant mechanism for transporting angular momentum in

an accretion disc which leads to accretion is known as MRI

and it operates in weakly ionized discs (Balbus & Hawley

1991). Magnetic fields may also provide an efficient mech-

anism for launching jets or outflows from a disc. Moreover,

dynamical structure of a disc is significantly modified in

the presence of magnetic fields. Gravitational stability of

an accretion disc in the presence of a magnetic field has

also been studied by many authors (e.g., Elmegreen 1989;

Gammie 1996b; Fan & Lou 1997; Lizano et al. 2010; Lin

2014). Many previous studies concentrated on analyzing

gravitational stability of purely gaseous discs and did not

consider dynamics of the dust particles explicitly. Lizano

et al. (2010) extended the classical Toomre criterion to a

magnetized disc by introducing a modified Toomre param-

eter which should be greater than one for a gravitationally

stable disc. They showed that magnetic tension and pres-

sure stabilize the disc against axisymmetric gravitational

perturbations which means magnetic fields suppress gravi-

tational instability in protoplanetary discs.

In our study, we consider a disc consisting of magne-

tized gas and dust where they are coupled via drag force

and the particle-to-gas feedback is included. We then ex-

plore possible effects of magnetic fields on gravitational

stability of the dust layer using a linear perturbation anal-

ysis. In the next section, main assumptions and the basic

equations of the model are presented. Linearized equa-

tions and the resulting dispersion relation are obtained

in Section 3. Numerical analysis of the unstable modes

and their dependence on the input parameters including

strength of the magnetic field are presented in Section 4.

We conclude with a summary of the results.

2 GENERAL FORMULATION

We consider a protoplanetary disc around a central star

with mass M as a system consisting of gas and dust com-

ponents undergoing momentum exchange. It is assumed

that the disc is so thin that the motion of both gas and dust

fluids are in the plane of the disc. It means that we do not

consider vertical motion of dust particles. Previous linear

studies of drag-driven instability in a dust layer have been

done in the shearing sheet approximation (Goldreich &

Lynden-Bell 1965). Here, we do not follow this approach.

Our linear analysis is performed in cylindrical coordinates

(r, φ, z) where the central star is located at its origin and

time-evolution of the perturbations with wavelengths much

smaller than the radial distance (i.e., the WKB approxima-

tion) is studied. Our basic equations for the gas component

are similar to Lizano et al. (2010) who studied gravitational

stability of a thin and magnetized accretion disc. However,

we include the drag force due to the interaction with the

dust fluid. Since we assume the dust particles are neutral,

they do not feel magnetic force.

Thus, basic equations for the gas component are

∂Σ

∂t
+ ∇ · (Σw) = 0, (1)
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Σ
(∂w

∂t
+ w · ∇w

)

= −Σ∇
(

Φ −
GM

r

)

− c2
s∇Σ

+
1

4π

∫

J × Bdz +
Σd(wd − w)

tstop
, (2)

∂B

∂t
= ∇× (w × B), (3)

∇ · B = 0, (4)

where Σ, w and cs are surface density, velocity and the

sound speed of gas, respectively. Also, tstop is the stopping

time (see later text for its definition). It is assumed that the

gas is isothermal. The magnetic field of gas is denoted by

B and the current density is J = ∇ × B. Note that Φ is

the gravitational potential due to both gas and dust fluids.

Note that the equations are integrated perpendicularly to

the disc so that vertically averaged physical quantities do

not depend on the vertical coordinate z.

Also, the basic equations describing the dust fluid are

written as

∂Σd

∂t
+ ∇ · (Σdwd) = D∇2Σd, (5)

Σd

(∂wd

∂t
+ wd · ∇wd

)

= −Σd∇
(

Φ −
GM

r

)

+
Σd

(

w − wd

)

tstop
, (6)

where wd is dust velocity and D is the radial diffusivity

of the dust component because of the gas turbulence. The

diffusion of dust particles due to stochastic forcing by gas

turbulence has been studied by many authors (e.g., Youdin

& Lithwick 2007). According to equation (36) of Youdin &

Lithwick (2007), the radial diffusion coefficient D is writ-

ten as

D =
1 + τ + 4τ2

(1 + τ2)2
Dg, (7)

where Dg is the strength of turbulent diffusion in the gas

which can be defined as

Dg = αc2
sΩ

−1, (8)

where α is the dimensionless measure of turbulent in-

tensity. Strength of dust diffusion is measured by the di-

mensionless diffusivity coefficient ξ as ξ = D/(c2
sΩ

−1).
Moreover, τ is the dimensionless stopping time (see be-

low). We note that the equation of continuity with the dif-

fusion term is not commonly used. In fact, one can start

from the Boltzmann equation to obtain the above hydrody-

namical equations which leads to viscosity in the equation

of motion instead of the diffusion term in the equation of

continuity. Following previous works (e.g., Takahashi &

Inutsuka 2014) we also used this problematic formulation,

although these aspects of the work need further studies.

In the above equations, tstop is the stopping time

which is a time-scale for decay of relative velocity between

the gas and the dust due to the drag force. We can then

define nondimensional stopping time τ = tstopΩK (e.g.,

Miyake et al. 2016), where the angular Keplerian veloc-

ity is ΩK =
√

GM/r3. If we assume that all dust par-

ticles are spherical with the same radius a and have the

same homogeneous internal density ρm, then the nondi-

mensional stopping time becomes τ = [ρma/(ρgcs)]ΩK

where ρg is the gas density. Note that this relation is valid

when the size of the particles is smaller than the mean free

path of the gas. For instance, in the minimum mass solar

nebula (MMSN) model of Hayashi (1981) at radial dis-

tances larger than 1 AU from the central star with one so-

lar mass, the mean free path of gas is larger than 1 cm

which implies that the above relation for the stopping time

is applicable to particles smaller than this length. Physical

properties of the disc and dust distribution depend on the

vertical location as well. However, we do not consider ver-

tical variation of the physical quantities and one can then

evaluate the nondimensional stopping time at the midplane

of MMSN (Miyake et al. 2016)

τ = 1.8 × 10−7

(

a

1µm

)

( r

1AU

)
3

2

. (9)

The internal density of a dust particle is assumed to be

ρm = 2 g cm−3 and the surface density and sound speed

obey power-law functions of the radial distance (Hayashi

1981):

Σ(r) = 1.7 × 103
( r

1AU

)

−

3

2

g cm−2, (10)

cs(r) = 1.0 × 105
( r

1AU

)

−

1

4

cm s−1. (11)

Note that our study is a local linear perturbation analysis

based on the WKB approximation which means that we

do not consider radial dependence of the initial equilib-

rium state. However, the above physical profiles specify

how properties of a disc can vary with the radial distance.

It can then be used to calculate the growth rate of unstable

modes at a certain radial distance. As for the initial mag-

netic field, we assume the disc is threaded by a net large-

scale vertical field Bz0 so that the ratio of gas pressure to

magnetic pressure β at the midplane of the disc is uniform

throughout the disc. We then have

Bz0(r) = 590

(

β

1000

)

−

1

2 ( r

1AU

)

−

13

8

mG. (12)

Finally, our system of equations is closed by including

the Poisson equation for a thin disc which is written as

∇2Φ = 4πG(Σ + Σd)δ(z). (13)

Here, gravitational potential Φ due to both the gas and dust

components is considered.

Lizano et al. (2010) studied gravitational instability

of a gaseous magnetized disc but without dust particles.

They vertically averaged all basic equations including the

Lorentz term in the equation of motion. We generalize their
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final main equations to produce a magnetized vertically av-

eraged set of equations that include dust particles and their

momentum exchange with the gas component.

Thus, the continuity equation for the gas is

∂Σ

∂t
+

1

r

∂

∂r
(rΣu) +

1

r

∂

∂ϕ
(Σv) = 0, (14)

where u and v are the radial and azimuthal components of

gas velocity w. The components of radial and azimuthal

Lorentz force are
∫ H

−H

J × Bdz =

∫ H

−H

[(

Bz

∂Br

∂z
− Bz

∂Bz

∂r

−
Bϕ

r

∂(rBϕ)

∂r
+

Bϕ

r

∂Br

∂ϕ

)

er

−
(Bz

r

∂Bz

∂ϕ
− Bz

∂Bϕ

∂z
−

Br

r

∂(rBϕ)

∂r

+
Br

r

∂Br

∂ϕ

)

eϕ

]

dz, (15)

where er and eϕ are unit vectors in the radial and the az-

imuthal directions, respectively. We assume the toroidal

component of the magnetic field is negligible, i.e. Bϕ = 0.

This assumption not only simplifies the main equations,

but it also prevents emergence of MRI modes in our anal-

ysis. In order to understand the dynamics in a magnetized

disc, we note that MRI has a vital role. However, our pur-

pose is to illustrate and understand the basic mechanism

of secular gravitational instability with a magnetic field in

the absence of MRI modes. Then the components of the

Lorentz force become

1

4π

∫ H

−H

(J × B)rdz =
1

4π

∫ H

−H

Bz

∂B+
r

∂z
dz

−
1

4π

∫ H

−H

Bz

∂Bz

∂r
dz, (16)

and

1

4π

∫ H

−H

(J × B)ϕdz = −
1

4π

∫ H

−H

(
Bz

r

∂Bz

∂ϕ

+
B+

r

r

∂B+
r

∂ϕ
)dz. (17)

By integrating over z, we obtain

1

4π

∫ H

−H

(J × B)rdz =
BzB

+
r

2π
−

H

4π

∂B2
z

∂r
, (18)

and

1

4π

∫ H

−H

(J × B)ϕdz = −
H

4πr

∂

∂ϕ
(B+2

r + B2
z). (19)

Components of the equation of motion for the gas are also

written as

Σ

[

∂u

∂t
+ u

∂u

∂r
+

v

r

∂u

∂ϕ
−

v2

r

]

= −c2
s

∂Σ

∂r
− Σ

∂V

∂r

+
BzB

+
r

2π
−

H

4π

∂B2
z

∂r
+

Σd(ud − u)

tstop
, (20)

and

Σ

[

∂v

∂t
+ u

∂v

∂r
+

v

r

∂v

∂ϕ
+

uv

r

]

= −
c2
s

r

∂Σ

∂ϕ
−

1

r
Σ

(∂V

∂ϕ

)

−
H

4πr

∂

∂ϕ

(

B+2
r + B2

z

)

+
Σd(vd − v)

tstop
. (21)

The disc scale height is H = cs/ΩK. Also, B+
r is the

radial component of the magnetic field at the surface of

the disc. Note that V is the gravitational potential due to

the central star and the components of the disc itself, i.e.

V = −GM/r + Φ, where Φ satisfies Poisson’s equation

(13).

The induction equation becomes

−
∂Bz

∂t
+

1

r

[

∂

∂r
(rBzu) +

∂

∂ϕ
(Bzv)

]

= 0. (22)

The continuity equation for the dust fluid is

∂Σd

∂t
+

1

r

∂

∂r
(rΣdud) +

1

r

∂

∂ϕ
(Σdvd) =

D

[

1

r

∂

∂r

(

r
∂Σd

∂r

)

+
1

r2

∂2Σd

∂ϕ2

]

, (23)

and the components of the equation of motion for the dust

fluid are

Σd

[

∂ud

∂t
+ ud

∂ud

∂r
+

vd

r

∂ud

∂ϕ
−

v2
d

r

]

=

−Σd
∂V

∂r
+

Σd(u − ud)

tstop
, (24)

and

Σd

[

∂vd

∂t
+ ud

∂vd

∂r
+

vd

r

∂vd

∂ϕ
+

udvd

r

]

=

−
Σd

r
(
∂V

∂ϕ
) +

Σd(v − vd)

tstop
. (25)

We note that dust particles are assumed to be neutral, and

so they do not experience magnetic force. Moreover, our

dusty fluid is pressure-less and, for this reason, the gradi-

ent of pressure does not appear in the above equation of

motion.

3 LINEAR PERTURBATIONS

After deriving basic MHD equations including dust contri-

butions, we can now perturb all physical quantities around

a uniform equilibrium configuration and then investigate

their fate provided that perturbations are much smaller than

the initial state. This kind of linear analysis will lead to

a dispersion relation to specify unstable modes and their

growth rates. The subscripts 0 and 1 are used to denote

the initial state and the perturbed quantities, respectively.

Equilibrium states must satisfy continuity, motion and in-

duction equations. We know that initial states are indepen-

dent of t, ϕ and z and the velocities of dust and gas com-

ponents are assumed to be same initially. We assume that
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Σ0 is independent of r. Moreover, we assume that the ra-

dial component of the magnetic field at the surface of the

disc is negligible for simplicity. Also, the initial vertical

component of the magnetic field is considered to be inde-

pendent of the radial distance. Then, the equilibrium state

satisfies all equations automatically except for the radial

component of motion for gas and dust. The zeroth order of

the radial component of equation of motion for the gas is

Ω2r−
c2
s

Σ0

∂Σ0

∂r
−

∂V0

∂r
+

B+
0rB0z

2πΣ0
−

H

4πΣ0

∂B2
0z

∂r
= 0, (26)

which reduces to Ω2r − ∂V0

∂r
= 0 subject to our mentioned

simplifying assumptions.

Our linear perturbation of a physical quantity X is

X = X0 + X1e
i(ωt+kr−mϕ), where ω is the frequency,

k is the radial wavenumber, m is a positive integer for

nonaxisymmetric perturbations and m = 0 for axisym-

metric modes. Here, we only consider axisymmetric per-

turbations. Following Lizano et al. (2010), we also make a

further assumption that |k|r ≫ 1, which means the wave-

length of perturbations is much smaller than the radial dis-

tance.

Thus, the linearized dynamical equations for axisym-

metric modes expand to

ω
Σ1

Σ0
+ ku1 = 0, (27)

iωu1 − 2Ωv1 + ikc2
s

Σ1

Σ0
+ ikV1 + i(1 + kH)

Bz0B1z

2πΣ0

−
Z(u1d − u1)

tstop
= 0, (28)

iωv1 + u1
κ2

2Ω
−

Z(v1d − v1)

tstop
= 0, (29)

iωB1z + ikBz0u1 = 0, (30)

(iω + Dk2)
Σ1d

ZΣ0
+ iku1d = 0, (31)

iωu1d − 2ΩKv1d + ikV1 −
(u1 − u1d)

tstop
= 0, (32)

iωv1d + u1d

κ2

2ΩK

−
(v1 − v1d)

tstop
= 0, (33)

V1 +
2πG

k

(

Σ1

1 + kH
+

Σ1d

1 + kHd

)

= 0, (34)

where Hd is the dust scale height Hd =
√

α
τ
H and Z is

the ratio of the dust density to the gas density or disc metal-

licity for the initial state, i.e. Z = Σ0d/Σ0. Moreover, λ is

the dimensionless mass-to-flux ratio and is defined as

λ =
2πG

1

2 Σ0

Bz0
. (35)

The additional parameter resulting in our analysis is the

magnetically modified Toomre parameter QM, i.e.

QM =
Θ

1

2 csκ

πGǫΣ0
, (36)

where Θ = 1 +
B2

z0
H

2πc2
s
Σ0

and ǫ = 1 − 1
λ2 . Also, κ is the

epicyclic frequency where in the absence of magnetic ef-

fects it becomes the Keplerian angular velocity. But mag-

netic forces reduce the epicyclic frequency, though its ex-

act value depends on the geometry of the magnetic con-

figuration. Lizano et al. (2010) approximated the epicyclic

frequency as κ = fΩ where f is a number less than unity.

Obviously, we can assume f ≃ 1 for weak magnetic fields.

If we introduce the nondimensional growth rate and

the nondimensional wavenumber as x = iω/Ω and y =
kH respectively, then we can re-write the above linearized

equations:

x
Σ1

Σ0
+ i

y

cs
u1 = 0, (37)

[

x +
Z

fτ
+ (

2y(1 + y)

λ2x
)

(

Θ
1

2

QMǫ

)]

u1 − 2v1 +

iycs
Σ1

Σ0
+ i

y

cs
V1 −

Z

fτ
u1d = 0, (38)

[

x +
Z

fτ

]

v1 +
1

2
u1 −

Z

fτ
v1d = 0, (39)

xB1z + i
y

cs
Bz0u1 = 0, (40)

[x + ξy2]
Σ1d

ZΣ0
+ i

y

cs
u1d = 0, (41)

[

x +
1

fτ

]

u1d −
2

f
v1d + i

y

cs
V1 −

u1

fτ
= 0, (42)

[

x +
1

fτ

]

v1d +
f

2
u1d −

v1

fτ
= 0, (43)

V1 +
2Θ

1

2 c2
s

QM ǫΣ0y

(

Σ1

1 + y
+

Σ1d

1 +
√

α
τ
y

)

= 0. (44)

Thus, we have eight equations and eight unknowns, i.e. Σ1,

Σ1d, v1, u1, v1d, u1d, V1 and B1z. Since the above lin-

earized equations are valid for perturbations with a wave-

length much smaller than radial distance, i.e. kr ≫ 1,

we can consider perturbations which satisfy this inequal-

ity: kH = y ≫ H/r. For instance, in a thin disc with

H/r = 0.1, we only consider perturbations which are

larger than this value, i.e. y ≫ 0.1. In addition to this

constraint on local approximation, the validity of the verti-

cally integrated equations requires ku < ΩK (e.g., Wu &

Li 1996; Kato et al. 1996). This requirement can be written

as kH < (αH/r)−1 where α is the disc viscosity. Thus,

our analysis is valid for (H/r) ≪ y < (αH/r)−1. If we

set α = 0.01 and H/r = 0.1, then the valid range of

nondimensional wavenumber becomes 0.1 ≪ y < 103.

Also, the validity of vertically integrated equations implies
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that the growth rates of the unstable modes are less than

the angular velocity (Kato et al. 1996). This requirement is

justified by the unstable modes as we will show.

Existence of a set of nontrivial solutions for the above

linearized equations implies that the determinant of the co-

efficients becomes zero which gives us an algebraic equa-

tion involving the input parameters, growth rate and the

wavenumber of the perturbations. Using MAPLE software,

we found the dispersion relation. But the equation is very

lengthy, so we do not include it here. However, our analysis

is based on the roots of this equation which can be calcu-

lated numerically. Obviously, unstable modes correspond

to the roots with a positive real part, i.e. Re(x) > 0. We

generally found one or two unstable modes for a given set

of the input parameters.

It is useful to re-write the input parameters as follows

(Lizano et al. 2010):

λ = 2.71µ
( NH

1024cm2

)( Bz0

1mG

)

−1

, (45)

Θ = 1 + 1.15 × 10−2
( Bz0

1mG

)2( H

1AU

)

×
( NH

1024cm2

)

−1( T

1K

)

−1

, (46)

ǫ = 1 − 1.36 × 10−1
( 1

µ2

)(Bz0

mG

)2( NH

1024cm2

)

−2

, (47)

QM = 2.12
( Θ

1

2

ǫµ
3

2

)( Ω

10−2km s−1 AU−1

)

×
( T

1K

)
1

2

( NH

1024cm2

)

−1

, (48)

where µ is the molecular weight, NH is the hydrogen col-

umn density, T is the gas temperature and Ω is the angular

velocity.

4 ANALYSIS

We can now investigate axisymmetric unstable modes for

different sets of input parameters in order to explore possi-

ble effects of the magnetic field on drag-driven instability.

Nonzero values for m essentially do not affect behavior of

the unstable solutions.

In Figures 1 and 2, we assume H = 143 AU,

T = 250 K, µ = 2.33 and NH = 3.46 × 1024 cm−2

(Lizano et al. 2010). Corresponding to these input pa-

rameters, one can calculate the other parameters based on

Equations (45)–(48) for different values of the initial ver-

tical magnetic field (Table 1). We first examine the depen-

dence of the growth rate on the grain size, or dimensionless

stopping time.

Figure 1 shows unstable growth rate for particles with

different sizes, ranging from strongly coupled particles

with dimensionless stopping time τ = 5×10−3 (top panel)

and τ = 10−2 (middle panel) to a slightly less coupled

Table 1 Input Parameters for Different Values of the Initial

Vertical Magnetic Field Bz0

Bz0(mG) λ Θ ǫ f QM

0 ∞ 1 1 1 1.99

5 4.35 1.05 0.94 1 2.16

10 2.17 1.21 0.78 1 2.79

15 1.45 1.48 0.52 1 4.9
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Fig. 1 Dispersion relation of the unstable modes for different val-

ues of magnetic strength and dimensionless stopping time. Each

curve is labeled by its corresponding value of Bz0. Here, the

magnetic Toomre parameter is QM = 6 which is larger than the

threshold for instability (see Table 1).

case with τ = 10−1 (bottom panel). Each curve is labeled

by its corresponding value of Bz0. In this figure, the stan-

dard value of disc metallicity is adopted, i.e. Z = 0.01,

the Toomre parameter is QM = 6 and α = 10−6. Here,

different values of τ are considered. Note that our adopted

value of the Toomre parameter is greater than the thresh-

old of instability which means that the system is stable in

the absence of dust particles. For some of the input pa-

rameters, we found two unstable roots where one root is

much smaller than the other one. We actually displayed

both roots, though the larger root which specifies the most
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Fig. 2 Same as Fig. 1, but the surface density of dust particles is

larger.

unstable root is more interesting. We consider different val-

ues of the disc metallicity (i.e., Z = 0.01 and Z = 0.1) in

our analysis to explore possible effects of its variations on

the instability.

Figure 1 shows that instability occurs in the presence

of the magnetic fields, and as the strength of the magnetic

field increases the instability grows faster. This feature is

understandable by the fact that the critical value of the

Toomre parameter for instability in the absence of dust

particles increases with the magnetic field (see Table 1).

Since we assume a fixed value for the Toomre parameter,

the system becomes closer to the threshold of instability by

increasing the magnetic field.

Figure 2 is the same as Figure 1, but the disc metallic-

ity is larger, i.e. Z = 0.1. Again, the system is unstable in

the presence of dust particles.

Figure 1 shows that when the disc contains aerody-

namically well-coupled dust particles, even weak magnetic

fields can considerably destabilize the system. For exam-

ple, in the strongly coupled case (top panel), the system

is unstable in the presence of the magnetic field. But as

the level of dust-gas coupling reduces, the growth rate in-
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Fig. 3 Growth rate of the unstable modes as a function of the nor-

malized wavenumber in the MMSN at the radial distance 100 AU

where the Toomre parameter is QM = 17. Other input parame-

ters are the same as those in previous figures, and different values

for the dimensionless stopping time τ are adopted. Each curve is

labeled by the corresponding value of the vertical magnetic field

and the black curve is for the non-magnetized case. We found

that for magnetic field strength larger than 2 mG, the parameter ǫ

becomes negative which is not acceptable.

creases. Moreover, wavelength of the most unstable mode

increases with the magnetic field strength when the parti-

cles are well-coupled to the gas. Note that in all cases, the

corresponding modified Toomre parameter QM is larger

than one (see Table 1).

Figure 3 shows growth rate of the instability in the

MMSN at the radial distance 100 AU where the Toomre

parameter is QM = 17. The rest of the input parame-

ters are the same as previous figures. At the radial dis-

tance 100 AU, when we have τ = 0.04, the size of the

dust particles is a = 222 µm, the most unstable wave-

length is around 1 AU and the corresponding growth time

is 0.13× 106 years. For τ = 0.1, the size of the dust parti-

cles is a = 555 µm and the most unstable wavelength and

the corresponding growth time become 2.45 AU and 106

years, respectively.

Cosmic rays and radiation from the central star are the

main sources of ionization in a protoplanetary disc. It is

known that there is a region in a protoplanetary disc where

neither cosmic rays can penetrate to ionize the gas nor the

radiation of the central star is able to ionize the gas. This

non-ionized region which is magnetically inactive is called

a dead zone (Gammie 1996a). But interior to the dead zone

or beyond that region, the gaseous component of the disc

is magnetically active. Our analysis shows that drag-driven
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instability is more efficient in the magnetized regions com-

pared to the regions where magnetic fields do not play a

significant role. Although the numerical values adopted in

previous figures are certainly subject to uncertainties, our

analysis serves as a proof of concept to illustrate the im-

portant role of the magnetic field in drag-driven instability

in protoplanetary discs.

5 CONCLUSIONS

We surveyed linear instability of a dust layer in a mag-

netized gaseous disc for perturbations with wavelengths

much smaller than the radial distance. One of the inter-

esting findings in this paper is that the magnetic field can

amplify instability for even a weak gas-dust coupling. In

particular, we showed that for well-coupled particles, even

a weak magnetic field is able to amplify the instability and

leads to a completely unstable system. Our study shows

that the greatest response for axisymmetric perturbations

occurs at large wavelengths. We also found that in the

presence of magnetic fields, enhancing the disc metallic-

ity promotes instability because this enhancement leads to

stronger self-gravity of particles and slower radial drift.

The time-scale of drag driven instability should be

shorter than the radial drift time-scale if the instability

is responsible for planetesimal formation. Based on this

physical constraint, the minimum dust abundance for plan-

etesimal formation via secular gravitational instability has

been estimated by Takeuchi & Ida (2012). Considering

the destabilizing role of the magnetic field, however, we

think this minimum dust abundance is modified if mag-

netic fields are considered.
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