
Research in Astronomy and Astrophysics

PAPER

Maximum mass of magnetic white dwarfs
To cite this article: Daryel Manreza Paret et al 2015 Res. Astron. Astrophys. 15 1735

 

View the article online for updates and enhancements.

You may also like
Unitary symmetry constraints on tensorial
group field theory renormalization group
flow
Vincent Lahoche and Dine Ousmane
Samary

-

Three-dimensional spacetimes of maximal
order
R Milson and L Wylleman

-

Time and dark matter from the conformal
symmetries of Euclidean space
Jeffrey S Hazboun and James T Wheeler

-

This content was downloaded from IP address 3.145.93.210 on 03/05/2024 at 12:26

https://doi.org/10.1088/1674-4527/15/10/010
https://iopscience.iop.org/article/10.1088/1361-6382/aad83f
https://iopscience.iop.org/article/10.1088/1361-6382/aad83f
https://iopscience.iop.org/article/10.1088/1361-6382/aad83f
https://iopscience.iop.org/article/10.1088/0264-9381/30/9/095004
https://iopscience.iop.org/article/10.1088/0264-9381/30/9/095004
https://iopscience.iop.org/article/10.1088/0264-9381/31/21/215001
https://iopscience.iop.org/article/10.1088/0264-9381/31/21/215001


RAA 2015 Vol. 15 No.10, 1735–1741 doi: 10.1088/1674–4527/15/10/010
http://www.raa-journal.org http://www.iop.org/journals/raa

Research in
Astronomy and
Astrophysics

Maximum mass of magnetic white dwarfs

Daryel Manreza Paret1, Jorge Ernesto Horvath2 and Aurora Pérez Martı́nez3
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Abstract We revisit the problem of the maximum masses of magnetized white dwarfs
(WDs). The impact of a strong magnetic field on the structure equations is addressed.
The pressures become anisotropic due to the presence of the magnetic field and split
into parallel and perpendicular components. We first construct stable solutions of the
Tolman-Oppenheimer-Volkoff equations for parallel pressures and find that physical
solutions vanish for the perpendicular pressure whenB & 1013 G. This fact estab-
lishes an upper bound for a magnetic field and the stability ofthe configurations in
the (quasi) spherical approximation. Our findings also indicate that it is not possible
to obtain stable magnetized WDs with super-Chandrasekhar masses because the val-
ues of the magnetic field needed for them are higher than this bound. To proceed into
the anisotropic regime, we can apply results for structure equations appropriate for a
cylindrical metric with anisotropic pressures that were derived in our previous work.
From the solutions of the structure equations in cylindrical symmetry we have con-
firmed the same bound forB ∼ 1013 G, since beyond this value no physical solutions
are possible. Our tentative conclusion is that massive WDs with masses well beyond
the Chandrasekhar limit do not constitute stable solutionsand should not exist.
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1 INTRODUCTION

Motivated by observations of thermonuclear supernovae that seem to require exploding white dwarf
(WD) masses above the celebrated Chandrasekhar limit (Chandrasekhar 1931), a series of papers
by Mukhopadhyay and collaborators (Das & Mukhopadhyay 2012, 2013) explored the magnetized
version of the stellar structure and argued for a substantial increase in the maximum possible mass
for large values of the magnetic fieldB, which quantizes the electronic energy levels. A great dealof
interest has followed this suggestion and the problem has been addressed in a number of works. The
main criticisms include an inconsistency with the virial theorem (Coelho et al. 2014) for large values
of maximum mass and similar basic properties. The authors have responded to these criticisms, but
the issue of the existence of these compact stars is still an open and important question.

From a theoretical point of view, the construction of fully consistent equilibrium solutions in the
magnetized regime is still lacking, although hints for their existence and stability have been pointed
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out (Das & Mukhopadhyay 2013). The spatial distribution of the magnetic field seems to be an im-
portant ingredient for this issue, while the behavior of matter under extreme conditions leads to a
consideration of the equation of state (EoS) in the Landau regime for the electron energy levels,
which may change the effective description in terms of polytropic indexes and related quantities.
Therefore, a step forward towards the solution of this problem would be an investigation into the sta-
bility of stellar models for highly magnetized matter and toidentify the threshold values ofB for the
disappearance of stable solutions. In this paper we performsuch an analysis within a definite rela-
tivistic framework and show that, at least within these simplified models, the magnetic field admitted
on theoretical grounds cannot exceed1.5×1013 G. Moreover, we confirm that the maximum masses
do not grow beyond the Chandrasekhar value when the magneticpressure is properly introduced via
the stress-energy tensor. A brief discussion of the theoretical situation of putative high-mass WDs
closes this work.

2 MODELS OF MAGNETIZED WHITE DWARFS

The scalar virial theorem (Lai & Shapiro 1991) has been generally employed to estimate the maxi-
mum magnetic field that a WD can sustain, with a massM = 1.4M⊙ and a radiusR = 0.005R⊙,
which is aroundBmax ∼ 1013 G. This value strongly suggests that a realistic model of a magnetized
WD should feature quantized energy levels for the electrons, as has been done in many attempts to
construct models that describe the microphysics of WDs as a magnetized fermion system (González
Felipe et al. 2005).

In the approximation in which the magnetic field is constant and matter is allowed to settle
in it, a breaking of the spherical symmetry of the star is apparent. This is not very relevant for
low magnetic fields, but because we want to reach the extreme anisotropic regime, we have chosen
to work in cylindrical coordinates in which the polar and equatorial radii differ and the deviation
from spherical symmetry is naturally accounted for. An additional advantage of this procedure is
that the construction of an anisotropic energy momentum tensor for the magnetized matter is very
well-defined and straightforward.

In Manreza Paret et al. (2014), we first attempted to investigate this problem using a gen-
eral cylindrically symmetric metric, with coordinates (t, r, φ, z). We followed the procedures
of Trendafilova & Fulling (2011)) to solve Einstein equations for an axisymmetric model of a WD
to take into account the anisotropy induced by the magnetic field. A constant magnetic field in (say)
thez-direction defines two main directions in space, parallel and perpendicular to the magnetic field.
The main approximation applied in that paper is to assume that all of the functions and variables only
depend on the radial coordinates(r) and not onz andφ, so that we can solve for the dependence
on the equatorial direction of the WD. However, this simple model could be useful for obtaining
information about the effects of the magnetic field in terms of the shape (oblateness) of the WD and
yield upper limits for the values of the magnetic field that this object can sustain.

The present paper builds on the results from Manreza Paret etal. (2014), and applies the same
procedure to study the structure equation of a magnetized WDwith the aim to confirm or refute the
recent claims of super-Chandrasekhar masses for a magnetized WD (Das & Mukhopadhyay 2012).

3 MAGNETIZED WHITE DWARFS

The thermodynamical properties of matter in a magnetic fieldare obtained starting from the thermo-
dynamical potential at zero temperature

Ωe = −
eB

4π2

[

lmax
∑

l=0

αl

(

µe pF − ε2
e ln

µe + pF

εe

)

]

, (1)
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whereµe is the electron chemical potential,lmax = I[
µ2

e
−m2

e

2eB
], I[z] denotes the integer part ofz,

αl = 2− δl0 is the spin degeneracy of thel-Landau level, the Fermi momentum ispF =
√

µe
2 − ε2

e

and the rest energy is given by
εe =

√

m2
e + 2|eB|l . (2)

The particle number density and magnetization are

Ne = −(∂Ωe/∂µe) =
m2

e

2π2

B

Bc
e

lmax
∑

l=0

αlpF , (3)

Me = −(∂Ωe/∂B) =
e

4π2

(

lmax
∑

l=0

αl

[

µepF −
[

m2
e + 4|eB|l

]

ln
µe + pF

εe

]

)

, (4)

whereBc
e = m2

e/|e| = 4 × 1013 G is the critical magnetic field.
The energy density and the pressures parallel and perpendicular to the magnetic field can be

written as

ǫ = Ωe + µeNe + NmN

A

Z
, (5a)

P‖ = −Ωe , (5b)

P⊥ = −Ωe − BMe , (5c)

whereNmN
A
Z

is the mass density term,N is the number of nucleons,mN is the mass of nucleons,
Z is the atomic number andA is baryon number. We assume that the white dwarfs are predominantly
composed of12C and 16O with A/Z = 2.

Components of the EoS including matter and field (PB
⊥ = EB = −PB

‖ = B2

8π
) contributions

have the following form

E = ε +
B2

8π
, (6)

P‖ = P‖ −
B2

8π
, (7)

P⊥ = P⊥ +
B2

8π
. (8)

In Figure 1 we show the EoS of the magnetized gas as derived from the above expressions. It
can be noticed that the pressures do not differ much for low values of the magnetic field (B ≪ Bc

e ),
which is also true for the non-magnetic caseB = 0. However, whenB ∼ Bc

e , the difference in the
pressures becomes quite large.

To quantify the anisotropy, we have defined the splitting coefficient as

∆ =
|P⊥ − P‖|

P (B → 0)
. (9)

We will use∆ ≃ O(1) as a criterion to define the border separating the isotropic and the anisotropic
regions, so that by applying the equation∆(µe, B) = 1, one can distinguish an anisotropic region
from an isotropic one.

In Figure 2 we show the densities as a function of the magneticfield. The region above the
dashed curve falls in the isotropic regime (∆ < 1) and the region below the curve is in the anisotropic
regime (∆ > 1). The vertical lines are the solutions of the densities for aconstant value of the
magnetic field. We can see that forB . 1012 G, all of the points lie in the isotropic region while for
B & 1013 G there is a considerable number of points in the anisotropicregion.
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Fig. 1 EoS for magnetized electron gas. Notice
the differences in the pressures when the mag-
netic field increases. The cases ofB = 0 G and
B = 1012 G are almost indistinguishable from
each other.
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Fig. 2 Splitting of the pressures with respect to
the magnetic field. The dashed line represents the
solution of the equation∆(µe, B) = 1 and the
vertical lines are solutions of the densities for a
constant magnetic field value.

In our numerical computations we will first use magnetic fieldvalues that are well within the
isotropic regionB = 1012 G and also in the anisotropic regionB = 1013 G to compare the effects
on the star structure. The next section will show the impact of this density-dependent field anisotropy
on stellar structure.

4 TOV EQUATIONS FOR MAGNETIZED WHITE DWARFS

In order to set up the problem introduced by the magnetized matter EoS in the study of the structure
of WDs, we will analyze the usual case first, assuming spherical symmetry and solving the resulting
Tolman-Oppenheimer-Volkoff (TOV) equations (Misner et al. 1973). To find the static structure of a
relativistic spherical star, we have to solve the well-known TOV equations.

dM

dr
= 4πGE, (10)

dP

dr
= −G

(E + P )(M + 4πPr3)

r2 − 2rM
, (11)

with the boundary conditionsP (R) = 0, M(0) = 0 and the EoSE → f(P ).
The Mass-Radius curves obtained for magnetic fieldsB = 1011, 1012 G (that is, within the

regime in which∆ < 1) are in agreement with those obtained, for example, in Suh & Mathews
(2000). Therefore, we confirm that quantization of the electronic levels for fields in this regime
cannot increase the maximum mass of a WD sequence. However, if the terms∝ B2/8π, representing
pressure from the magnetic field, are omitted, higher valuescan be achieved. We believe that this
unjustified omission is a significant part of the discussion on super-Chandrasekhar masses.

In Figure 3 we show the Mass-Radius diagram for different values of the magnetic field.
When we want to explore the anisotropic region, however, we find that anisotropy sets in for

progressively larger regions of the WD when the value of the magnetic field is increased. Around
B = 1013 G, most of the star feels the anisotropy of the pressures and only the inner regions remain
practically isotropic. This justifies the use of anisotropic solutions for cases with the highest fields.
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Fig. 3 Mass-Radius relation for the spherically symmetric case. Notice the differences that arise
from using parallel or perpendicular pressures, and that wehave not obtained masses beyond the
Chandrasekhar limit.

5 ANISOTROPIC STRUCTURE EQUATIONS

To improve the structure equations in the presence of anisotropic pressures, in this section we con-
sider an axisymmetric geometry which is more adequate to treat a magnetized fermion system. We
follow the same procedure as used in Manreza Paret et al. (2014). The cylindrically symmetric metric
reads

ds2 = −e2Φdt2 + e2Λdr2 + r2dφ2 + e2Ψdz2 , (12)

whereΦ, Λ andΨ are only functions ofr which, as mentioned before, is the main approxima-
tion (Manreza Paret et al. 2014).

The energy momentum tensor for magnetized matter is given by(González Felipe et al. 2005)

T µ
ν =







E 0 0 0
0 P⊥ 0 0
0 0 P⊥ 0
0 0 0 P‖






, (13)

whereE, P‖ andP⊥ are components of the EoS defined by (6), (7) and (8) respectively.
From the Einstein field equations in natural units and using conservation of energy and momen-

tum (T µ
ν;µ), we obtain the following four differential equations:

P ′
⊥ = −Φ′(E + P⊥) − Ψ′(P⊥ − P‖), (14a)

4πe2Λ(E + P‖ + 2P⊥) = Φ′′ + Φ′(Ψ′ + Φ′ − Λ′) +
Φ′

r
, (14b)

4πe2Λ(E + P‖ − 2P⊥) = −Ψ′′ − Ψ′(Ψ′ + Φ′ − Λ′) −
Ψ′

r
, (14c)

4πe2Λ(P‖ − E) =
1

r
(Ψ′ + Φ′ − Λ′) . (14d)

This, together with the EoS having the propertiesE → f(P⊥), P‖ → f(E), is a system of differ-
ential equations in the variables

P⊥, P‖, E, Φ, Λ, Ψ . (15)
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Fig. 4 Mass-Radius relation(M R⊥/R‖) in solar masses for the cylindrically symmetric case. We
have plotted curves for magnetic field values:B = 0 G (isotropic caseR⊥ = R‖), B = 1011 G,
1012 G andB = 1013 G. This last value of the magnetic field is the maximum value atwhich
we have found stable configurations. Notice that in theB 6= 0 G cases the maximum value of the
magnitude(M/M⊙ R⊥/R‖) is always greater than in the isotropic case (B = 0 G), but this does
not mean that the masses are greater than the Chandrasekhar limit because the magnitude of the
parallel radius is undetermined in our model.

We considerP⊥(R⊥) = 0 which determines the radii of the star, in the equatorial (perpendicular)
direction. Solutions for the system of Equations (14) are shown in Figure 4.

In Figure 4, we have plotted the magnitude(M R⊥/R‖) in solar masses as a function of the per-
pendicular radiusR⊥. At first glance, Figure 4 shows maximum values for the quantity MR⊥/R‖.
However, these values cannot be associated with maximum values of the WD masses because our
model has an underdetermination of the parallel radius and the total mass of the star cannot be cal-
culated. Our model allows us to determine a maximum field (B ≃ 1013 G) beyond which the metric
coefficients exhibit a divergent behavior. This value of themagnetic field coincides with the value
at which the splitting of the pressures given by the parameter ∆ is greater than 1, forB = 1013 G.
This result supports our interpretation that beyond this value of the magnetic field there are no stable
solutions of the system, and points towards the end of the theoretical stellar sequences constructed
from our assumptions.

6 CONCLUSIONS

We have revisited the role of anisotropic pressures in the description of the structure of a WD. Our
findings show that when the splitting coefficient∆ > 1, the differences in the pressures cannot be
neglected and a different approach must be used to study the structure of the star. An axisymmetric
geometry is more suitable than a spherical one for the solution of Einstein equations using a cylin-
drically symmetric metric. Our choice of the metric in the latter conditions is probably the simplest
among all of the possible cylindrical metrics.

Taking into account the pressure anisotropy due to a magnetic field yields a critical fieldBc ∼
1013 G for a magnetized WD, beyond which there are no stable equilibrium configurations. This
bound for the value of the magnetic field is close to (but slightly lower than) what is obtained based
on the scalar virial theorem.
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Although in our model we cannot compute the total mass due to the assumption that all of the
variables only depend on the perpendicular (equatorial) radius and not on thez-direction (Manreza
Paret et al. 2014), this study is useful for confirming the existence of a maximum magnetic field for
which the star may undergo an anisotropic collapse due to a magnetic instability. This point helps to
clarify the claim of super-Chandrasekhar masses for a magnetized WD (Das & Mukhopadhyay2012,
2013) and rules out the magnetic field being the reason for theexistence of this kind of object. By the
way, the recent paper Das & Mukhopadhyay (2014) makes use of extremely high magnetic fields,
well above the Schwinger value, and clearly beyond the virial estimate; and also imposes aΓ = 4/3
polytrope as a model for the matter. This is at odds with previous claims (Das & Mukhopadhyay
2013) by the same authors that aΓ = 2 results from Landau quantization and hence it is clear that
the latter does not stiffen the EoS needed to achieve the super-Chandrasekhar mass values.
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