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Abstract Non-similarity solutions are obtained for one-dimensional isothermal and
adiabatic flow behind strong cylindrical shock wave propagation in a rotational ax-
isymmetric dusty gas, which has a variable azimuthal and axial fluid velocity. The
dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equi-
librium flow conditions are assumed to be maintained, and the density of the mixture
is assumed to be varying and obeying an exponential law. The fluid velocities in the
ambient medium are assumed to obey exponential laws. The shock wave moves with
variable velocity. The effects of variation of the mass concentration of solid particles
in the mixture, and the ratio of the density of solid particles to the initial density of
the gas on the flow variables in the region behind the shock are investigated at given
times. Also, a comparison between the solutions in the cases of isothermal and adia-
batic flows is made.

Key words: shock wave — equation of state — stars: rotation — radiative transfer
— interplanetary medium

1 INTRODUCTION

Hayes (1968), Laumbach & Probstein (1969), Deb Ray (1974), Verma & Vishwakarma (1976, 1980),
and Vishwakarma (2000) have discussed the propagation of shock waves in a medium where den-
sity varies exponentially and obtained similarity and non-similarity solutions. These authors have
not taken into account the effects of rotation of the medium. The formation of self-similar problems
and examples describing the adiabatic motion of non-rotating gas models of stars are considered by
Sedov (1982), Zel’dovich & Raizer (1967), Lee & Chen (1968) and Summers (1975). The experi-
mental studies and astrophysical observations show that the outer atmosphere of the planets rotates
due to rotation of the planets. Macroscopic motion with supersonic speed occurs in an interplanetary
atmosphere and shock waves are generated. Thus rotation of planets or stars significantly affects the
process taking place in their outer layers; therefore questions connected with the explosions in rotat-
ing gas atmospheres are of definite astrophysical interest. Chaturani (1970) studied the propagation
of cylindrical shock waves through a gas having solid body rotation, and obtained the solutions by a
similarity method adopted by Sakurai (1956). Nath et al. (1999) obtained the similarity solutions for
the flow behind spherical shock waves propagating in a non-uniform rotating interplanetary atmo-
sphere with increasing energy. Vishwakarma & Vishwakarma (2007) obtained the similarity solution
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for magnetogasdynamic cylindrical shock waves propagating in a rotating medium which is a perfect
gas with variable density.

The study of shock waves in a mixture of a gas and small solid particles is of great importance
due to its applications to nozzle flow, lunar ash flow, bomb blasts, coal-mine blasts, underground,
volcanic and cosmic explosions, metallized rocket propellant, supersonic flights in polluted air, col-
lisions of coma with a planet and many other engineering problems (see Pai et al. 1980; Higashino &
Suzuki 1980; Miura & Glass 1983; Gretler & Regenfelder 2005; Popel & Gisko 2006; Vishwakarma
& Nath 2006, 2009; Vishwakarma et al. 2008). Miura & Glass (1985) obtained an analytical solution
for a planar dusty gas flow with constant velocities of the shock and the piston moving behind it.
Because they neglected the volume occupied by the solid particles mixed into the perfect gas, the
dust has a non-negligible mass fraction but virtually no volume fraction. Their results reflect the
influence of the additional inertia of the dust upon the shock propagation. Pai et al. (1980) gener-
alized the well known solution of a strong explosion due to an instantaneous release of energy in
gas (Sedov 1982; Korobeinikov 1976) to the case of a two-phase flow of a mixture of perfect gas
and small solid particles, and brought out the essential effects due to the presence of dusty particles
on such a strong shock wave. As they considered a non-zero volume fraction of solid particles in
the mixture, their results reflect the influence of both the decrease of the mixture’s compressibil-
ity and the increase of the mixture’s inertia on the shock propagation (Steiner & Hirchler 2002;
Vishwakarma & Nath 2006, 2009). Vishwakarma (2000) studied the propagation of shock waves in
a dusty gas with exponentially varying density, using a non-similarity method.

In all of the work mentioned above, the ambient medium is supposed to have only one compo-
nent of velocity which is the azimuthal component. The effects of rotation of the ambient medium
are not taken into account by any of the authors in the case of a dusty gas with exponentially varying
density.

In the present work, the non-similarity solutions for the flow behind the cylindrical shock wave
propagating in a rotational axisymmetric dusty gas (a mixture of small solid particles and perfect
gas), which has a variable azimuthal fluid velocity together with a variable axial fluid velocity (Levin
& Skopina 2004) are obtained. The fluid velocities and the density in the ambient medium are as-
sumed to obey the exponential laws. In order to get some essential features of the shock propagation,
small solid particles are considered to be a pseudo-fluid, and the mixture is at velocity and tempera-
ture equilibrium with a constant ratio of specific heats (Pai 1977). For this gas- particle mixture to be
treated as a so-called idealized equilibrium gas (Geng & Groening 2000), it is necessary to consider
the particle diameter to be much smaller than the characteristic length of the flow-field and their
number density is small in relation to that of the gas particles. The Brownian motion of the solid
particles is negligibly small. No deformations and no phase changes of the solid particles occur. Gas
and solid particles are chemically inert. In this case, we may assume that the viscous stress and heat
conduction of the medium are negligible (Pai et al. 1980; Higashino & Suzuki 1980; Vishwakarma &
Nath 2006, 2009; Steiner & Hirschler 2002; Hirschler & Steiner 2003). Although the density of the
mixture is assumed to be increasing exponentially, the volume occupied by the solid particles may
be very small under ordinary conditions owing to the large density of the particle material. Hence
for simplicity, the initial volume fraction of solid particles Za is assumed to be a small constant
(Vishwakarma 2000; Vishwakarma et al. 2008).

Due to high temperature in the flow, intense radiation heat transfer takes place behind a strong
shock. For such flows, the assumption of adiabaticity may not be valid. Therefore, an alternative
assumption of zero temperature gradient throughout the flow (flows which satisfy this condition are
also known as isothermal flows) may approximately be taken (as in Vishwakarma & Nath 2006,
2007, 2009; Gretler & Regenfelder 2005; Korobeinikov 1976; Laumbach & Probstin 1970; Sachdev
& Ashraf 1971). With this assumption, we therefore obtain, in Sections 2 and 3, the solution of the
problem treated by Vishwakarma (2000). In Section 4, we present the solutions for the flow taken to
be adiabatic. The effects of an increase in the mass concentration of solid particles in the mixture Kp,
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and the ratio of the density of solid particles to the initial density of the gas Ga on the flow variables
behind the shock are investigated at different times. A comparative study between the solutions of
isothermal and adiabatic flows is also made.

2 FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS-ISOTHERMAL
FLOW

The fundamental equations for one-dimensional, unsteady and cylindrically symmetric isothermal
flow of a mixture of perfect gas and small solid particles, which is rotating about the axis of symme-
try, can be written as (c.f. Pai et al. 1980; Zhuravskaya & Levin 1996; Chaturani 1970; Vishwakarma
& Nath 2006, 2009; Gretler & Regenfelder 2005; Naidu et al. 1985)

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+

uρ

r
= 0, (1)

∂u

∂t
+ u

∂u

∂r
+

(1−Kp)R∗T
ρ(1− Z)2

∂ρ

∂r
− ν2

r
= 0, (2)

∂ν

∂t
+ u

∂ν

∂r
+

uν

r
= 0, (3)

∂w

∂t
+ u

∂w

∂r
= 0, (4)

∂T

∂r
= 0, (5)

where
(

∂p
∂ρ

)
T

= p
ρ(1−Z) , which expresses the isothermal sound speed

a2
iso =

(1−Kp)R∗T
(1− Z)2

, (6)

is replaced with the equation of state (7) of the mixture under the equilibrium condition; ρ, p, and T
are the density, the pressure and the temperature of the mixture, u, ν, and w are the radial, azimuthal
and axial components of the fluid velocity q in the cylindrical coordinates (r, θ, z∗), r and t are the
distance and time, R∗ the gas constant, Kp the mass concentration of solid particles and ‘Z’ the
volume fraction of solid particles in the mixture.

The equation of state of the mixture of perfect gas and small solid particles can be written as
(Pai 1977)

p =
(1−Kp)
(1− Z)

ρR∗T. (7)

The relation between Kp and Z is given by

Kp =
Zρsp

ρ
, (8)

where ρsp is the species density of solid particles. In the equilibrium flow, Kp is a constant in the
whole flow-field. Therefore, from Equation (8)

Z

ρ
= constant, (9)

in the whole flow-field. Also, we have the relation

Z =
Kp

(1−Kp)G + Kp
, (10)
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where G = ρsp
ρg

is the ratio of the density of the solid particles to the species density of the gas.
The internal energy of the mixture may be written as

Um = [KpCsp + (1−Kp)Cv]T = CvmT, (11)

where Csp is the specific heat of the solid particles, Cv the specific heat of the gas at constant volume
and Cvm the specific heat of the mixture at constant volume.

The specific heat of the mixture at constant pressure is

Cpm = KpCsp + (1−Kp)Cp, (12)

where Cp is the specific heat of the gas at constant pressure.
The ratio of the specific heats of the mixture is given by (Pai et al. 1980; Pai 1977; Marble 1970)

Γ =
Cpm

Cvm
= γ

1 + δβ′

γ

1 + δβ′
, (13)

where γ = Cp
Cv

, δ = Kp

(1−Kp) and β′ = Csp
Cv

. Now,

Cpm − Cvm = (1−Kp)(Cp − Cv) = (1−Kp)R∗. (14)

The internal energy per unit mass of the mixture is therefore given by

Um =
p(1− Z)
(Γ− 1)ρ

. (15)

Also,
ν = Ar, (16)

where ‘A’ is the angular velocity of the medium at radial distance r from the axis of symmetry. In
this case the vorticity vector ς = 1

2 Curl q has the components

ςr = 0, ςθ = −1
2

∂w

∂r
, ςz∗ =

1
2r

∂

∂r
(rν). (17)

The initial density of the medium is assumed to obey the exponential law, namely,

ρa = ρ0e
δR, (18)

where ρ0 and δ are suitable constants, and R is the shock radius.
In order to obtain a solution, it is assumed that a strong cylindrical shock wave is propagat-

ing outwards from the axis of symmetry in the undisturbed medium (mixture of a perfect gas and
small solid particles) with density varying exponentially, which has zero radial velocity and variable
azimuthal and axial velocities. Thus

u = 0, (19)

νa = BeµR, (20)

wa = CeαR, (21)

where B, C, λ and α are constants and the subscript ‘a’ refers to the values in the initial state.
Ahead of the shock, the components of the vorticity vector, therefore, vary as

ςra
= 0, (22)

ςθa = −Cα

2
eαR, (23)
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ςz∗a = −B(1 + µR)
2R

eµR . (24)

From Equations (20) and (16), we find that the initial angular velocity varies as

Aa =
BeµR

R
. (25)

The initial volume fraction of solid particles Za is, in general, not a constant. However, the
volume occupied by the solid particles is very small because the density of solid particles is much
larger than that of the gas (Miura & Glass 1985), hence Za may be assumed to be a small constant
(Vishwakarma 2000; Vishwakarma et al. 2008). The expression for Za is given by (Pai 1977; Naidu
et al. 1985)

Za =
Vsp

Va
=

Kp

(1−Kp)Ga + Kp
, (26)

where Ga = ρsp
ρga

is the ratio of the density of the solid particles to the initial density of the gas ρga
.

Values of Za for some typical values of Kp and Ga are given in Table 1.

Table 1 Values of Za for Some Typical
Values of Kp and Ga

Kp Ga Za

0.1 5 0.0217391

10 0.0109890

50 0.00221729

100 0.00110988

1000 0.0001111

0.3 5 0.0789474

10 0.0410959

50 0.00849858

100 0.00426743

1000 0.00042839

The deviation of the behavior of a mixture of perfect gas and small solid particles from that of a
perfect gas is indicated in Equation (2) by the isothermal compressibility

τiso =
1

ρa2
iso

=
1− Z

p
. (27)

The volume fraction of solid particles lowers the compressibility of the mixture, while the mass of
the solid particles increases the total mass, and therefore may add to the inertia of the mixture.
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The jump conditions at the shock wave are given by the principle of conservation of mass,
momentum and energy across the shock (Chaturani 1970; Vishwakarma & Nath 2006, 2009), namely

ρaV = ρn(V − un),
pa + ρaV 2 = pn + ρn(V − un)2,

Uma
+

pa

ρa
+

1
2
V 2 − Fa

ρaV
= Umn

+
pn

ρn
+

1
2
(V − un)2 − Fn

ρaV
, (28)

νa = νn,

wa = wn,

Za

ρa
=

Zn

ρn
,

where the subscript ‘n’ denotes the conditions immediately behind the shock front, and V (= dR
dt )

denotes the velocity of the shock front; Za is given by Equation (24) and ‘F ’ is the radiation heat
flux.

If the shock is a strong one, then the jump conditions (28) become

un = (1− β)V,

ρn =
ρa

β
,

pn = (1− β)ρaV 2, (29)
νn = BeµR,

wn = CeαR,

Zn =
Za

β
,

where the quantity β (0< β <1) is obtained by the relation

2(Γβ − Za)
(Γ− 1)

− (1 + β) =
2(Fn − Fa)

pnV
. (30)

Because the shock is strong, we assume that (Fn − Fa) is negligible in comparison with the prod-
uct of pn and V (Vishwakarma & Nath 2006, 2009; Laumbach & Probstein 1970). Therefore
Equation (30) reduces to

β =
(Γ− 1 + 2Za)

(Γ + 1)
. (31)

Following Levin & Skopina (2004), we obtain the jump conditions for the components of the
vorticity vector across the shock front as

ςθn =
ςθa

β
, (32)

ςz∗n =
ςz∗a
β

. (33)

Equation (5) together with Equation (7) gives

p

pn
=

ρ(1− Zn)
ρn(1− Z)

. (34)
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Let the solution of Equations (1) to (5) be of the form (Vishwakarma 2000; Vishwakarma et
al. 2008; Verma & Vishwakarma 1976, 1980)

u =
1
t
U(η), (35)

ρ = tΩD(η), (36)

ν =
1
t
φ(η), (37)

w =
1
t
W (η), (38)

p = tΩ−2P (η), (39)

where
η = t exp(λr), λ 6= 0 (40)

and the constants Ω and λ are to be determined subsequently. We choose the shock surface to be
given by

η0 = constant, (41)

so that its velocity is given by

V = − 1
λt

, (42)

which represents the outgoing shock surface, if λ < 0.
The solutions of Equations (1) to (5) in the forms (35) to (42) are compatible with the shock

conditions and Equations (20) and (21), if

Ω = 2, λ = µ = α = −δ

2
. (43)

Since necessarily λ < 0, relation (43) shows that δ > 0, meaning thereby that the shock
surface expands outward in an exponentially increasing medium (Hayes 1968; Deb Ray 1974;
Vishwakarma 2000).

From Equations (42) and (43), we obtain

R =
2
δ

log
( t

t0

)
, (44)

where t0 is the duration of the almost instantaneous explosion.

3 SOLUTION OF THE EQUATIONS

The flow variables in the flow-field behind the shock front may be obtained by solving Equations (1)
to (5) and (17). From Equations (35) to (40), and (42) and (43), we obtain

∂u

∂t
= λuV − V

∂u

∂r
, (45)

∂ρ

∂t
= −2ρλV − V

∂ρ

∂r
, (46)

∂p

∂t
= −V

∂p

∂r
, (47)

∂ν

∂t
= λνV − V

∂ν

∂r
, (48)

∂w

∂t
= λwV − V

∂w

∂r
. (49)
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Equation (34) with the aid of Equation (29) and the transformations

r′ =
r

R
, u′ =

u

V
, ν′ =

ν

V
, w′ =

w

V
, ρ′ =

ρ

ρn
, p′ =

p

pn
, (50)

yield a relation between p′ and ρ′ in the form

p′ =
ρ′(β − Za)
(β − Zaρ′)

. (51)

Using Equations (45) to (51) in the fundamental Equations (1) to (4), we obtain

dρ′

dr′
=

ρ′

(1− u′)

[
du′

dr′
+ 2 log

( t

t0

)
+

u′

r′

]
, (52)

du′

dr′
=

{ [
2β2(1− β)(β − Za)− u′(1− u′)(β − Zaρ′)2

]
log

(
t
t0

)

+β2(1− β)(β − Za)u′
r′ − (1− u′)(β − Zaρ′)2 ν′2

r′

}

[(β − Zaρ′)2(1− u′)2 − β2(1− β)(β − Za)]
, (53)

dν′

dr′
=

ν′

(u′ − 1)

[
log

( t

t0

)
− u′

r′

]
, (54)

dw′

dr′
=

w′

(u′ − 1)
log

( t

t0

)
. (55)

Applying the transformations (50) on Equation (17), we obtained the non-dimensional components
of the vorticity vector lr = ςr

V/R , lθ = ςθ

V/R , lz∗ = ςz∗
V/R in the flow-field behind the shock as

lr = 0, (56)

lθ =
w′

2(1− u′)
log

( t

t0

)
, (57)

lz∗ =
ν′[r′ log

(
t
t0

)
− 1]

2r′(u′ − 1)
. (58)

By using Equations (29) and (50) in (28), we get the expression for the isothermal compressibil-
ity as

(τiso)ρaV 2 =
(β − Zaρ′)
β(1− β)p′

. (59)

In terms of dimensionless variables r′, u′, ν′, w′, ρ′ and p′, the shock conditions (29) take the
form

r′ = 1, u′ = (1− β), ν′ =
Bδη0

2
, w′ =

Cδη0

2
, ρ′ = 1, p′ = 1. (60)

Equations (52) to (55) can be numerically integrated with the boundary conditions (60) to obtain the
solution of the problem.

4 ADIABATIC FLOW

In this section, we present the non-similarity solution for the adiabatic flow behind a strong cylindri-
cal shock in the mixture of small solid particles and perfect gas, which is rotating about the axis of
symmetry.

The strong shock conditions, which serve as the boundary conditions for the problem, will be
the same as the shock conditions (60) in the case of an isothermal flow.
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For adiabatic flows, Equations (2) and (5) are replaced by (Vishwakarma & Nath 2006, 2009;
Steiner & Hirschler 2002)

∂u

∂t
+ u

∂u

∂r
+

1
ρ

∂p

∂r
− ν2

r
= 0, (61)

∂Um

∂t
+ u

∂Um

∂r
− p

ρ2

(∂ρ

∂t
+ u

∂ρ

∂r

)
= 0. (62)

For isentropic change of state of the mixture of small solid particles and perfect gas, under the
thermodynamic equilibrium condition, we may calculate the equilibrium sound speed of the mixture,
as follows

am =
(

∂p

∂ρ

)

S

=
[

Γp

ρ(1− Z)

] 1
2

, (63)

where the subscript ‘S’ refers to the process of constant entropy.
The adiabatic compressibility of the mixture of small solid particles and perfect gas may be

calculated as (c.f. Moelwyn-Hughes 1961)

Cadi = −ρ

[
∂

∂p

(
1
ρ

)]

S

=
1

ρa2
m

=
1− Z

Γp
. (64)

Using Equations (45) to (50) in the Equations (1), (3), (4), (61) and (62), we obtain

dρ′

dr′
=

ρ′

(1− u′)

[
du′

dr′
+ 2 log

( t

t0

)
+

u′

r′

]
, (65)

dp′

dr′
=

ρ′

β(1− β)

[
(1− u′)

du′

dr′
+ u′ log

( t

t0

)
+

ν′2

r′

]
, (66)

dν′

dr′
=

ν′

(u′ − 1)

[
log

( t

t0

)
− u′

r′

]
, (67)

dw′

dr′
=

w′

(u′ − 1)
log

( t

t0

)
, (68)

du′

dr′
=

{ [
Γβ2(1− β)p′ − u′ρ′(1− u′)(β − Zaρ′)

]
r′ log

(
t
t0

)

+Γβ2(1− β)p′u′ − ρ′(1− u′)(β − Zaρ′)ν′2

}

[(β − Zaρ′)ρ′(1− u′)2 − Γβ2(1− β)p′]
. (69)

The transformed shock conditions and non-dimensional components of the vorticity vector will
be the same as in the case of an isothermal flow. By using Equations (29) and (50) in (64), we get
the expression for the adiabatic compressibility as

(Cadi)ρaV 2 =
(β − Zaρ′)
β(1− β)Γp′

. (70)

The ordinary differential Equations (65) to (69) with the boundary conditions (60) can now be
numerically integrated to obtain the solution for the adiabatic flow behind the shock front.

Also, the total energy of the disturbance is given by

E = 2π

∫ R

r̄

ρ[Um +
1
2
(u2 + ν2 + w2)]rdr, (71)

where r is the position of the inner boundary of the disturbance. Using Equations (15) and (50), (71)
becomes

E =
8πρ0

δ2η2
0β

R2

∫ 1

r̄′

[
(1− β)(β − Zaρ′)p′

(Γ− 1)
+

1
2
ρ′(u′2 + ν′2 + w′2)

]
r′ dr′. (72)
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Hence, the total energy of the shock wave is non-constant and varies as R2. The increase of
total energy may be achieved by the pressure exerted on the fluid by the inner expanding surface
(a contact surface or a piston). This surface may be, physically, the surface of the stellar corona or
the condensed explosives or the diaphragm containing a very high-pressure driver gas. By sudden
expansion of the stellar corona or the detonation products or the driver gas into the ambient gas, a
shock wave is produced in the ambient gas. The shocked gas is separated from this expanding surface
which is a contact discontinuity. This contact surface acts as a ‘piston’ for the shock wave. Thus, the
flow is headed by a shock front and has an expanding surface as an inner boundary. A situation
very much of the same kind may prevail during the formation of a cylindrical spark channel from
exploding wires. In addition, in the usual cases of spark break down, time-dependent energy input is
a more realistic assumption than instantaneous energy input (Freeman & Cragges 1969; Director &
Dabora 1977).

5 RESULTS AND DISCUSSION

The distribution of the flow variables behind the shock front is obtained by the numerical integration
of Equations (52)–(55), (57) and (58) for an isothermal flow, and by Equations (65)–(69) for an
adiabatic flow with the boundary conditions (60) by the Runge-Kutta method of the fourth order.
For the purpose of numerical integration, the values of the constant parameters are taken to be (Pai
et al. 1980; Miura & Glass 1983; Vishwakarma & Nath 2006; Vishwakarma et al. 2008) γ = 1.4;
Kp = 0, 0.1, 0.3; Ga=5, 10, 50, 100; β′ = 1 and t

t0
= 1.7. The values γ = 1.4, β′ = 1 may

correspond to the mixture of air and glass particles (Miura & Glass 1985). In our analysis, we
have assumed the initial volume fraction of solid particles Za to be a small constant. The values
Kp = 0.1, 0.3 with Ga=5, 10, 50, 100, 1000 give small values of Za (see Table 1). The value
Kp = 0 corresponds to the dust-free case.

Figures 1 and 2 show the variation of the flow variables ρ′, p′, u′, ν′, w′, lθ, lz∗ and the com-
pressibility for t

t0
= 1.7 and for various values of the parameters Kp, Ga in isothermal and adiabatic

cases, respectively. Figure 2(a) shows that there is an abrupt fall of density distribution near the inner
boundary surface, and the derivative of the density tends to negative infinity. This is quite expected
and may be explained as follows: the path of the decelerated inner boundary surface (piston) diverges
from the path of the particle immediately ahead which rarefies the gas.

It is evident from Figure 1(a) that in the case of an isothermal flow the density distribution is
finite at the inner boundary surface for all values of Kp and Ga. Thus one may note that the feature
of abrupt fall of density near the inner boundary surface in the adiabatic flow is absent when the flow
is isothermal for all values of Kp and Ga. This seems to be necessary because with an unbounded
density near the inner boundary surface, the temperature there approaches infinity, which violates
the basic assumption of zero temperature gradient throughout the flow. Thus it may be observed that
the assumption of zero temperature gradient brings a profound change in the density distribution as
compared to the adiabatic flow; whereas the pressures, compressibility, components of velocity and
vorticity vector are little affected.

Table 2 shows the variation of the density ratio β across the shock front and the position of the
inner boundary surface r′ for different values of Kp, Ga with t

t0
= 1.7, β

′
= 1 and γ = 1.4.

It is found that the effects of an increase in the ratio of the density of the solid particles to the
initial density of the gas Ga at a given instant are

(i) to decrease β (i.e. to increase the shock strength, see Table 2);
(ii) to decrease the flow variables ρ′, p′ and ν′ in general, but to increase the pressure p′ in the case

of isothermal flow, when Ga ≤ 10 (see Figs. 1(a, b, d) and 2(a, b, d));
(iii) to increase the flow variables u′, w′, lθ, lz∗ and the compressibility. The increase in the com-

pressibility causes stronger compression of the gas behind the shock wave and, hence, an in-
crease in the shock strength (see Figs. 1(c, e, f, g, h) and 2(c, e, f, g, h));
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(iv) to decrease the distance of the inner boundary surface and the shock front (see Table 2). This
means that an increase in the ratio of the density of the solid particles to the initial density of the
gas has an effect of increasing the shock strength, which is the same as indicated in (i) and (iii)
above.

The above effects are more impressive at higher values of Kp. These effects may be physically
interpreted as follows.

Fig. 1 Variation of the flow variables in the region behind the shock front for t
t0

= 1.7 in the case
of isothermal flows: (1). Kp = 0, Ga = 0; (2). Kp = 0.1, Ga = 5; (3). Kp = 0.1, Ga = 10;
(4). Kp = 0.1, Ga = 100; (5). Kp = 0.3, Ga = 5; (6). Kp = 0.3, Ga = 10; (7). Kp = 0.3,
Ga = 100. (a) density ρ′, (b) pressure p′, (c) radial component of fluid velocity u′, (d) azimuthal
component of fluid velocity ν′, (e) axial component of fluid velocity w′ (f) azimuthal component of
vorticity vector lθ , (g) axial component of vorticity vector lz∗ , and (h) isothermal compressibility
(τiso) ρa V 2.
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Fig. 1 Continued.

With an increase in Ga (at constant Kp), there is a strong decrease in Za, i.e. the volume frac-
tion of solid particles in the undisturbed medium becomes comparatively very small. This causes
comparatively more compression of the mixture in the region between shock and the inner boundary
surface, which displays the above effects.

Effects of an increase in the mass concentration of the solid particles Kp at a given instant are

(i) to decrease the shock strength (to increase the value of β) when Ga = 5, and to increase it,
when Ga ≥ 10 (see Table 2);

(ii) to increase the distance of the inner boundary surface and the shock front (see Table 2) when
Ga = 5. At higher values of Ga the effect is of an opposite nature;

(iii) to decrease the flow variables u′, w′, lθ, lz∗ when Ga = 5, and to increase them, when
Ga ≥ 10 (see Figs. 1(c, e, f, g) and 2(c, e, f, g));

(iv) to decrease the flow variables ρ′, p′ and ν′ in general when Ga ≥ 10, but to increase ν′, ρ′ and
p′ (in the case of isothermal flow) when Ga = 5 (see Figs. 1(a, b, d) and 2(a, b, d));
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(v) to decrease the compressibility when Ga = 5, 10, but to increase it when Ga = 100 (see
Figs. 1(h) and 2(h)).

Physical interpretations of these effects are as follows.

Fig. 2 Variation of the flow variables in the region behind the shock front for t
t0

= 1.7 in the case
of adiabatic flows: (1). Kp = 0, Ga = 0; (2). Kp = 0.1, Ga = 5; (3). Kp = 0.1, Ga = 10;
(4). Kp = 0.1, Ga = 100; (5). Kp = 0.3, Ga = 5; (6). Kp = 0.3, Ga = 10; (7). Kp = 0.3,
Ga = 100. (a) density ρ′, (b) pressure p′, (c) radial component of fluid velocity u′, (d) azimuthal
component of fluid velocity ν′, (e) axial component of fluid velocity w′, (f) azimuthal component
of vorticity vector lθ , (g) axial component of vorticity vector lz∗ , and (h) adiabatic compressibility
(Cadi) ρa V 2.
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Fig. 2 Continued.

In the case of Ga = 5, small solid particles of density equal to five times that of the perfect gas
in the mixture occupy a significant portion of the volume which remarkably lowers the compress-
ibility of the medium. Then, an increase in Kp further reduces the compressibility which causes an
increase in the distance between the shock front and the inner boundary surface, a decrease in the
shock strength, and the above behavior of the flow variables. In the case of Ga = 100, small solid
particles of density equal to one hundred times that of the perfect gas in the mixture occupy a very
small portion of the volume, and therefore compressibility is not lowered much; but the inertia of
the mixture is increased significantly due to the particle load. An increase in Kp, from 0.1 to 0.3 for
Ga = 100, means that the perfect gas in the mixture constituting 90% of the total mass and occu-
pying 99.889% of the total volume now constitutes 70% of the total mass and occupies 99.573% of
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Table 2 Variation of the density ratio β across the shock front and the position of the
inner boundary surface for different values of Kp and Ga with t

t0
= 1.7, β

′
= 1 and

γ = 1.4.

Kp Γ Ga Za β Position of the inner boundary surface r′

Isothermal flow Adiabatic flow

0 1.4 0 0.16667 0.908668 0.869988

0.1 1.36 5 0.0217391 0.170965 0.907617 0.867523

10 0.0109890 0.161855 0.911818 0.8742688

50 0.00221729 0.154421 0.915221 0.879727

100 0.00110988 0.153483 0.915649 0.880413

0.3 1.28 5 0.0789474 0.192059 0.899084 0.853056

10 0.0410959 0.158856 0.915089 0.8781055

50 0.00849858 0.130262 0.928493 0.899024

100 0.00426743 0.126550 0.930194 0.9016962

the total volume. Due to this fact, the density of the perfect gas in the mixture is highly decreased
which overcomes the effect of incompressibility of the mixture and ultimately causes a small de-
crease in the distance between the inner boundary surface and the shock front, an increase in the
shock strength, and the above nature of the flow variables.

The present non-similar model may be used to describe some of the overall features of a “driven”
shock wave produced by a flare energy release ‘E’ (c.f. Eq. (72)) that is time dependent. The energy
‘E’ increases with time and the solutions then correspond to a blast wave produced by intense,
prolonged flare activity in a rotating star when the wave is driven by fresh erupting plasma for some
time and its energy tends to increase as it propagates from the star into a cold atmosphere whose
density varies exponentially with altitude. The atmospheric scale height of a star is generally small
compared to its radius so that the solutions still describe a stellar explosion.
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