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Abstract: We investigate the baryon number susceptibilities up to fourth order along different freeze-out lines

in a holographic QCD model with a critical end point (CEP), and we propose that the peaked baryon number

susceptibilities along the freeze-out line can be used as a clean signature to locate the CEP in the QCD phase diagram.

On the temperature and baryon chemical potential plane, the cumulant ratio of the baryon number susceptibilities (up

to fourth order) forms a ridge along the phase boundary, and develops a sword-shaped “mountain” standing upright

around the CEP in a narrow and oblate region. The measurement of baryon number susceptibilities from heavy-ion

collision experiments is along the freeze-out line. If the freeze-out line crosses the foot of the CEP mountain, then

one can observe the peaked baryon number susceptibilities along the freeze-out line, and the kurtosis of the baryon

number distributions has the highest magnitude. The data from the first phase of the beam energy scan program

at the Relativistic Heavy Ion Collider indicates that there should be a peak of the kurtosis of the baryon number

distribution at a collision energy of around 5 GeV, which suggests that the freeze-out line crosses the foot of the CEP

mountain and the summit of the CEP should be located nearby, around a collision energy of 3–7 GeV.
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1 Introduction

Quantum chromodynamics (QCD) is the fundamen-
tal theory of the strong interaction. The QCD vacuum
structure and its phase diagram under extreme condi-
tions has been always one of the most attractive topics
to understand the nonperturbative nature of the strong
interaction. In the QCD vacuum, chiral symmetry is
spontaneously broken and color-charged quarks and glu-
ons are confined. It is expected that at high temperature
and/or baryon density, the system undergoes a phase
transition from the hadronic phase to the chiral restored
and deconfined quark-gluon phase. In the case of phys-
ical quark masses, QCD chiral models as well as lat-
tice QCD predict that the phase transition is a smooth
crossover at small baryon chemical potential and high

temperature [1–3]. Due to the sign problem, it is still
quite challenging for lattice QCD simulation to work
at finite baryon chemical potential. However, through
symmetry class analysis [4, 5] and effective model pre-
dictions [6–23], it has been generally believed that the
QCD phase transition is of first order at high baryon
chemical potential, and the end point of the first order
phase transition line toward the crossover region is called
the critical end point (CEP). For theoretical reviews of
the QCD phase diagram and the CEP, please refer to
Refs. [24, 25] and references therein.

Different models, such as the Nambu–Jona-Lasinio
(NJL) model, Polyakov-loop improved NJL (PNJL)
model, linear sigma model, quark-meson (QM) model,
Polyakov-loop improved QM model, and the Dyson-
Schwinger equations (DSE), give various locations for
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the CEP. Even the same model with different param-
eters can give different locations for the CEP [6–19].
Therefore, to search for the existence of the CEP and
to locate the CEP in the QCD phase diagram is one of
the most central goals at the Relativistic Heavy Ion Col-
lider (RHIC), and it also sets a strong motivation for
the future accelerator facilities at FAIR in Darmstadt
and NICA in Dubna. In the first phase of the beam en-
ergy scan program (BES-I) by the STAR and PHENIX
experiments at RHIC, which ran from 2010 to 2014,
experimental measurements of the fluctuations of con-
served quantities were performed for Au+Au collisions
at

√
sNN = 7.7,11.5,14.5,19.6,27,39,62.4 and 200 GeV.

The experimental measurements of cumulants of con-
served quantities up to the fourth order of net-proton,
net-charge and net-kaon multiplicity distributions from
BES-I [26, 27] are summarized in Ref. [28]. One interest-
ing observation is that the kurtosis of the baryon num-
ber distributions κσ2 in the most central Au+Au colli-
sions shows a non-monotonic energy dependence behav-
ior. It decreases from almost 1 at the collision energy of
√

sNN=200 GeV to 0.1 at
√

sNN=20 GeV then starts to
increase quickly to 3.5 at

√
sNN=7 GeV.

We are curious about whether the non-monotonic be-
havior of the kurtosis of the baryon number distributions
is caused by the existence of the CEP. Furthermore, be-
fore the running of the second phase of the beam energy
scan (BES-II) at RHIC in 2019-2020, it is urgent for
theorists to offer a clean signature to identify the exis-
tence of the CEP, and even more to propose a method
to locate the CEP. In this work, we are going to provide
such an answer. It was shown in Ref. [21] that the quar-
tic cumulant (or kurtosis) is universally negative when
the critical point is approaching the crossover side of the
phase separation line. Previously, much interest has fo-
cused on the decreasing and then increasing behavior of
the kurtosis of the baryon number distributions around
the collision energy

√
sNN = 20 GeV, which is caused

by the sign changing of various cumulants around the
CEP. More sign changing for higher order susceptibili-
ties has recently been discussed in Ref. [11], and it is
found that for 6th and 8th order baryon number suscep-
tibilities, the sign changing starts at the baryon chemical
potential quite far away from the CEP.

In this work, we will show that the cumulant ratio
(up to fourth order) of conserved number susceptibilities
forms a ridge along the phase boundary on the (T,µB)
plane, and if the CEP exists there, the conserved number
susceptibility develops a high sharp hollow “mountain”
or a sword-shaped “mountain” standing upright around
the CEP, which is a model-independent universal fea-
ture. The measurement of number susceptibilities from
heavy-ion collision experiments is along the freeze-out
line, which is below the phase boundary. If the freeze-

out line can cross the foot of the CEP mountain, then
one is lucky enough to observe the peaked baryon num-
ber susceptibilities along the freeze-out line.

2 CEP from holographic QCD model

and baryon number susceptibilities

In recent decades, a new nonperturbative method has
been developed based on anti-de Sitter/conformal field
theory (AdS/CFT) correspondence and the conjecture of
gravity/gauge duality [29–31] to deal with strongly cou-
pled QCD systems. In the framework of a holographic
QCD (hQCD) model at finite baryon chemical poten-
tial, the CEP has been discussed in Refs. [32–35]. The
model we use in this work is a simple hQCD model with
the CEP located at higher baryon chemical potential,
and the 5D Einstein-Maxwell-dilaton holographic model
is described by the action [34]

S=
1

2κ2
5

∫

d5x
√
−g

[

R−
f (φ)

4
F 2

µν−
1

2
(∂φ)2−V (φ)

]

. (1)

The ansatz of the metric, Maxwell field and dilaton field
are defined as [34]

ds2=
e2A(z)

z2

[

−g(z)dt2+
1

g(z)
dz2+d~x2

]

, (2)

and
φ=φ(z), Aµ=At(z), (3)

with the regular boundary conditions at the horizon
z=zH and the asymptotic AdS5 condition at the bound-
ary z=0 [34]

At(zH)=g(zH)=0, (4)

A(0)=−

√

1

6
φ(0), g(0)=1, (5)

At(0)=µ+ρz2+··· , (6)

where µ and ρ are the chemical potential and density of
quarks respectively. The warp factor and gauge kinetic
function can be fixed as [34]

A(z)=−
c

3
z2−bz4, (7)

f(φ(z))=ecz2
−A(z). (8)

Then from the equation of motion we can calculate the
quark density ρ and temperature T as

ρ=
cµ

1−ecz2

H

, (9)

T =
z3
He−3A(zH)

4π

∫ zH

0
y3e−3A(y)dy

[

1−
2cµ2

(1−ecz2

H)2

×

(

ecz2

H

∫ zH

0

y3e−3A(y)dy−

∫ zH

0

y3ecy2
−3A(y)dy

)]

.

(10)
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Here the parameters b and c are fixed from the me-
son spectrum and speed of sound [34] with b=−6.25×
10−4 GeV4, and c=0.227 GeV2. Note that here we have
fixed κ5 to 1.

The entropy density s can be calculated as [33]

s=2π

e3A(zH)

z3
H

, (11)

then by using the free energy at fixed quark chemical
potential [32, 34]

F =−

∫

sdT =−

∫ zH(T0)

zH

s
∂T (zH,µ)

∂zH

dzH, (12)

one can determine the phase structure of the model by
minimizing the free energy. Here, the zero point of free
energy is set at T =T0=170 MeV. In the crossover region,
the free energy is single valued at fixed µ as a function
of T , while in the first order phase transition region, the
free energy is multi-valued as a function of T at fixed µ.
The critical temperature Tc for each µ and the location
of the CEP are determined by minimizing the free en-
ergy at fixed µ. The phase structure of the holographic
QCD model is shown in Fig. 1 with the CEP located
at (T c,µc

B) =(0.121 GeV, 0.693 GeV), which is close to
the CEP location given in Ref. [35]. The phase struc-
ture of this holographic QCD model, as well as that in
Refs. [32, 33, 35], is for the deconfinement phase tran-
sition, and the CEP for the chiral phase transition in
the holographic QCD model has not been realized yet.
At the current stage, for simplicity we can assume that
the chiral phase transition coincides with the deconfine-
ment phase transition. In general, the chiral phase tran-
sition may be separate from the deconfinement phase
transition, and work toward this goal in the framework
of holographic QCD models in still in progress.

Using the parameterized relation between the colli-
sion energy

√
sNN and µB [36]

µB(
√

sNN)=
1.30

1+0.28
√

sNN

, (13)

the corresponding collision energy at the CEP is
√

sNN=
2.71 GeV.

The measurements from heavy-ion collision experi-
ment are along the freeze-out line, which should lie be-
low the phase boundary. The purpose of our work is
to investigate what kind of information about the CEP
can be read from the measured baryon number fluctua-
tions along the freeze-out line. Therefore, the distance
between the freeze-out line and the phase boundary is
essential. We choose three different cases: 1) the freeze-
out line is close to the phase boundary and can cross the
CEP mountain; 2) the freeze-out line can only cross the
foot of the CEP mountain; and 3) the freeze-out line is
far from the CEP region. These three chemical freeze-
out lines are described by the following three polynomial

fits:

fi :T (µB)=α−βiµ
2
B−γiµ

4
B i=1,2,3 (14)

with α = 0.145, β1 = 0.040, β2 = 0.060, β3 = 0.160,
γ1=γ2=0.040, γ3=0.074. The three chemical freeze-out
lines f1, f2 and f3 are shown in Fig. 1 by dashed, dashed-
dotted and long dashed lines, respectively. The chemical
freeze-out line f1 is very close to the phase boundary,
f3 is away from the phase boundary, and f2 is in be-
tween. In order to compare with experiment measure-
ments, we choose that the system freezes out starting
from (T =145 MeV,µB=0) [37].

co

pt

f1

f2

f3

0.0 0.5 1.0 1.5
0.00

0.05
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0.15
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T
V
e

G

Fig. 1. (color online) The (T,µB) phase diagram in
the 5D hQCD model. The brown dotted line is for
the crossover, and the brown solid line is for the
first order phase transition. The CEP is located
at (T c,µc

B) =(0.121 GeV, 0.693 GeV). The blue
dashed, black dashed-dotted, and the red long
dashed lines represent the three chemical freeze-
out conditions defined in Eq.(14).

The baryon number susceptibilities are defined as the
derivative of the dimensionless pressure with respect to
the reduced chemical potential [28]

χB
n =

∂n[P/T 4]

∂[µB/T ]n
(15)

with the pressure P =−F just the negative free energy
[33]. The cumulants of baryon number distributions are
given by

CB
n =V T 3χB

n (16)

Introducing the mean M =CB
1 , variance σ2 =CB

2 , skew-

ness S =
CB

3

(σ2)3/2
and kurtosis κ =

CB

4

(σ2)2
, one can have

the following relations between observable quantities and
theoretical calculations

σ2

M
=

CB
2

CB
1

=
χB

2

χB
1

, Sσ=
CB

3

CB
2

=
χB

3

χB
2

,

Sσ3

M
=

CB
3

CB
1

=
χB

3

χB
1

, κσ2=
CB

4

CB
2

=
χB

4

χB
2

. (17)
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3 Numerical results

Figure 2 shows a 3-dimensional plot of σ2/M , Sσ,
Sσ3/M , and κσ2 as functions of the temperature T and
the baryon chemical potential µB. Each ratio of the
baryon number susceptibilities σ2/M , Sσ, Sσ3/M , and
κσ2 forms an obvious ridge along the phase boundary,
and it develops a high sharp hollow sword-shaped moun-
tain standing upright around the CEP in a narrow oblate
region. The CEP mountains are hollow because these
ratios of the baryon number susceptibilities are negative
inside this oblate region [21]. The ridge profile along the
phase boundary and the sword-shaped CEP mountain
for baryon number susceptibilities (up to fourth order)
are universal features for phase transitions and the exis-
tence of CEP, respectively [8–10, 35]. The magnitude of
the cumulant ratios of baryon number fluctuations (up to
fourth order) decreases with the increase of the baryon
chemical potential along the phase boundary, and the
competition between the decreasing tendency of the ridge
and the rising of the hollow CEP mountain determines
the shape of the baryon number fluctuations along the
phase boundary or freeze-out line. However, the height
of the ridge along the phase boundary or the magnitude
of the cumulant ratios at µB=0, and the location of the
CEP, are model-dependent, so in different models, we
see different negative region for kurtosis, and different

profiles of the cumulant ratios along the freeze-out line.
We will explain this in more detail by using a different
effective model in a coming paper [38].

The baryon number susceptibilities σ2/M , Sσ,
Sσ3/M , and κσ2 along the three chemical freeze-out lines
f1, f2 and f3 are also shown in Fig. 2 by dashed, dashed-
dotted and long dashed lines, respectively. If the freeze-
out line is very close to the phase boundary, as for f1,
it climbs up to the sword mountain of the CEP a little
bit, and the ratios of the baryon number susceptibilities
σ2/M , Sσ, Sσ3/M , and κσ2 show high peaks along the
freeze-out line. If the freeze-out line is away from the
phase boundary, as for f3, it crosses the flat plane, and
almost all the ratios of the baryon number susceptibil-
ities of σ2/M , Sσ, Sσ3/M , and κσ2 show a monotonic
decreasing behavior along the freeze-out line, except for
Sσ. If the freeze-out line is not far away from the phase
boundary, as for f2, and it can cross the foot of the sword
mountain of the CEP, the ratios of the baryon number
susceptibilities σ2/M , Sσ, Sσ3/M , and κσ2 show obvi-
ous peaks along the freeze-out line. The closer the freeze-
out line to the phase boundary, the higher the peak of
the number susceptibilities. Among the four ratios of the
baryon number susceptibilities σ2/M , Sσ, Sσ3/M , and
κσ2, it is found that the peak of the kurtosis κσ2 has the
tallest magnitude for the same freeze-out condition.

a b

c d

Fig. 2. (color online) 3D plot of σ2/M , Sσ, Sσ3/M , κσ2 as functions of the temperature T and the baryon chemical
potential µB. The blue dashed, black dashed-dotted, and the red long dashed lines represent the three chemical
freeze-out conditions defined in Eq.(14).
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Fig. 3. (color online) σ2/M , Sσ, Sσ3/M , κσ2 along freeze-out lines as a function of the collision energy
√

sNN and
compared with experimental measurements. The blue dashed, black dashed-dotted, and the red long dashed lines
represent the three chemical freeze-out conditions defined in Eq.(14).

In Fig. 3, we compare our model results with experi-
mental measurements of the baryon number susceptibil-
ities σ2/M , Sσ, Sσ3/M , and κσ2 along the three freeze-
out lines f1,f2 and f3 as a function of the collision energy
√

sNN. Above the collision energy of
√

sNN = 20 GeV,
the model results along all three freeze-out lines are in
very good agreement with the experimental results. The
experimental measurements of even cumulants σ2/M
(CB

2 /CB
1 ) and κσ2 (CB

4 /CB
2 ) follow the freeze-out line

f2, while experimental measurements of the odd cumu-
lants Sσ3/M (CB

3 /CB
1 ) and Sσ(CB

3 /CB
2 ) go along the

freeze-out line f3. One natural reason might be that dif-
ferent bases are chosen for odd and even cumulant ratios
during experimental data analysis [28, 39]. However, it
might be caused by other reasons, e.g. only protons are
measured in the experiment, or due to non-thermal ef-
fects, or memory effects [40]. This deserves further study
in the future.

Because higher cumulants have higher magnitude
around the CEP, we focus only on the kurtosis measure-
ment κσ2. The measurement of κσ2 follows the freeze-
out line f2, and the current data indicate that it should
show a peak around the collision energy

√
sNN=5 GeV.

As we have explained above, because the freeze-out line
f2 is close to the phase boundary, and crosses the foot of
the CEP mountain, one can observe an obvious peak of
the baryon number susceptibilities along the freeze-out
line. The peaked kurtosis κσ2 along the freeze-out line

gives an evident signature of the existence of the CEP,
and we can estimate that the CEP is located nearby,
around the collision energy

√
sNN =3−7 GeV. Also, for

the experimental data the kurtosis shows a dip near col-
lision energies of 19.6 and 27 GeV, while the kurtosis
in the current holographic QCD model does not have a
dip. As we have pointed out, the fine structure of the
baryon number fluctuations along the freeze-out line is
determined by the competition between the decreasing
tendency of the ridge of phase transition and the rising
of the hollow CEP mountain. We will analyze this part in
detail in a coming paper by using a different model. The
fine structure of the cumulant ratio along the freeze-out
line is model-dependent. Only the peak structure along
the freeze-out line for kurtosis is caused by the CEP it-
self, and thus it can be regarded as a clean signature for
the existence of the CEP.

4 Discussion and conclusions

In summary, we have explained why the peaked
baryon number susceptibilities, especially the kurtosis
κσ2, along the freeze-out line can be used as an evident
signature for the existence of the CEP. The peak position
can also be used to locate the approximate region of the
CEP in the QCD phase diagram. If the CEP exists, a
universal feature of the 3D profile of baryon number sus-
ceptibilities (up to fourth order) is that it forms a ridge

053001-5
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along the phase boundary and develops a sword-shaped
mountain standing upright around the CEP in a narrow
oblate region. The magnitude of the cumulant ratios
of baryon number fluctuations (up to fourth order) has
tends to decrease with increasing baryon chemical po-
tential along the phase boundary, and the competition
between the decreasing tendency of the ridge and the ris-
ing of the hollow CEP mountain determines the shape of
the baryon number fluctuations along the phase bound-
ary or freeze-out line. The height of the ridge along the
phase boundary and the location of the CEP are model-
dependent. Therefore we would like to emphasize that
the fine structure of the cumulant ratio along the freeze-
out line is model-dependent. Only the peak structure
along the freeze-out line for kurtosis is caused by the
CEP itself, and thus it can be regarded as a clean sig-
nature for the existence of the CEP. The sword-shaped
CEP mountain stands on the (T,µB) plane in a very nar-
row and oblate region along the phase boundary, and the
foot area is also quite narrow and oblate. Therefore, if
we can observe the peaked kurtosis κσ2 along the freeze-
out line, this means that the real freeze-out line can
cross the narrow foot of the CEP mountain. That would

be very advantageous for experimentalists! Our anal-
ysis estimates that the peak of the kurtosis κσ2 would
show up around the collision energy

√
sNN=5 GeV, and

the CEP would be located around the collision energy
√

sNN=3−7 GeV. If the finite size effect is taken into ac-
count, it might broaden the CEP region a little bit, and
it would give more chances for experimentalists to find
the CEP. Finally, the universal feature observed around
the CEP should also apply to the case of the first-order
liquid-gas phase transition for nuclear matter, which is
located at a rather low temperature (Tc=19.7 MeV, µc

B=
908 MeV) [41]. If the freeze-out line crosses the feet of
two CEP mountains, one may observe two peaks for the
baryon number susceptibilities, while if the freeze-out
line crosses the ridge of the liquid-gas phase transition
as shown in Ref. [41], the baryon number susceptibilities
will become very negative when approaching the CEP
and then sharply rise when crossing the CEP of the
liquid-gap phase transition.

We thank X.F.Luo, I.Shovkovy, and H. Stoecker for

valuable discussions.
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