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The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such
as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict
these chemical processes accurately. However, recent advancements in generative artificial intelligence (GAI), including
automated text generation and question—answering systems, coupled with fine-tuning techniques, have facilitated the de-
ployment of large-scale Al models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B
model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.
This specialized Al model, named MatChat, focuses on predicting inorganic material synthesis pathways. MatChat ex-
hibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although MatChat requires
further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning
capabilities and innovative potential in materials science. MatChat is now accessible online and open for use, with both the
model and its application framework available as open source. This study establishes a robust foundation for collaborative
innovation in the integration of generative Al in materials science.

Keywords: MatChat, materials science, generative artificial intelligence

PACS: 81.05.Zx, 01.50.hv, 81.16.Be

1. Introduction

At present, large language models (LLMs) have estab-
lished a robust foundation for various applications. OpenAl’s
ChatGPT and GPT-4.0,!'1 with 175 billion and 18 trillion pa-
rameters, respectively, clearly represent a new era in the devel-
opment of artificial intelligence (AI). However, OpenAl has
not disclosed the specific details of the training methods and
parameters of the model. Tsinghua’s GLM base model(>3!
provides a compelling option for natural language processing.
It supports both English and Chinese, offering high accuracy,
cross-platform compatibility, reproducibility, and fast infer-
ence. Baidu’s Ernie 3.0 Titan, an evolution of the Ernie series
models!*% with an impressive 260 billion parameters, stands
as the largest Chinese dense pre-training model to date, with
great potential for deep language understanding and applica-
tions. The LLaMA and LLaMA2 models,'”8! ranging from
7 billion to 70 billion parameters, contribute to the diversity
of open-source large language models, catering to various ap-
plications. The Ziya-LLaMA-13B pre-training model™®! ex-
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hibits robust capabilities across domains such as translation,
programming, text classification, information extraction, sum-
marization, copywriting, common sense question answering,
and mathematical computation. The outstanding performance
of these models offers strong support for various tasks and
holds the promise of unlocking potential in other domains.
Fine-tuning open-source large models has emerged as
an effective method for tailoring Al capabilities to meet
the specific demands of various domains. Currently, fine-
tuning techniques have demonstrated considerable success in
vertical fields, including healthcare, education, and finance.
In the field of healthcare, models like HuatuoGPTH and
DoctorGLM!!!l have been developed to address medical chal-
lenges, these models exhibit a high degree of professionalism
and offer invaluable insights within the healthcare domain. In
the finance sector, notable strides have been made with the
XuanYuan!'?! model, its application has brought substantial
benefits and advancements to financial operations. Similarly,
in the education sector, the EduChat['3! model has demon-
strated its worth by delivering valuable capabilities tailored

http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn
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to educational contexts. Additionally, the Fengshenbang!!'l

large model system, a product of the Cognitive Computing
and Natural Language Research Center at IDEA Institute,
has gained widespread recognition. The Fengshenbang large
model system is a Chinese language-centric ecosystem that in-
cludes pre-training of large models and fine-tuned applications
tailored for specific tasks, benchmarks, and datasets. Its over-
arching objective is to create a comprehensive, standardized,
and user-centric ecosystem.

In recent years, researchers have achieved significant and
innovative results in the discovery of new materials!'3-1°! and
their theoretical interpretation>*2!! by leveraging the existing
database such as Atomly,??) OQMD,?*] MaterialsProject, >4
and others. They have successfully explored the intricate re-
lationships between material structure and properties, > ad-
dressing the challenges posed by the scarcity of materials data
through the development of more accurate artificial intelli-
gence optimization!*S! and training methods.>”] With the ap-
plication of large models, researchers in materials science have
explored the use of these models to tackle challenges such as
the intricate nature of chemical reactions and structures. One
notable example is the MatSciBERT?®! model which is de-
rived from BERT.[?”) MatSciBERT exhibits the capability to
automatically extract information from literature, conduct data
mining, and construct knowledge graphs, thereby ushering in
new possibilities for the application of language models in ma-
terials science. To the best of our knowledge, there has been
no reported utilization of large language models in material
science until now.

To advance the innovative application of large language
models in materials science, this study employs a carefully
constructed knowledge question—answering database to ex-
plore their potential in materials science. We propose a viable
solution for predicting inorganic material chemical synthesis
pathways and provide a preliminary demonstration of the fea-
sibility of this approach. To optimize the performance of the
large model in answering questions related to material syn-
thesis knowledge, our research adopts the LLaMA2-7B model
as a pre-training model. This approach involves a combina-
tion of supervised fine-tuning and reinforcement learning, in-
corporating valuable human feedback to enhance model op-
timization. The dataset selected for this purpose comprises

(301 extracted from

35675 solution-based synthesis processes
scientific papers. Following thorough processing, we obtain
a dataset consisting of 13878 high-confidence synthesis path-
way descriptions. Although the relatively modest model pa-
rameters used in this study result in cost-effective training,
the model has showcased impressive comprehensive reason-
ing abilities.

The highlights of this study include two primary aspects.
(1) Fine-tuning the LLaMA2-7B pre-training model using the

preprocessed dataset of inorganic material synthesis program
instruction. (2) Development of a question—answering plat-
form for the materials synthesis large language model, aimed
at facilitating work in materials science and providing an ac-
cessible and user-friendly interface for dialogue. This paper’s
basic structure comprises the following sections. Section 2 fo-
cuses on the details of the model fine-tuning process. In Sec-
tion 3, we explore the construction of the question—answering
platform, covering aspects such as architecture design, paral-
lel processing, resource management, and other technologies.
Section 4 presents the experimental findings, and Section 5
serves as the conclusion of this study.

2. Fine-tune MatChat model methods
2.1. Base model

LLaMA?2, an updated iteration of LLaMAI1, has been

trained by Hugo’s team 8!

on arevised combination of publicly
available datasets. The pretraining corpus size has been in-
creased by 40%, the model’s context length has been doubled,
and a grouped-query attention mechanism has been adopted.
Variants of LLaMA2 with 7B, 13B, and 70B parameters are
being released to the public. Based on the results of the paper,
both LLaMA2 7B and 30B models outperform MPT models
of equivalent sizes in all categories.!®!

The model in our work was fine-tuned based on the open-
source large language model, LLaMA2-7B, which has 7 bil-
lion parameters, a content length of 4k, and supports up to 2.0
trillion tokens.

2.2. Materials knowledge data

The dataset used for fine-tuning the model in this paper
was derived from 35675 solid-phase synthesis processes of
inorganic materials extracted from over four million papers.
After rigorous screening, deduplication, and cleaning, we ob-
tained a training set consisting of 13878 highly reliable syn-
thesis pathway descriptions. This dataset was further prepro-
cessed and integrated into an instruction question—answering
format, as shown in Fig. 1. The prompts involve specific mate-
rial synthesis method inquiries, and the responses provide the
corresponding chemical reactions and synthesis conditions.

“instruction”: “How to synthesize LisTisO5”,

“input”: “How to synthesize LisTisO,”,

“output”: “LisTisO,, can be made from TiO,, and Li,COj3 via solid
state reaction. The chemical reaction equation is (2Li,CO3 + 5TiO,
== 1Li4TisO}3 + 2CO,). The detailed recipe can be found in
literature [10.1149/1.1383553].”

Fig. 1. The instruction format for the question—answering scenario.
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2.3. Training process

The model fine-tuning process utilized the following pa-
rameters, a learning rate of 10’4, a batch size of 8, and one
epoch for fine-tuning. All fine-tuning operations were exe-
cuted on NVIDIA A100 GPUs. In this work, one GPU card
was used to fine-tune LLaMa2-7B and techniques such as
low-rank adaptation (LoRA)P!! were adopted, to save storage
memory and accelerate the fine-tune process by greatly reduc-
ing the trainable parameters.

When fine-tuning the LLaMA2 model, we used two
methods and respective resource management strategies.
Firstly, the “Parameter Efficient Model Fine-Tuning” ap-
proach aimed to make fine-tuning economically feasible
on a single consumer-grade GPU. This method involved
freezing the entire model and adding small learnable pa-
rameters or layers, training only a fraction of the model’s
Methods like LORA, LLaMA Adapter, and
Prefix-tuning were employed, addressing cost, deployment,

parameters.
and avoiding catastrophic forgetting.  Alternatively, the
“Full/Partial Parameter Fine-Tuning” method offered flexi-
bility. We could freeze most pre-trained model layers and
fine-tune only the task-specific head, add extra fully con-
nected layers, or fine-tune all layers. For larger models,
multiple GPUs might be required, especially when a single
GPU couldn’t accommodate the model. To tackle multi-GPU
training challenges, we used the “Fully Sharded Data Paral-
lel” (FSDP) technique as noted on the GitHub Repository
(https://github.com/facebookresearch/llama-recipes#install-
with-optional-dependencies). FSDP shards data, model pa-
rameters, gradients, and optimizer states across GPUs, saving
memory and enabling larger models on the same number of
GPUs.

3. MatChat platform

To support researchers in obtaining fast and accurate
model inference results, we have developed a set of web-based
dialogue service interfaces based on LLaMA2. This section
focuses on explaining how to construct these service inter-
faces, including the associated technical details and implemen-
tation methods.

3.1. Architecture and method design

In the development of the MatChat platform, we em-
ployed PyTorch as the core computing framework to han-
dle tasks such as loading, running, and reasoning with large
models. For the web service interface, we chose Python
Flask to manage both HTTP and WebSocket requests, facil-
itating seamless integration with PyTorch. SocketlO was im-
plemented for efficient, event-based two-way communication.

When users request model reasoning, SocketlO delivers the

model’s output in real-time, eliminating traditional polling de-
lays. Flask is responsible for handling user HTTP requests,
parsing input parameters, and scheduling model runs.

To ensure rapid user authentication and system stability,
we implemented lightweight data storage in Redis for token
verification and resource isolation during concurrent usage.
Redis, as an in-memory data structure storage, offers fast read
and write capabilities, making it suitable for high-concurrency
scenarios. Furthermore, Redis-based token verification en-
hances system security. When a user submits a request, the
system queries Redis to validate tokens, thereby enhancing se-
curity against potential malicious activity.

3.2. Concurrency processing and resource management
technologies

In scenarios with concurrent access from multiple users,
efficient resource management becomes crucial. To address
resource contention, we implemented a waiting queue based
on condition variables. This design offers several advantages
as follows:

1. Automatic entry into waiting state: In situations where
resources are occupied, new requests seamlessly transition
into the waiting state.

2. Sequential awakening of queued requests: Upon re-
source release, requests within the waiting queue are sequen-
tially awakened, allowing them to acquire the resources.

3. Thread locks for exclusive access: Thread locks guar-
antee exclusive resource access for a single request at any
given time, mitigating potential data competition issues.

This mechanism ensures the system’s functions con-
sistently provide services to each user, even in a high-
concurrency environment, maintaining stability throughout.

3.3. Deployment and optimization of LLaMA?2 model

As a deep learning model, the deployment of the
LLaMA?2 model presents a myriad of challenges, includ-
ing high computing resource requirements, a complex model
structure, a substantial number of parameters, and extensive
demands on memory and processing power. To meet the need
for real-time user responses, the model must exhibit swift in-
ference capabilities.

We devised a mode employing half-precision floating-
point numbers (float16) for loading the model. This approach
significantly reduced both memory usage and computation
time. Additionally, we leveraged PyTorch’s compile func-
tion to further optimize the model’s runtime efficiency. Fur-
thermore, we implemented a streaming output feature for the
model, allowing users to observe results in real time during the
model’s execution, thereby enhancing the user experience.

Considering the intricacy and computational demands of
the LLaMA2 model, we introduced a resource scheduling
mechanism to ensure seamless responses for concurrent users.
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When a user requests model resources, the system assesses re-
source availability by competing for locks. If GPU resources
are occupied and in the inference state, the user’s request is
placed in a waiting queue, persisting until the resources be-
come available. Through this mechanism, the system guaran-
tees that only one request accesses the model at any given time,
mitigating potential resource contention issues. Conversely,
when a user obtains the lock resource and initiates inference,
the streaming output doesn’t wait for the entire sequence to
complete. Instead, it continues to generate and dispatch re-
sults in real time.

4. Experiment
4.1. Baseline

In the experimental stage, given the lack of large mod-
els specifically tailored for inorganic material synthesis knowl-
edge question—answering, we opted for the widely-used gen-
eral large models — ChatGPT, Ernie Bot, Spark Desk, Chat-
GLM — for a comparative experiment on the performance of
inorganic materials synthesis question—answering. Details can
be found in Table 1 for information. Among them, the infor-
mation on the Spark Desk model is not disclosed.

Table 1. Model information for experimental comparison.

Model Parameters Base model
ChatGPT 175B Gpt-3.5-turbo
Ernie Bot 260B Ernie 3.0 Titan

Spark Desk - -
ChatGLM 6B GLM-130B

4.2. Metrics

When evaluating natural language processing models, a
comprehensive assessment often involves a combination of
BLEU and ROUGE metrics. BLEU primarily measures the
accuracy and exact matching of translation, with an emphasis
on precision, while ROUGE evaluates information complete-
ness and coverage in summaries, emphasizing recall.

However, when dealing with extensive language models
in the domain of inorganic material synthesis question answer-
ing, our primary focus is on observing the safety, accuracy,
and usability of the generated answers — a metric we refer
to as SAU. Safety involves ensuring that the resulting mate-
rial synthesis process does not pose potential dangers or can
highlight possible hazards. Accuracy requires that the gen-
erated answers are as precise as possible, factoring in crucial
elements such as required raw materials, time, and tempera-
ture. Usability emphasizes that the model’s answers should
be highly specific, encompassing operational details like the
synthesis environment and utilized devices.

Furthermore, we demonstrated the generative inference
capability of our model, showcasing its proficiency in provid-
ing synthesis processes for structures not present in the train-
ing set.

4.3. Results

We conducted a comprehensive performance evaluation,
comparing our model against several baseline models. The
questions posed were primarily skewed towards probing the
knowledge of inorganic material synthesis processes, with an
emphasis on extracting synthesis methods mentioned in the
literature. 3233 To enhance clarity, we extracted key synthetic
raw material contents from model answers, as illustrated in
Table 2. Identical questions were input to both our model
and the baseline models during the experiment, and the cor-
responding output responses were observed. To maintain
brevity, we condensed lengthy model answers by extracting
essential synthetic raw material details. Furthermore, our in-
put questions were rooted in relevant synthesis literature, uti-
lizing chemical formulas such as K2CaM0B2P2013[32] and
Nd>ZneoB40Si190161. 1!

We first delve into the analysis of the answer regarding
K;CaMoB,P,>013. In terms of safety, all models perform sim-
ilarly. Concerning accuracy, both ChatGPT and Spark Desk
provide answers, but the raw materials mentioned in their re-
sponses are found to be incorrect based on relevant literature.
Ernie Bot and ChatGLM models fail to furnish answers. No-
tably, our MatChat model not only provides an answer but also
presents synthetic raw materials that are closely aligned with
those detailed in the literature. Moreover, our model outshines
others in terms of usability by offering the most informative
responses.

Then, turning our attention to the answers concerning
Nd>ZngpB4oSij9Oj6;, the models demonstrate comparable
performance in terms of safety. However, in terms of accuracy,
ChatGPT and ChatGLM models provide vague raw material
information for various elements, lacking practical guidance.
The Spark Desk model offers guidance in the form of oxides
for each element, but the literature indicates that the source of
the B element is H3BOj3. Ernie Bot fails to provide a relevant
answer. On the other hand, our MatChat model delivers raw
material information closest to the literature, showcasing the
highest guiding value.

In summary, MatChat proves to be highly valuable in pre-
dicting material synthesis processes, particularly for its accu-
racy and usability.

Furthermore, we showcase the dual capabilities of our
model, encompassing both generative and inferential aspects.
Our training set comprises a total of 13878 diverse chemi-
cal formula synthesis data. When we query the model using
chemical formulas present in the dataset, the output exhibits
a degree of inconsistency with the training set data, high-
lighting the model’s generalization capabilities. Moreover,
when posing questions with chemical formulas absent from
the dataset, the output format and content align in structure
with the dataset, offering valuable insights for the synthesis
process.
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Table 2. Experiments of model comparison.

How to make K,CaMoB,P,03?

How to make Nd;ZnggB4¢Sij9O161?

Gather the Starting Materials:

You’ll need the following starting materials, which are the elements and
compounds that make up the compound you want to synthesize:

1. Neodymium (Nd) compounds

2. Zinc (Zn) compounds

3. Boron (B) compounds

4. Silicon (Si) compounds

5. Oxygen (O) sources (e.g., oxygen gas, oxides)

Nd2ZngpB4oSi9016; is a complex oxide ceramic material with a for-
mula derived from the formula of the lanthanide series. It is a com-
posite oxide ceramic material that has not been widely commercialized
and is difficult to produce. The production process is complex and re-
quires high technology. In this case, the best advice is to seek help from
professionals.

To make Nd»>ZngyB4oSij9O161, one would need to start with the raw

ChatGPT Materials Needed:
1. Potassium carbonate (K»CO3)
2. Calcium oxide (CaO)
3. Ammonium molybdate ((NHy )sMo07024-4H,0)
4. Boric acid (H3;BO3)
5. Phosphoric acid (H3PO4)
6. Deionized water
7. Glassware (flasks, beakers, etc.)
8. Heating equipment (hot plates, ovens, etc.)
9. Laboratory equipment (stirrers, pipettes, etc.)
10. Protective gear (lab coat, gloves, safety goggles, etc.)

Ernie Bot As an artificial intelligence language model, I cannot provide infor-
mation about the production of chemical substances.

Spark Desk  K;CaMoB,P,013 is a chemical compound with the formula
K;CaMoB,P,013. It is a type of potassium phosphate, commonly
known as plaster of Paris. Making plaster of Paris involves a pro-
cess of mixing water and calcium hydroxide (Ca(OH),) until it
forms a thick paste.

ChatGLM I’'m sorry, but I cannot provide a specific method for creating the
chemical compound K;CaMoB,P,0;3, as it is not a commonly
known or widely used compound.

MatChat K,CaMoB;,P,013 can be made from K,COs, (NH4);HPOy,
CaCOj3, H3BO3, and MoOs via solid state reaction. The chem-
ical reaction equation is (2(NH4),HPO4 + 1CaCO; + 1H3BO3; +
1K,CO3 + 0.5Mo003 == 1K,CaMoB,P,013 + 2CO;, + 3H,0 +
4NH3). The precursors are ground in agate, heated under 600.0 °C
for 24.0 h, cooled. The detailed recipe can be found in literature
[10.1016/s0167-2738(03)00122-0].

Literature The studied glasses have the composition expressed by the for-

mula xMoO3-(1 — x)[48P,05-45Ca0-2B,03-5K,0] with x =0, 1,
3,5 and 7 mol%. They were prepared using the conventional melt
quenching method. Appropriate quantities of reagent grade MoO3,
NH4-HyPOy4, CaCO3, H3BO3 and K,CO3 were mixed in an agate
mortar. The batches were melted in air, in sintered corundum cru-
cibles, in an electric furnace at 1100 °C for 25 min. The melts
were quickly cooled at room temperature by pouring and stamping
between two copper plates previously cooled with liquid nitrogen.
The glass samples were ground to powder in a Retsch Planetary
ball mills, type PM 100. The average size of the obtained grains

materials: Nd,O3, ZnO, B,03, SiO;, and H,O. The specific ratios of
these components would need to be carefully controlled during the syn-
thesis process to achieve the desired composition.

NdyZngpB4oSij90i6 is a chemical formula for a specific alloy, which
is a combination of neodymium (Nd), zinc (Zn), boron (B), silicon (Si),
and oxygen (O). To make this alloy, you would typically start with the
appropriate elements in their elemental forms and then mix them in the
correct stoichiometric ratio.

Nd»ZngpB4pSi1906; can be made from SiO;, NdyOsz, ZnO, and
H3;BOj3 via solid state reaction. The chemical reaction equation is
40H3BO;3 + 19Si0; + INd>03 + 60ZnO == 1Nd»ZngpB4oSi19O0161 +
60H,0). The precursors are mixed in agate, heated under 1000.0 °C in
air for 24.0 h, cooled. The detailed recipe can be found in literature
[10.1016/j.jssc.2005.06.002].

Zinc-borosilicate glasses in the chemical composition of 60ZnO-
20B,03-19Si0,-1Nd,03(mol%) have been prepared by employing a
conventional quenching method from the spectral pure grade raw chem-
icals such as ZnO, SiO,, H3BO3 and Nd;O3. The batches of chemical
mix weighing about 50 g were melted in a platinum crucible at 1300 °C
for about 3 h in computer-controlled electrical furnace. The melts were
poured onto a smooth surfaced stainless steel plate and pressed with
another similar plate in order to obtain a few circular glass discs of 2—
3 c¢m in diameter with a thickness of 0.3 cm each. These samples were
annealed at 550 °C for 1 h and cooled down slowly to the room temper-
ature to remove internal stresses present in the glass samples®.

was about 30 pm?®.

aRef. [32], PRef. [33].
5. Conclusion

Based on the LLaMA2-7B pre-training model, we have
developed MatChat, a ground breaking large language model
explicitly designed for materials science. This model pri-
marily focuses on synthesizing knowledge related to the in-
organic materials synthesis process. It can engage in logical
reasoning based on the queried materials formula and pro-
vides answers in the format of the training set, including for-
mulas, temperature, time, environment conditions, and other
relevant information. To facilitate the usage of MatChat, we
have further developed a dialogue platform for users based
on this model. This platform is currently accessible online

at http://chat.aicnic.cn/onchat and is open to researchers in the

materials field. This work is poised to inspire and bring new
innovative ideas in materials science.

MatChat represents a pioneering effort in the applications
of large models in materials science. It currently only supports
English languages due to the lack of text data in other lan-
guages within the training set. The accuracy of its responses is
an area we aim to further refine. The material large language
model presented in this study focuses on inorganic chemical
synthesis. We aspire for this work to be the ‘the Wright broth-
ers’ one-minute flight” in the field of inorganic material syn-
thesis pathway prediction. In the future, the research team in-
tends to enhance the model’s usability and accuracy by incor-
porating literature data and information from existing material
databases such as Atomly.net, OQMD, etc. Furthermore, we
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will also develop an expert knowledge database to handle the
questions including dataset biases and uncertainties, and sup-
ply more precise corpus for models. Additionally, we plan
to optimize the training methodology to enable the large air-
craft of inorganic materials synthesis pathway prediction to fly
higher and farther.

Program availability

The relevant code of this article has been published on
GitHub at https://github.com/materialsCnicCas/CASMatChat
and is also openly available in Science Data Bank at
https://doi.org/10.57760/sciencedb.j00113.00174. The dataset
used for fine-tuning the model is available upon request.
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