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We present an imaging approach via sparsity constraint and sparse speckle illumination which can dramatically en-
hance the optical system’s imaging resolution. When the object is illuminated by some sparse speckles and the sparse
reconstruction algorithm is utilized to restore the blur image, numerical simulated results demonstrate that the image,
whose resolution exceeds the Rayleigh limit, can be stably reconstructed even if the detection signal-to-noise ratio (SNR)
is less than 10 dB. Factors affecting the quality of the reconstructed image, such as the coded pattern’s sparsity and the
detection SNR, are also studied.
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1. Introduction
Images with high spatial resolution are always required

in most imaging applications especially in life science, ma-
terial science, and remote sensing. For conventional imag-
ing, the optical system’s imaging resolution is restricted by
the imaging system’s Rayleigh limit and the camera’s pixel
resolution.[1] A series of methods are proposed to break the
optical system’s Rayleigh limit, which is often called super-
resolution imaging. Generally speaking, super-resolution re-
construction approaches can be divided into two cases. One
is single-frame super-resolution reconstruction, and the other
is multi-frame super-resolution reconstruction.[2] For single-
frame super-resolution reconstruction, the light intensity dis-
tribution illuminating the object is usually uniform, and some
prior information like sparsity and probability density is
utilized.[2–7] For multi-frame super-resolution reconstruction,
the light intensity distribution on the object for each frame
may be uniform or heterogeneous. For the former, the imag-
ing resolution is enhanced because the object’s high-frequency
can be obtained by looking at the same object from differ-
ent angles.[8] For the latter, super-resolution imaging can be
obtained based on the random and sparsity property of the
speckle illuminating the object. Examples include the ghost
imaging,[9,10] fluorescence imaging,[11,12] and structured il-
lumination microscopy.[13–15] However, the improvement of
imaging resolution for the super-resolution reconstruction ap-
proaches described above is limited in practice because of the
effect of detection noise or the complexity of the object.[16–18]

Therefore, it is natural to ask whether some robust super-
resolution imaging methods can be developed by adopting the
mutual advantages of present super-resolution reconstruction
techniques. For example, the sparse reconstruction algorithm
has a great advantage to obtain super-resolution images of
sparse objects.[3–5] If the object is not sparse, we can use some
sparse speckle patterns to illuminate the object, then each im-
age transmitted/reflected from the object becomes sparse and
super-resolution reconstruction of complex objects can also be
realized by the sparse reconstruction algorithm. Also, high-
order correlated imaging can improve the system’s imaging
resolution to some extent,[19] which is possible to further im-
prove the imaging resolution of super-resolution imaging via
sparse speckle illumination.

In this paper, by combining the advantage of sparse
speckle illumination with the characteristic of high-order cor-
related imaging, a super-resolution imaging approach via spar-
sity constraint and sparse speckle illumination is proposed.
We have demonstrated by numerical simulation the super-
resolution ability of the proposed approach. The influences of
the coded pattern’s sparsity at the object plane and the detec-
tion signal-to-noise ratio (SNR) to the reconstruction quality
are also discussed.

2. Model of the proposed approach
A typical optical imaging system, as shown in Fig. 1(a),

usually consists of an illumination source, an object, an imag-
ing component, and a detector. When the illumination light is
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fully spatially incoherent, the intensity at the detection plane
is the convolution of the intensity transmitted from the object
with the incoherent point spread function (PSF)[16]

Iim(x,y) = [S(x,y) · Iobj(x,y)]⊗h(x,y)+n(x,y), (1)

where ⊗ denotes the convolution operation, S(x,y) is the
intensity distribution of the light field illuminating the ob-
ject, h(x,y) is the optical imaging system’s PSF, n(x,y) =
10−β max{[S(x,y) · Iobj(x,y)]⊗ h(x,y)}G(x,y) (the entries of
G(x,y) satisfy a Gaussian distribution with mean 0 and vari-
ance 1) denotes the detection noise, and the detection SNR is
10β . In addition, Iobj(x,y) is the object’s transmission func-
tion, and Iim(x,y) is the image intensity.
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Fig. 1. (color online) (a) The schematic of a typical optical imaging sys-
tem. (b) Single-frame super-resolution reconstruction via uniform illumi-
nation. (c) Procedure of super-resolution imaging via sparsity constraint
and spare speckle illumination. CCD: charge-coupled device; PI: projec-
tion illumination; DI: diffraction-limited; SR: sparse reconstruction; S1–
SN are the random sparse speckle patterns; and ∑ denotes the summation.

For the schematic of single-frame super-resolution recon-
struction shown in Fig. 1(b), S(x,y) is uniform and we have
implemented the Lucy–Richardson algorithm in the image
reconstruction process.[20,21] The reconstruction algorithm is
based on the Bayesian analysis and the assumption that each
image’s pixel follows the Poisson distribution. Then the orig-
inal target is reconstructed by maximizing the posterior prob-
ability according to the blur image and the system’s PSF. The
optimization process can be expressed as

Irec(x,y) = Is
obj(x,y); which maximizes

Π
x,y

[Is
obj(x,y)⊗h(x,y)]Iim(x,y) e−Is

obj(x,y)⊗h(x,y)

Iim(x,y)!
, (2)

where Irec(x,y) is the reconstruction result.
For the proposed method of super-resolution imaging

via sparse speckle illumination depicted in Fig. 1(c), a se-
ries of random sparse speckle patterns S1(x,y)–SN(x,y) illu-
minate the same object in turn. Because the optical system is
diffraction-limited, we can obtain a sequence of blur images
I1
im(x,y)− IN

im(x,y) correspondingly, namely,

Ii
im(x,y) = [Si(x,y)Iobj(x,y)]⊗h(x,y)+n(x,y)

= Ii
obj(x,y)⊗h(x,y)+n(x,y), (3)

S(x,y) =
N

∑
i=1

Si(x,y), (4)

where Si(x,y) and Ii
obj(x,y) = Si(x,y)Iobj(x,y) are the intensity

distribution of the sparse speckle pattern illuminating the ob-
ject and the image transmitted from the object in the i-th frame,
respectively. In addition, N is the total frame number and
S(x,y) is the total intensity distribution of the sparse speckle
patterns at the object plane. In order to guarantee the gray fi-
delity of the reconstructed image, S(x,y) is usually set to be
homogeneous and there is no speckles’ overlap between any
two frames. Therefore, the speckle area a×a, the total frame
number N, the speckle’s number K (the number of bright spots
per frame), and the reconstruction area L×L satisfy the rela-
tion L×L = N×K×a×a.

According to each blur image Ii
im(x,y), i = 1, . . . ,N, we

can obtain corresponding Ii
rec(x,y) by the reconstruction algo-

rithm of Eq. (2). For multi-frame imaging via speckle illu-
mination, high-order correlated imaging can improve the sys-
tem’s imaging resolution to some extent compared with the
traditional directly integral imaging,[19] hence the final image
is also reconstructed by calculating the high-order correlation
function of the light field, which is called as super-resolution
imaging via sparsity constraint and sparse speckle illumination
(SISC-SSI), namely,

ISISC−SSI(x,y) =

{
1
N

N

∑
i=1

(Ii
rec(x,y)−〈Ii

rec(x,y)〉)2

}1/2

, (5)

where 〈Ii
rec(x,y)〉 = 1

N ∑
N
i=1 Ii

rec(x,y) represents the ensemble
average of Ii

rec(x,y).
In summary, the reconstruction procedure of SISC-SSI

can be expressed as the following three steps:
1) Obtain a sequence of blur images I1

im(x,y)–IN
im(x,y) by

Eq. (3).
2) Reconstruct Ii

rec(x,y) by Eq. (2) according to Ii
im(x,y)

and PSF.
3) Obtain the final image ISISC−SSI(x,y) by Eq. (5).
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3. Simulation results and discussion
Figure 2 presents the principle schematic of SISC-SSI.

The uniform and incoherent light emitted from a xenon lamp is
collimated by a lens with a focal length of f0 and then filtered
by an optical filter (with a center wavelength of λ = 532 nm).
The light transmitted from the filter propagates to a digital
micro-mirror device (DMD). A series of coded patterns, as
shown in Fig. 1(c), are pre-built by modulating the DMD and
then imaged onto the object by the lens with the focal length
f1 = 75 mm. The light transmitted from the object is imaged
onto a charge-coupled device (CCD) camera by a 4 f optical
system. An Iris with the diameter D is placed at the focal
plane of the lens f = 250 mm, which is used to control the
system’s diffraction limit. In the simulation experiment, the
resolution test chart (Fig. 3(a)) is utilized as the object, the ob-
ject is composed of four sets of different slit widths (120×120
pixels, the pixel size is 3.45 µm × 3.45 µm). The object’s
center-to-center separation is d1 : d2 : d3 : d4 = 1 : 2 : 3 : 4 and
d1 = 13.8 µm. The image recorded by the CCD camera has
240×240 pixels and the pixel size of the CCD camera is also
3.45 µm×3.45 µm. In addition, the coded region on the DMD
is 60×60 pixels and the pixel size of the DMD is 13.68 µm ×
13.68 µm. In order to match the speckle’s transverse size at
the object plane with the pixel size of the CCD camera, the
distances z1 and z2 are set as 223.7 mm and 112.8 mm, respec-
tively, which means that the speckle’s transverse size illumi-
nating on the object is 6.9 µm.

DMD
object Iris CCD

filter

xenon lamp computer

f

f

f f f f

ff D

z z

Fig. 2. (color online) Schematic of super-resolution imaging via sparsity
constraint and sparse speckle illumination.

Under a uniform illumination, we can adjust the Iris’s
transmission aperture to make some details of the target undis-
tinguished (the spatial resolution is about d3 = 41.4 µm).
In this case, the transverse size of the Iris is approximately
D ≈ 1.22λ f/d3 = 3.9 mm and the optical system’s PSF is
displayed in Figs. 3(a2) and 3(a3). Correspondingly, the blur
image of the object in different detection SNR is illustrated in
Figs. 3(b1)–3(b5). Based on Eq. (2), when the detection area
on the CCD camera is chosen as 240×240 pixels and 120×120
pixels, figures 3(c1)–3(c5) and 3(d1)–3(d5) give the corre-
sponding single-frame reconstruction results, respectively. It
is clearly seen that the object’s image can be restored without

noise when the detection area is twice as large as the object
area (Fig. 3(c1)), whereas single-frame reconstruction is dis-
abled even if the detection SNR reaches 20 dB (Fig. 3(c2)). In
contrast with Figs. 3(c1)–3(c5), when the detection area is the
same as the object area (the area labeled by the red rectangular
box in Figs. 3(b1)–3(b5), the object can not be restored even
without noise (Figs. 3(d1)–3(d5)). Correspondingly, when the
object is illuminated by some random sparse speckle and the
detection area is the same as the object area, figures 3(e1)–
3(e5) present one frame of detection image in different detec-
tion SNR and the corresponding recovered results based on
Eq. (2) are shown in Figs. 3(f1)–3(f5). When the speckle num-
ber is 5 in each frame, the reconstruction results of SISC-SSI
are displayed in Figs. 3(g1)–3(g5). It is obvious that SISC-SSI
can stably reconstruct the object and robust to noise. There-
fore, we have demonstrated the validity of our super-resolution
approach and the imaging resolution can be smaller than the
diffraction limit by 1/3.

In Fig. 4, we show the simulated SISC-SSI reconstruction
results of imaging the same object displayed in Fig. 3(a) when
the coded pattern’s sparsity (the speckle’s number at the object
plane) is different and the detection SNR is 10 dB. In Fig. 4(a),
each illumination has only one speckle, which is the same
as point scanning imaging[22] and has the best reconstruc-
tion quality because each image restored is the sparsest.[3,4,9]

However, the measurement number N is the largest. From
Figs. 4(a)–4(f), we can find that as the speckle’s number illu-
minating the object is increased, the reconstruction resolution
will decay.

In order to evaluate quantitatively the influence of the
speckle’s number and detection SNR to the reconstructed re-
sults of SISC-SSI, the reconstruction quality is estimated by
calculating the peak signal-to-noise ratio (PSNR)

PSNR = 10× log10

[
(2p−1)2

MSE

]
, (6)

where the bigger the PSNR is, the better the quality of the re-
covered image is. For a 0–255 gray-scale image, p = 8 and
MSE represents the mean square error of the reconstruction
image ISISC−SSI with respect to the original object Iobj

MSE =
1

Npix
∑x,y

[
ISISC−SSI(x,y)− Iobj(x,y)

]2
. (7)

Here Npix is the total pixel number of the image. From Fig. 5,
it is obviously seen that the PSNR always increases with the
detection SNR and decreases with the speckle’s number at the
object plane, which is also consistent with the results indicated
in Figs. 3 and 4.

To validate the applicability of SISC-SSI for more gen-
eral images, we give a numerical experimental demonstra-
tion of imaging a continuous varying gray-scale object, i.e.,
a slide representing a detail of the picture “lena” (120×120
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pixels). Figures 6(b1)–6(b5) illustrate SISC-SSI results in dif-
ferent detection SNR and the reconstructed results with differ-
ent speckle’s numbers are shown in Figs. 6(c1)–6(c5), which

are similar to the results shown in Figs. 3(g1)–3(g5) and 4(a)–
4(f). Therefore, we further demonstrate the feasibility of the
SISC-SSI approach for practical applications.
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Fig. 3. (color online) (a1) Original object. (a2) The PSF corresponding to a spatial resolution of 41.4 µm. (a3) Cross section of PSF along (x,y = 0) of
(a2). (b1)–(b5) The images recorded by the CCD camera in different detection SNR (the image area labeled by the red rectangular box is 120×120 pixels).
(c1)–(c5) Single-frame reconstruction results via uniform illumination (the detection area recorded by the CCD camera is 240×240 pixels). (d1)–(d5) Single-
frame reconstruction results via uniform illumination based on the detection data shown in the red rectangular box. (e1)–(e5) One frame of detection image
in different detection SNR for SISC-SSI. (f1)–(f5) The reconstruction results corresponding to the images of (e1)–(e5). (g1)–(g5) The reconstruction results
of SISC-SSI in different detection SNR when the speckle’s number is 5 for each frame. From left to right, the detection SNR is ∞, 20 dB, 15 dB, 10 dB, and
5 dB, respectively.
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(b)(a) (c) (d) (e) (f)

Fig. 4. (color online) The influence of the speckle’s number illuminating on the object to SISC-SSI when the detection SNR is 10 dB for each frame. The
speckle’s number is 1, 5, 15, 30, 60, and 120 for (a)–(f), which is corresponding to N = 3600, 720, 240, 120, 60, and 30, respectively.
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Fig. 5. (color online) The relationship between PSNR and the speckle’s
number in different detection SNR.

Generally speaking, similar to super-resolution imaging
via sparsity constraint,[3–5,9] the object’s sparsity is mainly uti-
lized by the method of SISC-SSI. By random sparse speckle
illumination, a complex target is divided into many sparse ob-

jects so that the sparse reconstruction algorithm is valid to
super-resolution reconstruction. Compared with point scan-
ning imaging (the result shown in Figs. 4(a) and 6(c1)), like
spinning disk confocal and multi-focal structured illumina-
tion microscopy,[14,22] although the imaging quality is de-
graded slightly as the speckle’s number is properly increased
(Figs. 4(b)–4(f) and 6(c2)–6(c5)), the measurement number N
can be dramatically decreased. Our reconstruction method has
utilized the object’s sparsity and the imaging resolution de-
pends on the sparse degree of objects (namely, the speckle
number per frame), which is different from point scanning
imaging. Searching for better reconstruction algorithm is the
main direction of further improvement of our method. What is
more, some ideas of SISC-SSI may be adopted by ghost imag-
ing to further improve the imaging resolution, such as sparse
speckle illumination and multiple-input detection, which will
be our next work.

Fig. 6. (color online) Numerical experimental demonstration of SISC-SSI for a gray-scale object. (a) Original object. (b1)–(b5) The results of SISC-SSI in
the detection SNR = ∞, 20 dB, 15 dB, 10 dB, and 5 dB, respectively, and the speckle’s number is 5. (c1)–(c5) The results of SISC-SSI when the speckle’s
number is 1, 5, 10, 15, and 30, respectively, and the detection SNR is 10 dB.

4. Conclusion

We demonstrate the reconstruction of images borne on
sparse speckle illumination and sparsity constraint at a resolu-
tion greatly exceeding the finest resolution defined by the op-
tical system’s diffraction limit. We also show that the method
of super-resolution imaging is robust to noise and the coded
pattern’s sparsity has an obvious influence on the reconstruc-
tion quality. This technique will be useful to microscopy in

biology, material, and medical sciences.
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