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Chaotic synchronization in Bose Einstein condensate
of moving optical lattices via linear coupling∗
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A systematic study of the chaotic synchronization of Bose–Einstein condensed body is performed using linear cou-
pling method based on Lyapunov stability theory, Sylvester’s criterion, and Gerschgorin disc theorem. The chaotic synchro-
nization of Bose–Einstein condensed body in moving optical lattices is realized by linear coupling. The relationship be-
tween the synchronization time and coupling coefficient is obtained. Both the single-variable coupling and double-variable
coupling are effective. The results of numerical calculation prove that the chaotic synchronization of double-variable cou-
pling is faster than that of single-variable coupling and small coupling coefficient can achieve the chaotic synchronization.
Weak noise has little influence on synchronization effect, so the linear coupling technology is suitable for the chaotic
synchronization of Bose–Einstein condensate.
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1. Introduction
The Bose–Einstein condensate (BEC) has attracted much

attention due to its unique physical properties in fundamen-
tal science and technological applications. Recently, BEC
has been studied in the field of physics.[1–7] The quantum be-
havior and nonlinear characteristics of BEC can be described
by using the nonlinear Schrödinger equation. Very recently,
the chaos as a typical nonlinear phenomenon was also found
and investigated in the BEC.[8–10] Two different approxima-
tion models were used to study the nonlinear resonance and
chaos oscillation in the weak coupling BEC.[11,12] Coullet
and Vandenberghe used a two-modulus model to deduce the
condensed matter equation and investigate the chaotic phe-
nomenon of capture effect in the weak irreversible double
condensate.[13] Lee et al. studied Melnikov chaos of two-weak
coupling condensate.[14] Hai et al. studied the chaos in BEC of
moving optical lattices and used the Melnikov method to an-
alyze space–time evolution from stable to unstable chaos.[15]

Filho et al. investigated and discussed spatiotemporal chaos
in collapse condensate.[16] Later, the chaos control in BEC of
moving optical lattices was explored in Refs. [17]– [21]. The
above-mentioned studies are mainly concerned with chaotic
characteristics and chaos controlling under different condi-
tions.

Since Pecora and Carroll first studied the synchroniza-
tion of chaotic systems in 1990.[22] Chaos synchronization
has been received much attention due to its applications in
the secure communications and holographic storage in the
past decade. The relationship between absolute stability the-

ory and the synchronization problem was discussed by Cur-
ran and Chua.[23] Carroll and Pecora investigated synchro-
nizing non-autonomous chaotic circuits.[24] Kocarev et al.[25]

and Bowong et al.[26] applied chaotic synchronization to se-
cure communications, etc. The chaotic synchronization ex-
hibits better security and capability of storage which makes
it potentially interesting for industrial applications. The
chaotic synchronization has become a widely attractive scien-
tific field.[27–30] The study of the chaotic dynamics of the BEC
system began at 2000 which was regarded as a new research
field. Few studies were devoted to the chaotic synchroniza-
tion in Bose–Einstein condensate (BEC). However, the chaotic
synchronization in BEC has a potential application value in
quantum communication and information storage. The stud-
ies of chaotic synchronization in BEC provide some methods
of manipulating and utilizing the BECs. Furthermore, it has
a very broad prospect of application in atomic laser, quantum
computation, precision measurement, etc. Therefore, it is de-
sirable to investigate the chaotic synchronization in BEC.

In this study, the chaotic synchronization in BEC is in-
vestigated systematically. The sufficient conditions of chaotic
synchronization in BEC are gained by Lyapunov stability the-
orem combined with Sylvester’s criterion and Gerschgorin
disc theorem. According to the sufficient conditions of chaotic
synchronization in BEC, the chaotic synchronization in BEC
is realized by single-variable coupling and double-variable
coupling separately. The realization of chaotic synchroniza-
tion shows that it is easier to realize by using double-variable
coupling than by using single-variable coupling. We analyze
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the influence of the random noise and find that the random
noise has little influence on synchronization effect. The syn-
chronization error can be reduced by increasing coupling co-
efficient.

2. Condition of chaotic synchronization in BECs
of moving optical lattices system by linear
coupling
The linear coupling chaotic synchronization system con-

sists of the master and slave system. The output variables of
the master system are coupled to the slave system in a certain
proportion. Selecting suitable coupling system to satisfy syn-
chronous conditions, the chaotic master and slave system can
achieve precise synchronization. The dynamic equation of the
master system can be written as[31,32]

𝑥̇=𝐴𝑥+𝑓(𝑥)+𝑚(t). (1)

The corresponding dynamic equation of the slave system is

𝑦̇ =𝐴𝑦+𝑓(𝑦)+𝑚(t)+𝑢(t), (2)

where 𝑥= (x1,x2, ...,xn)
T ∈𝑅n and 𝑦 = (y1,y2, ...,yn)

T ∈𝑅n

are the state variables, T denotes transpose of matrix, 𝐴 ∈
𝑅n×n is a constant matrix, 𝑓 is a continuous nonlinear func-
tion, 𝑚 is an external excitation function, 𝑢(t) = 𝐾(𝑥−𝑦)

is the linear coupling term, and 𝐾 = dia{k1,k2, ...,kn} is a
constant coupling matrix. Assume that there exists a bounded
matrix 𝑀(t) such that

𝑓(𝑥)−𝑓(𝑦) =𝑀(t)(𝑥−𝑦). (3)

The elements of 𝑀(t) are dependent on x and y. An error
variable of the master and slave system is defined by

𝑒= 𝑥−𝑦, (4)

then

𝑒̇ = 𝐴(𝑥−𝑦)+𝑓(𝑥)−𝑓(𝑦)−𝑢(t)

= (𝐴−𝐾+𝑀(t))𝑒. (5)

We select k1,k2, ...,kn such that trajectories of master system
𝑥(t) and slave one 𝑦(t) satisfy

lim
t→∞
‖𝑥(t)−𝑦(t)‖= lim

t→∞
‖𝑒(t)‖= 0. (6)

The master and slave system can realize the synchronization
between them.

According to Lyapunov stability theorem,[33] a sufficient
condition that the linear time-varying system (5) is globally
asymptotically stable at the origin is that the matrix

𝑃 (𝐴−𝐾+𝑀(t))+(𝐴−𝐾+𝑀(t))T𝑃 (7)

is negative definite, where P is a positive definite symmetric
constant matrix. For simplicity, we set 𝑃 = dia{p1, p2, ..., pn}.
Rewrite matrix (7) as

𝑃 (𝐴+𝑀(t))+(𝐴+𝑀(t))T𝑃 −2𝑃𝐾, (8)

and let 𝑃 (𝐴+𝑀(t)) + (𝐴+𝑀(t))T𝑃 = (bi j)n×n, bi j =

b ji, i, j = 1,2, ...n.
By Sylvester’s criterion and Gerschgorin disc

theorem,[34] the symmetric matrix (9) is negative definite if
and only if

(−1)i det𝛥i > 0, i = 1,2, ...,n, (9)

where

𝛥i =


b11−2p1k1 b12 · · · b1i

b21 b22−2p2k2 · · · b2i
· · · · · · · · · · · ·
bi1 bi2 · · · bii−2piki

 . (10)

If P= dia{p1, p2, ..., pn} and K = dia{k1,k2, ...,kn} are chosen
such that

ki >
1

2pi

bii +
n

∑
j=1
j 6=i

|bi j|

 , i = 1,2, ...,n, (11)

the master–slave system can achieve chaos synchronization.
As is well known, the mean-field theory is used widely to

describe the BECs. In this case, the dynamical equation of the
BEC system of moving optical lattices can be given by[35]

h̄2

2m
d2ϕ

dξ 2 + i
(

h̄2a2

m
+ h̄vL− ih̄γvL

)
dϕ

dξ

−
(

h̄β +
h̄2a2

2
2m
− ih̄βγ

)
ϕ−g0 |ϕ|2 ϕ

= v1 cos2(kξ )ϕ, (12)

where ϕ represents the wave function of a macroscopic quan-
tum system, vL = δ/2k is the velocity of the optical lattice,
ξ = x + vLt is the time and space variable of the system,
g0 = 4π h̄2a/m represents the strength of the atomic interac-
tion with the non-linearity in the GP equation, a is the S-wave
scattering length: a > 0 indicates interatomic repulsive inter-
action and a< 0 indicates interatomic attraction interaction, a2

and β are undetermined constants, and γ denotes the damping
coefficient. We use the parameters below and the dimension-
less variables to simplify Eq. (12).

Set ϕ = R(η)e iθ(η), η = kξ , v = 2mvL/h̄k, β1 = h̄β/Er,

a1 =
a2

k
, I0 =

v1

Er
, Er =

h̄2k2

2m
, (13)

then the above-mentioned equation will be rewritten as

d2R
dη2 −

1
4

v2R−gR3 = I0 cos2(η)R− γv
dR
dη

. (14)
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Let R = y1 and dR/dη = y2, that is to say,
dy1

dη
= y2,

dy2

dη
=

1
4

v2y1 +gy3
1 + I0 cos2(η)y1− γvy2.

(15)

The initial conditions are selected randomly in the attract
domain of the chaotic system as y1(0) = 1.0 and y2(0) = 0.0.
The parameters of the system are v = 2.03, g = −0.75, γ =

0.05, and I0 = 5.5. As a result, the BEC system of optical lat-
tice becomes chaotic. The chaotic attractor is shown in Fig. 1.

-4 -2 0 2 4
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Fig. 1. Chaotic attractor on plane y1–y2.

Equation (15) represents the master system, while the
slave system after the linear coupling system can be described
as

dy3

dη
= y4 + k1(y1− y3),

dy4

dη
=

1
4

v2y3 +gy3
3 + I0 cos2(η)y3− γvy4 + k2(y2− y4).

(16)

The error between the master and slave system is 𝑒 = (y1−
y3,y2−y4)

T. The dynamic error can be represented by Eq. (5).
According to the above synchronous conditions of the master–
slave system, for two chaotic systems (15) and (16), when

𝐴(t) =

(
0 1

1
4

v2 + I0 cos2(η) −γv

)
,

𝐾 =

(
k1 0
0 k2

)
, 𝑀(t) =

(
0 0

g(y2
1 + y1y3 + y2

3) 0

)
,

then

𝐴(t)−𝐾+𝑀(t)

=

(
−k1 1

1
4

v2 + I0 cos2(η)+g(y2
1 + y1y3 + y2

3) −γv− k2

)
. (17)

Substituting Eq. (17) into (𝐴−𝐾 +𝑀(t)) + (𝐴−𝐾 +

𝑀(t))T yields the following equation:

(𝐴−𝐾+𝑀(t))+(𝐴−𝐾+𝑀(t))T

=

 −2k1 1+
1
4

v2 + I0 cos2(η)+g(y2
1 + y1y3 + y2

3)

1+
1
4

v2 + I0 cos2(η)+g(y2
1 + y1y3 + y2

3) −2γv−2k2

 .

We obtain the synchronous conditions of systems (15) and (16), which must be met for the master–slave system in BECs

k1 >
1
2

∣∣∣∣1+ 1
4

v2 + I0 cos2(η)+g(y2
1 + y1y3 + y2

3)

∣∣∣∣ , (18)

k2 >
1
2

(
−2γv+

∣∣∣∣1+ 1
4

v2 + I0 cos2(η)+g(y2
1 + y1y3 + y2

3)

∣∣∣∣) . (19)

3. Chaotic synchronization of single-variable
linear coupling in BEC system
In the case of single-variable linear coupling, we let

k2 = 0 and k1 = k. We keep a coupling coefficient. From
Fig. 1 it is seen that the bounds of the strange attractor are
−4.2 < y1 < 4.1, −7.1 < y2 < 6.9. According to the linear
coupling chaotic synchronous conditions (18) and (19), we
know that the master and slave system can reach synchro-
nization only if k > 1. We choose the initial conditions as
y1(0) = 1.0, y2(0) = 0.0, y3(0) = 2.0, and y4(0) = 8.0. When
the values of the system parameters are v = 2.03, g = −0.75,
γ = 0.05, and I0 = 5.5, the effects of chaotic synchronization

with k = 2.3 are shown in Figs. 2(a) and 2(b). Figures 2(c)
and 2(d) show the evolutions of chaotic synchronization on
the planes. As shown in the figures, we can see that, although
the initial conditions of master–slave system are different, the
output errors of the master–slave system are gradually reduced
to zero after a transient process. The chaotic synchronization
can be realized.

The chaotic system reaches synchronization if the out-
put error of the system is less than 10−5 and the consumed
time is defined as synchronization time. For different cou-
pling coefficients, the system synchronization times are differ-
ent. With the increase of coupling coefficient, synchronization
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time decreases. The variation of single-variable linear cou-
pling chaotic synchronization time with coupling coefficient
is shown in Fig. 3. It can be seen that the synchronization time
is close to the minimum when k = 1.8 and that it does not de-
crease any more with the increase of the coupling coefficient.
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Fig. 2. Effect diagrams of chaotic synchronization with k = 2.3: (a) y1–y3
versus η and (b) y2–y4 versus η ; the evolutions of chaotic synchronization
on plane: (c) y3 versus y1; (d) y4 versus y2.
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Fig. 3. Variation of singlevariable linear coupling chaotic synchronization
time η with coupling coefficient k.

4. Chaotic synchronization of double-variable
linear coupling in BEC system
With regard to double-variable linear coupling in the BEC

system, we firstly consider the case for k1 = k2 = k. From
Fig. 1 we know that the bounds of the strange attractor are
−4.2 < y1 < 4.1, −7.1 < y2 < 6.9. According to the linear
coupling chaotic synchronization criteria (18) and (19), we can
realize chaotic synchronization as long as k1 = k2 = k > 0.5.
When the initial conditions are also defined as y1(0) = 1.0,
y2(0) = 0.0, y3(0) = 2.0, and y4(0) = 8.0, then we set the val-
ues of the parameters as v = 2.03, g = −0.75, γ = 0.05, and
I0 = 5.5. Figures 4(a) and 4(b) show the effects of chaotic
synchronization for k1 = k2 = 0.5, while figures 4(c) and 4(d)
show the evolutions of chaotic synchronization on the planes.

From these figures, we can see that although the initial condi-
tions of master–slave system are different, the output errors of
the master–slave system are gradually reduced to zero after a
transient process. Chaotic synchronization can be realized.
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Fig. 4. Effect diagrams of chaotic synchronization with k1 = k2 = k3 = 0.5:
(a) y1–y3 versus η ; (b) y2–y4 versus η and the evolution of chaotic syn-
chronization on plane (c) y3 versus y1; (d) y4 versus y2.

Double-variable linear coupling is similar to single-
variable linear coupling. For different coupling coefficients,
the system synchronization time is different. With the increas-
ing of coupling coefficient, the chaos synchronization time de-
creases. Figure 5 shows the variation of double-linear cou-
pling chaotic synchronization time with the coupling coeffi-
cient k. It is found that the synchronization time is close to the
minimum at k = 0.9 and does not decrease with the increase
of the coupling coefficient.

. . . . . .














η

k

Fig. 5. Variation of doublevariable linear coupling chaotic synchronization
time with k.

Secondly, we consider the case of k1 6= k2. According to
the linear coupling chaotic synchronization criteria (18) and
(19), the system can realize synchronization at k2 > 0.5 with
k1 = 0.5. In this case, we set k1 = 0.5 and change k2 to achieve
chaotic synchronization. Figures 6(a) and 6(b) show the ef-
fects of chaotic synchronization with k1 = 0.5 and k2 = 0.7,
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while figures 6(c) and 6(d) show the evolution of chaotic syn-
chronization on the planes. From Figs. 5 and 6 it can be found
that the synchronization time for the case of k1 6= k2 is shorter
than the synchronization time for the case of k1 = k2.
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Fig. 6. Effect diagrams of chaotic synchronization with k1 = 0.5, k2 = 0.7:
(a) y1–y3 versus η and (b) y2–y4 versus η ; the evolutions of chaotic syn-
chronization on plane: (c) y3 versus y1; (d) y4 versus y2.

Figure 7 shows the variation of double variable linear
coupling chaotic synchronization time with k2 for the case of
k1 = 0.5. As shown in the figure, the synchronization time is
close to the minimum at k2 = 1.3. No matter how the cou-
pling coefficient k2 increases, the synchronization time does
not decrease any more.
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Fig. 7. Variation of doublevariable linear coupling chaotic synchronization
time with k2 for the case of k1 = 0.5.

In order to check the validity of this method, the random
noise δ is added in the synchronization system. Here, we em-
bed the perturbation δ in the slave system as follows:

dy3

dη
= y4 + k1(y1− y3)±δ ,

dy4

dη
=

1
4

v2y3 +gy3
3 + I0 cos2(η)y3− γvy4 + k2(y2− y4).

(20)

The random noise δ is in a range from 0 to 0.06. Figures 8(a)
and 8(b) show that the chaotic synchronization can be obtained

at δ = 0.05, k = 0.5 and δ = 0.05, k = 0.8 by double-variable
linear coupling in the BEC system in the case of k1 = k2 = k.
Comparing the two figures, the synchronization error can be
reduced by increasing coupling coefficient.
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Fig. 8. Curves of chaotic synchronization of y1–y3 versus η with (a)
δ = 0.05, k = 0.5; (b) δ = 0.05, k = 0.8.

5. Conclusions
The linear coupling theory is used to derive and calculate

the coupling parameter for the chaotic synchronization. The
accurate chaotic synchronizations in BEC of moving optical
lattices with different initial conditions are realized separately
by using single and double variable linear couplings. Numer-
ical analysis indicates that the coupling time decreases with
coupling coefficient increasing. We also confirm the pres-
ence of the minimum coupling time in chaotic synchroniza-
tion. Once the minimum coupling time is reached, the cou-
pling time of two systems does not decrease with coupling
coefficient increasing. The double-variable coupling synchro-
nization is more effective than single-variable coupling syn-
chronization because single-variable coupling synchronization
requires a larger coupling coefficient and a greater coupling
synchronization time than double-variable coupling synchro-
nization. In addition, we add the weak noise to slave system
and find that the random noise has little influence on synchro-
nization effect. When the strength of the random noise is less
than 6%, the chaotic synchronization can also be realized. Fur-
thermore, the synchronization error can be reduced by increas-
ing the value of coupling coefficient. Compared with other
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linear coupling synchronization, our proposed linear coupling
synchronization in the BEC system of moving optical lattices
has some advantages, including fast synchronization, a wide
range of adaptive parameter, etc. Thus the linear coupling is
an effective and suitable method of realizing the chaotic syn-
chronizations in BEC systems of moving optical lattices.
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