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In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares
approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex vari-
able element-free Galerkin (ICVEFG) method is presented for two-dimensional (2D) elastoplasticity problems. Compared
with the previous complex variable moving least-squares approximation, the new approximation has greater computational
precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained
Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the
ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to
show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conven-
tional meshless methods.
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PACS: 02.60.Cb, 02.70.–c, 02.90.+p, 46.15.–x DOI: 10.1088/1674-1056/24/10/100202

1. Introduction
The meshless method is a numerical method proposed in

the middle of the 1990s. Compared with the conventional nu-
merical methods, the meshless method does not discretize the
solution domain into a mesh, but only requires the information
about nodes in the domain. The meshless method can be used
to solve some complicated problems which cannot be solved
well with traditional numerical methods, such as the finite el-
ement method and the boundary element method.[1–3]

The element-free Galerkin (EFG) method[1] is one of the
most important meshless methods. The moving least-squares
(MLS) approximation[4] is used in the EFG method to obtain
the shape function. Compared with the finite element method,
the EFG method has a low computational efficiency because
of its more complicated shape function. Then it is important
to study the MLS approximation to improve the computational
efficiency of the EFG method.

To improve the computational efficiency of the EFG
method, a new implementation was presented using the MLS
approximation based on orthogonal basis functions.[5,6] By
defining an inner product in a Hilbert space to obtain weighted
orthogonal basis functions, the improved moving least-squares
(IMLS) approximation was presented.[7,8] In the IMLS ap-
proximation, there are fewer coefficients in the trial function,
then fewer nodes in a domain of influence are needed than
in the MLS approximation. Then in the meshless methods
based on the IMLS approximation, fewer nodes are selected
in the whole domain than in the conventional meshless meth-

ods. Thus the computational efficiency of the meshless meth-
ods can be improved.

Based on the IMLS approximation, Cheng et al. pre-
sented a boundary element-free method.[7–12] Sun et al. an-
alyzed the collinear interfacial cracks and anisotropic piezo-
electric solids and coplanar square cracks using the bound-
ary element-free method.[13–15] Miers discussed the bound-
ary element-free method for elastoplastic implicit analysis.[16]

Zhang et al. presented an improved element-free Galerkin
method to solve potential, elasticity, fracture, wave, transient
heat conduction and elastodynamics problems.[17–23] Dai et
al. presented an improved local boundary integral equation
method for potential problems.[24] Compared with the mesh-
less methods based on the MLS approximation, the improved
element-free Galerkin (IEFG) method and boundary element-
free method have high computational efficiency and precision
because the shape functions in the methods are obtained with
the IMLS approximation.

The shape functions of the MLS and IMLS approximation
do not satisfy the property of the Kronecker δ function. Then
in the EFG and IEFG method, the essential boundary condi-
tions are applied with other methods, such as the Lagrange
multiplier and the penalty method, which makes the weak
form or the system equations more complicated.[1] Introduc-
ing a singular weight function, Lancaster and Salkauskas pre-
sented an interpolating moving least-squares method.[4] The
shape function of the interpolating MLS method satisfies the
property of the Kronecker δ function, and then the meshless
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methods based on the interpolating MLS method can apply the
essential boundary conditions directly and exactly without any
additional numerical effort. By simplifying the formulae of the
interpolating MLS method, Ren et al. presented an improved
interpolating MLS method.[25] According to the improved in-
terpolating MLS method, Ren et al. presented an interpolat-
ing element-free Galerkin method and interpolating bound-
ary element-free method for two-dimensional (2D) potential
and elasticity problems.[25–28] On the basis of the nonsingu-
lar weight function, Wang et al. presented a new interpolating
MLS method.[29] Then the improved interpolating element-
free Galerkin method is presented for potential and elastic-
ity problems,[29,30] and the interpolating boundary element-
free method is presented for potential problems.[31] Compared
with the EFG method, the interpolating element-free Galerkin
method can apply the essential boundary conditions directly,
which results in higher computational efficiency and precision.

Compared with the shape function of finite element
method, the MLS approximation, the IMLS approximation
and the interpolating MLS method have low computational ef-
ficiency to obtain the shape function. Then the meshless meth-
ods based on these approximations have lower computational
efficiency than the finite element method.

The MLS approximation, the IMLS approximation and
the interpolating MLS method are all for scalar functions, then
we can improve the computational efficiencies of these meth-
ods by obtaining the approximation of vector function. The
complex variable moving least-squares (CVMLS) approxima-
tion, which is an approximation of a vector function, was
developed by Cheng and Li,[32] and Chen et al.[33] Then
the complex variable element-free Galerkin method was de-
veloped for elasticity, fracture, elastodynamics, elastoplas-
ticity, and viscoelasticity problems.[34–39] According to the
CVMLS approximation, Liew and Cheng presented a com-
plex variable boundary element-free method for elastody-
namic problems,[40] and Gao and Cheng presented the com-
plex variable meshless manifold method for elasticity and frac-
ture problems.[41,42] Ren et al.[43] and Ren and Cheng[44] pre-
sented an improved complex variable moving least-squares
approximation, and then gave a new element-free Galerkin
method for elasticity. Under the same node distribution, the
meshless methods based on the CVMLS approximation have
higher precision than those based on the MLS approximation.
Under a similar numerical precision, the meshless method
based on the CVMLS approximation has a greater computa-
tional efficiency than the ones based on the MLS approxima-
tion.

Introducing the complex theory into the reproducing ker-
nel particle method (RKPM), Chen et al.,[45–48] and Weng
and Cheng[49] presented a complex variable reproducing ker-
nel particle method (CVRKPM) for transient heat conduc-
tion, elasticity, elastodynamics, advection-diffusion and ela-

soplasticity problems. The coupling of the CVRKPM and
the finite element method for potential and transient heat
conduction problems have been developed.[50,51] Under the
same node distribution, the CVRKPM has higher precision
than the RKPM, and under a similar numerical precision,
the CVRKPM has greater computational efficiency than the
RKPM.

As the functional of the CVMLS approximation does not
have a clear mathematical meaning, based on the functional
with an explicit mathematical meaning and the conjugate of
the complex basis function, an improved complex variable
moving least-squares (ICVMLS) approximation is presented
by using a new basis function.[52] Then, based on the ICVMLS
approximation, the improved complex variable element-free
Galerkin (ICVEFG) method was developed to solve poten-
tial, elasticity, transient heat conduction, advection-diffusion
and large deformation problems.[53–56] Compared with the
CVMLS approximation, the ICVMLS approximation and the
corresponding ICVEFG method have great computational pre-
cision and efficiency.

The elastoplasticity is an important nonlinear problem
in solid mechanics and engineering. In recent years, some
meshless methods for nonlinear elastoplasticity problems have
been developed. Miers and Telles discussed a boundary
element-free method for elastoplastic implicit analysis.[16]

Peng et al. discussed a complex variable element-free Galerkin
method of solving 2D elastoplasticity.[37] Chen and Cheng
presented a complex variable reproducing kernel particle
method for elastoplasticity problems.[48] Barry and Saigal dis-
cussed a three-dimensional (3D) element-free Galerkin elas-
tic and elastoplastic formulation.[57] Kargarnovin et al. also
discussed an elastoplastic element-free Galerkin method.[58]

Liew et al. discussed the numerical analysis via reproduc-
ing kernel particle method and parametric quadratic program-
ming for elastoplasticity problems.[59] Chen et al. analyzed
viscoelasticity and plasticity problems with crack growth us-
ing the EFG method.[60] Yeon and Youn discussed the EFG
method of solving softening elastoplastic solids[61] Boudaia et
al. analyzed elastoplastic contact problems with friction using
a meshless method.[62]

In the present paper, based on the ICVMLS approxima-
tion, the improved complex variable element-free Galerkin
(ICVEFG) method for 2D elastoplasticity problems is pre-
sented. The penalty method is used to apply the essential
boundary conditions, and the constrained Galerkin weak form
for elastoplasticity is employed to obtain the system equations.
Then the corresponding formulae of the ICVEFG method for
2D elastoplasticity problems are obtained. Three selected nu-
merical examples are given using the ICVEFG method to show
that the ICVEFG method has the advantages such as greater
precision and computational efficiency over the conventional
meshless methods.
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2. Improved complex variable moving least-
squares approximation
In the ICVMLS approximation, the trial function is

uh(z) = uh
1(z)+ iuh

2(z) =
m

∑
i=1

p̄i(z)ai(z)

= 𝑝̄T(z)𝑎(z), z = x1 + ix2 ∈Ω , (1)

where 𝑝̄T(z) is the basis function vector which equals the con-
jugate vector of the basis function vector 𝑝T(z),

𝑝T(z) = (p1(z), p2(z), . . . , pm(z)); (2)

𝑎T(z) = (a1(z),a2(z), . . . ,am(z)) (3)

is the vector of the coefficients of the basis functions, and m is
the number of terms in the basis.

The basis functions we use in general are the linear basis

𝑝̄T = (1, z̄), in 2D, (4)

or the quadratic basis

𝑝̄T = (1, z̄, z̄2), in 2D. (5)

From Eq. (1), the corresponding local approximation at
point z is

uh(z, ẑ) =
m

∑
i=1

p̄i(ẑ)ai(z) = 𝑝̄T(ẑ)a(z). (6)

Define the following functional:

J =
n

∑
I=1

w(z− zI)
∣∣∣uh(zI ,z)−u(zI)

∣∣∣2
=

n

∑
I=1

w(z− zI)

(
m

∑
i=1

p̄i(zI)ai(z)−u(zI)

)

×

(
m

∑
i=1

p̄i(zI)ai(z)−u(zI)

)
, (7)

where w(z− zI) is a weight function with a support domain, zI

(I = 1,2, . . . ,n) are the nodes which support domains covering
the point z.

The space span(p̄1, p̄2, . . . , p̄m) is a Hilbert space, then in
it we can define the inner product

( f ,g)z =
n

∑
I=1

w(z− zI) f (zI)ḡ(zI), ∀ f ,g ∈C0(Ω̄), (8)

where ḡ(zI) is the conjugate of g(zI), Ω̄ = Ω ∪Γ , with Γ be-
ing the boundary of the domain Ω , and C0(Ω̄) is the set of
all continuous functions in the domain Ω̄ . The corresponding
norm at z is

‖ f‖z = [( f , f )z]
1/2 . (9)

Then equation (7) can be written as

J = (𝑃̄ 𝑎(z)−𝑢∗(z))T𝑊 (z)(𝑃̄ 𝑎(z)−𝑢∗(z))

=
∥∥𝑝̄T(z)𝑎(z)−u

∥∥2
z , (10)

where

𝑢∗ = (u(z1),u(z2), . . . ,u(zn))
T =𝑄𝑈 , (11)

𝑈T = (𝑢T(z1),𝑢
T(z2), . . . ,𝑢

T(zn)), (12)

𝑢(z) = (u1(z),u2(z))T, (13)

𝑄=


1 i 0 0 0 0 . . . 0 0
0 0 1 i 0 0 · · · 0 0
0 0 0 0 1 i · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 1 i


n×2n

, (14)

𝑃 =


p1(z1) p2(z1) · · · pm(z1)
p1(z2) p2(z2) · · · pm(z2)

...
...

. . .
...

p1(zn) p2(zn) · · · pm(zn)

 , (15)

𝑊 (z) =


w(z− z1) 0 · · · 0

0 w(z− z2) · · · 0
...

...
. . .

...
0 0 · · · w(z− zn)

 . (16)

And then let u(1) be the projection of u in the
span(p̄1, p̄2, . . . , p̄m), the function u will be written as

u = u(1)+u(2), (17)

where

u(2)⊥span(p̄1, p̄2, . . . , p̄m). (18)

Then it is obvious that

J(1) =
∥∥∥u(1)−u

∥∥∥2

z
(19)

is the minimum of the functional J.
From Eq. (18) we obtain

(p̄i,u(2))z = 0, (i = 1,2, . . . ,m), (20)

then

(p̄i,u)z = (p̄i,u(1))z +(p̄i,u(2))z = (p̄i,u(1))z,

(i = 1,2, · · · ,m). (21)

Equation (21) can be written as

(p̄i,u)z = (p̄i,a1 p̄1 +a2 p̄2 + · · ·+am p̄m)z, (22)

i.e., 
(p̄1, p̄1)z (p̄1, p̄2)z · · · (p̄1, p̄m)z
(p̄2, p̄1)z (p̄2, p̄2)z · · · (p̄2, p̄m)z

...
...

. . .
...

(p̄m, p̄1)z (p̄m, p̄2)z · · · (p̄m, p̄m)z




ā1(z)
ā2(z)

...
ām(z)


100202-3



Chin. Phys. B Vol. 24, No. 10 (2015) 100202

=


(p̄1,u)z
(p̄2,u)z

...
(p̄m,u)z

 . (23)

Equation (23) can be written in matrix form as

(𝑃̄ T𝑊 (z)𝑃 )𝑎̄(z) = 𝑃̄ T𝑊 (z)𝑢̄∗. (24)

The conjugate form of Eq. (24) is

(𝑃 T𝑊 (z)𝑃̄ )𝑎(z) = 𝑃 T𝑊 (z)𝑢∗, (25)

then we have

𝑎(z) =𝐶−1(z)𝐵(z)𝑢∗, (26)

where

𝐶(z) = 𝑃 T𝑊 (z)𝑃̄ . (27)

Then the local approximation uh(z, ẑ) can be expressed as

uh(z, ẑ) =𝛷(z)𝑢∗ =
n

∑
I=1

ΦI(z)u(zI), (28)

where

𝛷(z) = (Φ1(z),Φ2(z), · · · ,Φn(z)) = 𝑝̄T(z)𝐶−1(z)𝐵(z). (29)

From Eq. (28) we have

uh
1(z) = Re[𝛷(z)𝑢∗] = Re

[
n

∑
I=1

ΦI(z)u(zI)

]
, (30)

uh
2(z) = Im[𝛷(z)𝑢∗] = Im

[
n

∑
I=1

ΦI(z)u(zI)

]
. (31)

Equations (28) and (29) are the approximation function
and the shape function of the ICVMLS approximation, respec-
tively.

Like the CVMLS approximation, the trial function of the
ICVMLS approximation for a 2D problem is formed with a
one-dimensional (1D) basis function. Then the number of un-
known coefficients in the trial function of the ICVMLS ap-
proximation is less than in the trial function of the MLS ap-
proximation. For an arbitrary point in the domain, we need
fewer nodes with support domains that cover the point, and

thus we also require fewer nodes in the whole domain. For
the same node distribution in the meshless methods based
on the ICVMLS approximation, the matrix 𝑃̄ in Eq. (10) is
n×2 ranks in the ICVMLS approximation, while the matrix is
n×3 ranks in the MLS approximation. The ICVMLS approx-
imation has greater computational efficiency than the MLS
approximation.[50]

Compared with another CVMLS approximation pre-
sented in Ref. [41], in the ICVMLS approximation, the conju-
gate of the polynomial basis function is used to obtain higher
computational precision and efficiency. Thus the meshless
method that is derived from the ICVMLS approximation will
also have higher computational precision and efficiency.

3. The ICVEFG method for 2D elastoplasticity
problems
The equilibrium equation for 2D elastoplasticity prob-

lems can be written in the increment form as

𝐿T𝜎̇+ 𝑏̇= 0, (𝑥 ∈Ω), (32)

where 𝑏̇ is the body force rate, 𝜎̇ is the stress rate, and 𝐿 is the
differential operator matrix, i.e.,

𝐿=

 ∂/∂x1 0
0 ∂/∂x2

∂/∂x2
∂

∂x1

 . (33)

The strain-displacement relationship can be written as

𝜀̇=𝐿𝑢̇, (34)

where 𝜀̇ is the strain rate and 𝑢̇ is the displacement rate.
The stress-strain relationship can be expressed as

𝜎̇ =𝐷𝜀̇, (35)

where 𝐷 is the material constant matrix, when the structure is
in the elastic state,

𝐷 =𝐷e =
E

1−ν2

 1 ν 0
ν 1 0
0 0 (1−ν)/2

 ; (36)

and when the structure is in the plastic state,

𝐷 =𝐷ep =
E
Q



σ
′2
22 +2P −σ ′11σ ′22 +2νP −σ ′11 +νσ ′22

1+ν
σ12

−σ ′11σ ′22 +2νP σ ′11 +2P −σ ′22 +νσ ′11
1+ν

σ12

−σ ′11 +νσ ′22
1+ν

σ12 −σ ′22 +νσ ′11
1+ν

σ12
R

2(1+ν)
+

2H ′

9E
(1−ν)σ̄2


, (37)
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where 𝐷e and 𝐷ep are the elasticity and elastoplasticity matri-
ces of increment theory for the plane strain problems, respec-
tively; E is Young’s modulus, ν is Poisson’s ratio, H ′ is the
plastic modulus for material hardening,

P =
2H ′

9E
σ̂

2 +
σ2

12
1+ν

, (38)

R = σ
′2
11 +2νσ

′
11σ

′
22 +σ

′2
22, (39)

Q = R+2(1−ν
2)P, (40)

σ̂ is the equivalent stress,

σ̂ =
√

σ2
11 +σ2

22−σ11σ22 +3σ2
12, (41)

ε̂p is the corresponding plastic strain, and σ ′11 and σ ′22 are the
deviatoric stresses,

σ
′
11 = σ11−

σ11 +σ22

3
, (42)

σ
′
22 = σ22−

σ11 +σ22

3
. (43)

For the plane strain problems, the corresponding elasto-
plasticity matrix 𝐷ep can be obtained from the matrix of the
plane stress problems by replacing E with E/(1−ν2), and ν

with ν/(1−ν).
The boundary conditions are

𝑢̇= ˙̂𝑢, (𝑥 ∈ Γu), (44)

𝑛 · 𝜎̇ = ˙̂𝑡, (𝑥 ∈ Γt), (45)

where ˙̂𝑢 is the prescribed displacement rate on the displace-
ment boundary Γu; ˙̂𝑡 is the prescribed traction rate on the stress
boundary Γt ; Γ = Γu∪Γt , and Γu∩Γt = /0;

𝑛=

[
n1 0 n2
0 n2 n1

]
, (46)

n1 and n2 are the components of the outward unit normal vec-
tor at a point on the boundary Γt , respectively.

Using the penalty method to enforce the essential bound-
ary conditions, we can obtain the corresponding constrained
Galerkin weak form for elastoplasticity problems as∫

Ω

δ 𝜀̇T · 𝜎̇dΩ −
∫

Ω

δ 𝑢̇T · 𝑏̇dΩ −
∫

Γt

δ 𝑢̇T · ˙̂𝑡dΓ

+ α

∫
Γu

δ 𝑢̇T ·S · (𝑢̇− ˙̂𝑢)dΓ = 0, (47)

where

𝑆 =

[
s1 0
0 s2

]
, (48)

with s1 (or s2) being equal to 1 when the displacement exists
at the boundary in the x1 (or x2) direction, or 0 otherwise; α

being a penalty factor, and in this paper we let

α = (1.0×104 ∼ 1.0×105)×E. (49)

Substituting Eqs. (34) and (35) into Eq. (47) yields∫
Ω

δ (𝐿𝑢̇)T ·𝐷 · (𝐿𝑢̇)dΩ −
∫

Ω

δ 𝑢̇T · 𝑏̇dΩ −
∫

Γt

δ 𝑢̇T · ˙̂𝑡dΓ

+ α

∫
Γu

δ 𝑢̇T ·S · (𝑢̇− ˙̂𝑢)dΓ = 0. (50)

From the ICVMLS approximation, we have

u̇(z) = 𝛷̃(z)𝑢̇=
n

∑
I=1

𝛷̃I(z)u̇(zI), (51)

where 𝛷̃(z) is the matrix of the shape function,

𝛷̃(z) = (𝛷̃1(z),𝛷̃2(z), . . . ,𝛷̃n(z)), (52)

𝛷̃I(z) =
[

Re[ΦI(z)] −Im[ΦI(z)]
Im[ΦI(z)] Re[ΦI(z)]

]
. (53)

From Eq. (51) we have

𝑢̇(z) =
[

u̇1(z)
u̇2(z)

]
=

n

∑
I=1

𝛷̃I(z)𝑢̇I = 𝛷̃(z)𝑈̇ . (54)

Then we can obtain the product of 𝐿𝑢̇ in Eq. (50) as

𝐿𝑢̇ = 𝐿
n

∑
I=1

𝛷̃I(z)𝑢̇I =
n

∑
I=1

𝐿𝛷̃I(z)𝑢̇I

=
n

∑
I=1

𝐵I(z)𝑢̇I =𝐵(z)𝑈̇ , (55)

where

𝐵(z) = (𝐵1(z),𝐵2(z), · · · ,𝐵n(z)), (56)

𝐵I(z) =

 Re[ΦI,1(z)] −Im[ΦI,1(z)]
Im[ΦI,2(z)] Re[ΦI,2(z)]

Re[ΦI,2(z)]+ Im[ΦI,1(z)] −Im[ΦI,2(z)]+Re[ΦI,1(z)]

 . (57)

Substituting Eqs. (54) and (55) into Eq. (50) yields

∫
Ω

δ 𝑈̇T · (𝐵T𝐷𝐵) · 𝑈̇ dΩ −
∫

Ω

δ 𝑈̇T · 𝛷̃T · 𝑏̇dΩ

−
∫

Γt

δ 𝑈̇T · 𝛷̃T · ˙̂𝑡dΓ +α

∫
Γu

δ 𝑈̇T · (𝛷̃TS𝛷̃)𝑈̇ dΓ

− α

∫
Γu

δ 𝑈̇T · (𝛷̃TS ˙̂𝑢)dΓ = 0. (58)

Because the nodal test function δ 𝑈̇T is arbitrary, we can
obtain the final discretized equation as

(𝐾+𝐾α)𝑈̇ = 𝐹̇ + 𝐹̇ α , (59)
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where

𝐾 =
∫

Ω

𝐵T𝐷𝐵dΩ , (60)

𝐹̇ =
∫

Ω

𝛷̃T𝑏̇dΩ +
∫

Γt

𝛷̃T ˙̂𝑡dΓ , (61)

𝐾α = α

∫
Γu

𝛷̃T𝑆𝛷̃dΓ , (62)

𝐹̇ α = α

∫
Γu

𝛷̃T𝑆 ˙̂𝑢dΓ . (63)

4. Increment tangent stiffness matrix method of
solving the elastoplasticity problems
We use the increment tangent stiffness matrix method to

solve Eq. (59) numerically.
For the elastoplasticity problems, the total load is added

step-by-step with the load increment method. At each step,
if the load increment is small enough, the nonlinear relation-
ship between the stress differentiation and strain differentia-
tion can be approximatively considered to be linear, and the
relationship between the corresponding stress increment and
strain increment can be used to replace the one of the stress
and strain differentiation, which is[35]

∆𝜎 =𝐷ep∆𝜀, (64)

where

∆𝜎 = (∆σi j) (65)

is the tensor of the stress increment, and

∆𝜀= (∆εi j) (66)

is the tensor of the strain increment.
Like linear elasticity problems, for the load increment at

each step, by solving the linear equation Eq. (64) we can ob-
tain the increments of the displacement, strain and stress after
the load increment has been added. When the load increments
are added step-by-step, we can obtain new displacement, strain
and stress step-by-step. When the total load is added entirely,
the final displacement, strain and stress are the solution of the
elastoplasticity problem.

Firstly, we solve the linear elasticity problem of the struc-
ture under the elastic limit load F0 to obtain the displacement

𝑈T
0 = (𝑢T

0 (z1),uT
0 (z2), . . . ,uT

0 (zn)), (67)

the strain

𝜎0 = (σ
(0)
i j ), (68)

and stress

𝜀0 = (ε
(0)
i j ), (69)

where σ
(0)
i j and ε

(0)
i j are the components of the elastic stress

and strain tensors, respectively.
After the elastic limit load is added, when the load is

added further, the structure will be at the yield state. At
the yield state, we will add the load with the load increment
method to obtain the corresponding node load increment and
the corresponding stiffness matrix at each load increment step.

For the first load increment step, the node load incre-
ment ∆𝐹1 is added. To obtain the corresponding stiffness ma-
trix 𝐾(𝜎0), for Gauss points entering into the yield state, the
elastoplasticity matrix 𝐷ep is used in the stress-strain relation-
ship, and the stress in 𝐷ep is 𝜎0. Then the corresponding sys-
tem equation for this step is

𝐾(𝜎0) ·∆𝑈1 = ∆𝐹1, (70)

where

∆𝑈T
1 = (∆𝑢T

1 (z1),∆𝑢
T
1 (z2), . . . ,∆𝑢

T
1 (zn)), (71)

then the increment ∆𝑈1 of the displacement, the stress incre-
ment

∆𝜎1 = (∆σ
(1)
i j ) (72)

and the strain increment

∆𝜀1 = (∆ε
(1)
i j ) (73)

will be obtained. Here ∆𝑢T
1 , ∆σ

(1)
i j , and ∆ε

(1)
i j are the incre-

ments of the displacement, stress and strain, respectively, after
the first load increment has been added. Then there is a new
stress 𝜎1 = 𝜎0 + ∆𝜎1 after adding the first load increment.
Similarly, we can obtain the displacement, strain and stress
after adding i−1 load increments, then the new stress is

𝜎i−1 = (σ
(i−1)
i j ). (74)

When the i-th load increment ∆𝐹i is added, the corresponding
system equation is

𝐾(𝜎i−1) ·∆𝑈i = ∆𝐹i, (75)

where

∆𝑈T
i = (∆𝑢T

i (z1),∆𝑢
T
i (z2), . . . ,∆𝑢

T
i (zn)) (76)

are the increments of the displacement after adding the i-th
load increment. Then we can obtain the displacement incre-
ment ∆𝑈i, strain increment

∆𝜀i = (∆ε
(i)
i j ), (77)

and stress increment

∆𝜎i = (∆σ
(i)
i j ). (78)

Then we obtain a new stress as

𝜎i = 𝜎i−1 +∆𝜎i. (79)
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After adding the total load of the problem completely us-
ing the above mentioned load increment method, we can ob-
tain the final displacement, strain and stress, which are the so-
lutions of the elastoplasticity problem.

To obtain the solution of the elastoplasticity problem with
good accuracy, when adding the equivalent node load incre-
ment ∆𝐹i, we must correct the previous load imbalance state.
Then for each load increment step, equation (59) is changed
into[35]

∆𝑈i = [𝐾(𝜎i−1)]
−1 ·
(
𝐹i−

∫
Ω

𝐵T𝜎i−1 dΩ

)
, (80)

where the integration
∫

Ω
𝐵T𝜎i−1 dΩ is the equivalent node

load,

𝐹i =
σs

σ̄max
𝐹 +

i

∑
l=1

∆𝐹l (81)

is the total equivalent node load after this load increment step,
σ̄max is the maximum of the equivalent stresses at nodes, and
σs is the yield limit of the material.

In this paper, the same load increment is used at every
load step, i.e.[35]

∆𝐹i =
1
n

(
1− σs

σ̄max

)
𝐹 , (82)

then we have

𝐹i =
σs

σ̄max
𝐹 + i ·∆𝐹 , (i = 1,2, . . . ,n), (83)

where n is the total number of the load increment steps.

5. Numerical examples
Three example problems are presented to show the advan-

tages of the ICVEFG method for 2D elastoplasticity problems.
The results of these examples obtained using the ICVEFG
method are compared with the results obtained using the EFG
method, the CVEFG method[34] and the finite element soft-
ware ANSYS. In order to show the difference between the re-
sult of ANSYS and the one of the EFG, the CVEFG or the
ICVEFG method, we define

EANSYS
M =

1
n

n

∑
i=1

(uANSYS
i −uM

i )2, (84)

where M represents the EFG, CVEFG or ICVEFG method.
The smaller the EANSYS

M is, the closer to the ones of the AN-
SYS the results of the ICVEFG or the CVEFG or the EFG
method are.

For the error estimation and convergence studies, the vari-
ance between two kinds of node distributions are defined as

SIJ =
1
n

n

∑
k=1

(uI
k− ūIJ

k )2 +(uJ
k− ūIJ

k )2, (85)

where n is the number of the nodes in the domain, uI
k is the

value at the k-th node under the node distribution I, and ūIJ
k

is the mean value of the variable u at the k-th node under the
node distribution I and the node distribution J.

These examples in this section are considered as the plane
stress problems. The linear basis function and the cubic spline
weight function are used to obtain the shape function in the
ICVMLS approximation. The rectangle zone is used as the
support domain of a node. In each integration cell, 4×4 Gauss
points are used for Gaussian quadratures. The linear harden-
ing elastoplastic model is adopted with E ′ = 0.2E, and Mises
yield criterion is used. The total number of the load steps for
the examples in this section is n = 100.

5.1. A cantilever beam subjected to a concentrated load

The first example we considered is a cantilever beam sub-
jected to a concentrated load at the free end (see Fig. 1). The
length of the beam is L = 8 m, and the height is h = 1 m.
The material constants are as follows: the Young’s modulus
E = 105 Pa, the Poisson’s ratio ν = 0.25, and the yield stress
σs = 25 Pa. The load is P = 1 N.

x1

h

x2

P

L

L

O

Fig. 1. Cantilever beam subjected to a concentrated force.

We use the EFG, CVEFG and ICVEFG method to solve
this problem. As shown in Fig. 2, 21× 11 nodes are used.
However, in order to obtain better numerical results, 19× 13
nodes are used in the EFG method. The numerical solutions
of the displacement u2 at some nodes and the CPU time using
the EFG, CVEFG and ICVEFG method are shown in Fig. 3.
By comparing the numerical results obtained using the EFG,
CVEFG, and ICVEFG methods, we can see that EANSYS

ICVEFG is
smaller than EANSYS

CVEFG and EANSYS
EFG , which means the results

obtained using the ICVEFG method are closer to those us-
ing ANSYS than the ones of the EFG and CVEFG method.
A comparison among the CPU times needed by using the
EFG, CVEFG and ICVEFG methods shows that the ICVEFG
method takes less time, and the ICVEFG method in this paper
has a greater computational accuracy and efficiency than the
EFG and CVEFG method.

 

Fig. 2. Node distribution of the cantilever beam.
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0 2 4 6 8

0

5

10

15

20

25

30  ICVEFG (EICVEFG =0.0064)

(CPU time 1860.47 s)

 CVEFG (ECVEFG =0.0081)

        (CPU time 1890.76 s)

 EFG (EEFG    =0.1133)

         (CPU time 2207.87 s)

 ANASY

x1/m

u
2
/
m

m

ANSYS

ANSYS

ANSYS

Fig. 3. Plots of displacement u2 versus x1 at x2 = L/2.

The variation of the displacement with node distribution
is shown in Fig. 4. The present results show that the more
nodes existing in the domain, the closer to zero the variance
is. It means that the ICVEFG method in this paper is conver-
gent.

a↩b b↩c c↩d d↩e

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

a --- Τ

b --- Τ

c --- Τ

d --- Τ

e --- Τ

Node distribution

S
I
J
/
1
0

-
4
 
m

2
 

Fig. 4. Variance of the displacement u2 versus node distribution at x2 = 0.

The relationship between the displacement of midpoint
at the end of the beam and the load is shown in Fig. 5. It is
obvious that the problem is nonlinear.

      



.

.

.

.

.

P
/
N

u2/mm

Fig. 5. Relationship between displacements of midpoint at the end of the
beam and the load.

5.2. A cantilever beam subjected to a distributed load

The second example is a cantilever beam subjected to
a distributed load (see Fig. 6). The length of the beam is
L = 8 m, and the height is h = 1 m. The distributed load is
q = 1 N/m. The material constants used in our analysis are
Young’s modulus E = 105 Pa, Poisson’s ratio ν = 0.25, and
the yield stress σs = 25 Pa.

 

L

x2

h

x1

q

O

Fig. 6. Cantilever beam subjected to a distributed load.

We also use the EFG, CVEFG and ICVEFG method to
solve this problem. 21× 11 nodes are used for the ICVEFG
and the CVEFG method in this example as shown in Fig. 2,
and 19× 13 nodes are used in the EFG method. The numeri-
cal solutions of the displacement u2 at some nodes are shown
in Fig. 7. By comparing with the numerical results obtained
using ANSYS, we can also see that the results obtained using
the EFG, the CVEFG and the ICVEFG method are in excel-
lent agreement with those obtained using ANSYS. However,
the CPU time of the ICVEFG method is less than that of the
EFG or the CVEFG method. Then the ICVEFG method in this
paper has a greater computational efficiency than the EFG and
CVEFG method.

0 2 4 6 8

0

50

100

150

200

250

 ICVEFG (CPU time 1524.18 s)
 CVEFG (CPU time 1551.38 s)
 EFG (CPU time 1905.45 s)
 ANASY

u
2
/
m

m

x1/m

Fig. 7. Plots of displacement u2 versus x1 at x2 = L/2.

The variances of the displacements under different node
distributions are shown in Fig. 8. The present results also show
that the more nodes existing in the domain, the closer to zero
the variance is. It means that the ICVEFG method in this paper
is convergent.
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a↩b b↩c c↩d



.

.

.

.

. a --- Τ

b --- Τ

c --- Τ

d --- Τ

  

Node distribution

S
I
J
/
1
0

-
3
 
m

2
 

Fig. 8. Variance of the displacement u2 versus node distribution at
x2 = 0.

The relationship between the displacements of midpoint
at the end of the beam and the load is shown in Fig. 9. It can
be seen obviously that the material will enter into the plastic
state and the problem is nonlinear.

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1.0

q
/
(N
/
m
)

u2/mm

Fig. 9. Relationship between displacements of midpoint at the end of
the beam and the load.

5.3. A rectangular plate with a central hole under a dis-
tributed load

The third example is a rectangular plate with a central
hole under a distributed load as shown in Fig. 10. The length
of the plate is L = 10 m, the width is h = 4 m, and the ra-
dius of the central hole is r = 1 m. The distributed load is
q = 1000 N/m. The material constants are as follows: Young’s
modulus E = 1.0× 105 Pa, Poisson’s ratio ν = 0.25, and the
yield stress σs = 250 Pa.

q

h

L

O

x2

x1

Fig. 10. A plate with a central hole under a distributed load.

As shown in Fig. 11, 234 nodes in the domain are used for
the ICVEFG and the CVEFG method, and 250 nodes are for
the EFG method. The numerical results of the displacement
u1 at some nodes, obtained using the EFG, the CVEFG and
the ICVEFG method are shown in Table 1. EANASY

ICVEFG = 0.84,
EANASY

CVEFG = 4.7294, and EANASY
EFG = 17.1334, then we can see

that the results obtained using the ICVEFG method are in more
excellent agreement with those obtained using ANSYS than
those obtained using the EFG and the CVEFG method.

 

Fig. 11. Node distribution.

Table 1. Elastoplasticity solutions of displacement u1.

Node coordinate ANSYS CVEFG ICVEFG EFG

(−4.0,2.0) 42.433 40.9069 41.6199 42.0810

(−3.0,2.0) 84.524 83.9072 83.6178 83.7956

(−2.0,2.0) 145.610 144.1717 143.9394 144.8257

(−1.0,2.0) 225.550 222.7416 223.7935 223.9733

(0.0,2.0) 274.670 271.9942 273.4088 270.7801

(1.0,2.0) 323.040 321.6992 323.2851 317.8611

(2.0,2.0) 403.350 401.2733 403.8833 397.6721

(3.0,2.0) 466.270 463.5357 466.1926 460.7105

(4.0,2.0) 512.480 510.6944 512.5804 506.7616

(5.0,2.0) 552.920 549.6499 552.0940 546.5152

The variances of the displacements under different node
distributions are shown in Fig. 12. The present results also
show that the more nodes existing in the domain, the closer to
zero the variance is. Then it is shown that the ICVEFG method
in this paper is convergent.

a↩b b↩c c↩d

0

0.04

0.08

0.12

a--- Τ

b--- Τ

c--- Τ

d--- Τ

Node distribution

S
I
J
/
1
0

-
4
 
m

2
 

Fig. 12. Plot of variance of the displacement u2 versus node distribution at
x2 = 0.
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The relationship between the displacements of midpoint
at the end of the beam and the load is shown in Fig. 13. Simi-
larly, when the load is larger than the elastic limit, the material
begins to yield and enters into the plastic state, which shows
the problem is nonlinear.

      













q
/
(N
/
m
)

u1/mm

Fig. 13. Relationship between the displacements of midpoint at the right
end and the load.

6. Conclusions
In this paper, the ICVMLS approximation is used to ob-

tain the shape function, the Galerkin weak form is used to
obtain the discretized equation, and the penalty method is
used to enforce the displacement boundary conditions, then
the ICVEFG method for 2D elastoplasticity problems is pre-
sented. Numerical examples are given to show that the
ICVEFG method has higher computational precision and ef-
ficiency than the EFG and the CVEFG method.

In the ICVMLS approximation, the inverse complex ma-
trix A−1 is obtained. But the order of the complex matrix is
less than that of the matrix in the MLS approximation, and the
inverse matrix can be obtained easily.

Because of the limitation of the complex variable theory,
the ICVEFG method in this paper can only solve 2D problems.
For 3D problems, we can use the meshless methods based on
the IMLS approximation.
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