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The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine

and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very

rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of

non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are

fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value

and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of

different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to

demonstrate the effectiveness and robustness of the proposed finite-time controllers.

Keywords: finite-time controller, chaos synchronization, non-autonomous centrifugal flywheel gov-
ernor, chaotic system

PACS: 05.45.–a, 05.45.Xt, 05.45.Gg, 05.45.Pq DOI: 10.1088/1674-1056/21/3/030502

1. Introduction

Chaotic systems are very complex nonlinear dy-
namical systems that possess unpredictable and ir-
regular behaviours. One of the main features of a
chaotic system is that a tiny change in the initial con-
ditions leads to a large difference in the long-term be-
haviour of the system. The other major attribute of
chaotic systems is that their trajectories are always
locally unbounded and globally bounded which result
in strange attractors.[1] In recent years, synchroniza-
tion of autonomous chaotic systems has received con-
siderable attention among many researchers.[2−16] On
the other hand, with the discovery of more and more
non-autonomous chaotic systems in engineering and
physics, synchronization of non-autonomous chaotic
systems has become a significant research topic in
nonlinear science and several control techniques for
the synchronization of the non-autonomous chaotic
systems have been developed, which include adaptive
control,[17] linear state feedback control,[18] impulsive
control,[19] sliding mode control,[20] sinusoidal state
error feedback control,[21] the fuzzy observer-based
method,[22] and variable substitution control.[23]

The centrifugal flywheel governor (CFG)[24] is one
of the most interesting and attractive nonlinear dy-

namical systems. It is a mechanical device that auto-
matically controls the speed of an engine and prevents
damage caused by an abrupt change of load torque.
The CFGs have found useful applications in many ro-
tational machines such as the diesel engine, steam en-
gine and gas turbine. For example, the ignition tim-
ing of an automotive engine has been controlled by
a distributor composed of a spring and a centrifu-
gal governor.[25] Recent research has recognized dif-
ferent kinds of CFG with a rich variety of nonlinear
behaviour. Furthermore, it has been shown that these
systems exhibit a diverse range of dynamic behaviour
including regular, periodic, quasi-periodic and chaotic
motions.[26−34]

Regular and chaotic dynamics of rotational ma-
chines with a centrifugal governor and subjected to ex-
ternal disturbances have been investigated in Ref. [26].
Zhang et al.[27] have studied the complex dynamical
behaviour of a class of CFG systems and have pro-
posed a parametric open-plus-closed-loop approach
for controlling their chaos. Bifurcation and chaos of
a CFG have been reported in Ref. [28]. Sotomayor
et al.[29] have studied the Lyapunov stability and the
Hopf bifurcation in a hexagonal centrifugal governor
with a steam engine. Ge and Jhuang[30] have inves-
tigated chaos, its control and synchronization for a
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fractional order rotational mechanical system with a
centrifugal governor. Nonlinear dynamics and chaos
control of a rotational machine with a hexagonal cen-
trifugal governor considering the effects of external
disturbances have been studied in Ref. [31]. Anti-
control and synchronization of chaos for a rotational
machine system with a hexagonal centrifugal gover-
nor have been addressed in Ref. [32]. Ge and Lee[33]

have proposed linear and nonlinear feedback synchro-
nization schemes for rotational machine systems with
time-delay.

However, the work mentioned above[26−33] has
synchronized/stabilized the chaotic CFGs asymptot-
ically. This means that in the previous studies the
state trajectories of the slave system converge to the
state trajectories of the master system with infinite
settling time. In fact, in practical engineering pro-
cesses, one may want to synchronize two chaotic CFGs
as quickly as possible. Therefore, it is important to
study the finite-time synchronization of chaotic CFGs.
Moreover, the authors of Refs. [26]–[33] have studied
the synchronization problem of chaotic CFGs with-
out considering the effects of both unknown param-
eters and uncertainties. While, in practice, the pa-
rameters of CFGs are inevitably perturbed by exter-
nal inartificial factors, such as environment tempera-
ture and mutual interference among components, and
their exact values cannot be determined in advance.
In addition, in real world applications, there are al-
ways some model uncertainties and external distur-
bances in the dynamics of the CFGs. On the other
hand, since chaotic CFGs are very sensitive to any
system parameter variations, the effects of unknown
parameters and system uncertainties can lead to un-
predictable behaviours and can even break the syn-
chronization. As a result, finite-time synchronization
of uncertain chaotic CFGs is essential both in applica-
tion and research. However, to the best of our knowl-
edge, the problem of robust synchronization of the
uncertain chaotic CFG in a given finite time has not
been investigated in the literature so far and has re-
mained an open challenging problem. Therefore, the
main contribution of this paper is to propose a robust
adaptive controller for finite-time synchronization of
non-autonomous chaotic CFGs with model uncertain-
ties, external disturbances and fully unknown param-
eters. Using some adaptive laws and the finite-time
control idea, a robust adaptive controller is derived
to synchronize two uncertain non-autonomous CFGs
in finite time, even when the parameters of the mas-

ter and slave system have different values. Numerical
simulations are given to illustrate the robustness and
applicability of the proposed technique. The results of
this paper are compared with the results of an existing
work in the literature.

2. Centrifugal flywheel governor

system

A mechanical CFG system[24] is depicted in Fig. 1.
The motor drives the flywheel to rotate with angular
velocity ω. The flywheel is joined to the axis through
a gear case, so the axis rotates with angular velocity
nω. Rods 1 and 2 with length l are joined to a hinge
at the end of the axis. Both rods are also attached to
a ball of mass m. The balls are also connected to a
sleeve over the axis by rods 3 and 4. A linear spring
of stiffness k is attached to the sleeve, covering the
upper portion of the axis. The vapor’s flux Q into the
engine is adjusted by a mechanical governor on the
sleeve, which is set to make the flywheel rotate at a
certain angular velocity ω0. When ∆ω = ω − ω0 6= 0,
the balls will move outward or inward, and the sleeve
will slide up or down.[25]

With some assumptions, the motion of the me-
chanical non-autonomous CFG is given by[25]

φ̈ =
(
E + n2ω2

)
sinφ cos φ − (E + g/l) sin φ − bφ̇,

ω̇ = (α cos φ − F ) /I − a sinwt, (1)

where φ is the angle between the rotational axis and
the rods and n = 3, l = 1.5, a = 0.8, w = 1, E = 0.3,
b = 0.4, I = 1.2, α = 0.611, F = 0.3 and g = 9.8 are
positive constants. More details for the system (1) can
be found in Ref. [25].

For the above-mentioned parameter values,
the non-autonomous CFG (1) exhibits chaotic
behaviour.[25] The strange attractor of the CFG with
initial conditions of φ(0) = 0.006, φ̇(0) = 0.007 and
ω̇(0) = 0.15 is illustrated in Fig. 2.

Fig. 1. Physical model of the mechanical CFG system.
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Fig. 2. Strange attractor of the chaotic non-autonomous

CFG system (1).

2.1. Finite-time synchronization of two

CFGs

In this section, the problem of finite-time synchro-
nization of two identical/different CFG systems with
fully unknown parameters, model uncertainties and
external disturbances is solved.

2.2. Finite-time synchronization of two

identical CFGs

Here, we assume that the parameters of both mas-
ter and slave CFGs are identical. Defining x1 = φ,
x2 = φ̇ and x3 = ω, one can rewrite the non-
autonomous CFG (1) with model uncertainties, exter-
nal disturbances and unknown parameters as follows:

ẋ1 = x2 + ∆f1(x, t),

ẋ2 =
(
E + n2x2

3

)
sinx1 cos x1 − (E + g/l) sin x1

− bx2 + ∆f2(x, t),

ẋ3 = (α cos x1 − F ) /I − a sinwt + ∆f3(x, t), (2)

where x = [x1, x2, x3]T is the state vector of the
system and ∆fi(x, t), i = 1, 2, 3 represents unknown
bounded time-varying model uncertainties and exter-
nal disturbances of the system.

Considering the chaotic CFG (2) as the master
system, the slave chaotic CFG with control inputs is
defined as

ẏ1 = y2 + ∆g1(y, t) + u1(t),

ẏ2 =
(
E + n2y2

3

)
sin y1 cos y1 − (E + g/l) sin y1

− by2 + ∆g2(y, t) + u2(t),

ẏ3 = (α cos y1 − F ) /I − a sinwt

+ ∆g3(y, t) + u3(t), (3)

where y = [y1, y2, y3]T is the state vector of the
slave system, ∆gi(y, t), i = 1, 2, 3 represents unknown
bounded time-varying model uncertainties and ex-
ternal disturbances of the slave system and u(t) =
[u1(t), u2(t), u3(t)]T is the vector of control inputs.

Assumption 1 In practice, system uncertainties
are always bounded. In this line, we assume that

|∆fi(x, t)| ≤ ai, |∆gi(y, t)| ≤ bi, i = 1, 2, 3, (4)

where ai and bi, i = 1, 2, 3 are positive constants.
Accordingly, we have

|∆fi(x, t) − ∆gi(y, t)| ≤ di, i = 1, 2, 3, (5)

where di, i = 1, 2, 3 is a given positive constant.
To solve the finite-time synchronization problem,

the synchronization error between the master and
slave systems is defined as e(t) = x(t) − y(t) =
[e1, e2, e3]T. Therefore, by subtracting Eq. (3) from
Eq. (2), the error dynamics is acquired as follows:

ė1 = e2 + ∆f1(x, t) − ∆g1(y, t) − u1(t),

ė2 = E (sinx1 cos x1 − sin y1 cos y1 − sinx1 + sin y1)

+ n2
(
x2

3 sinx1 cos x1 − y2
3 sin y1 cos y1

)
− (g/l) (sin x1 − sin y1) − be2 + ∆f2(x, t)

− ∆g2(y, t) − u2(t),

ė3 = α/I (cos x1 − cos y1) + ∆f3(x, t)

− ∆g3(y, t) − u3(t). (6)

Assumption 2 It is assumed that the parame-
ters n, l, a, w, E, b, I, α, F and g are fully unknown
in advance. Then, defining θ = [θ1, θ2, θ3, θ4, θ5]T =
[E, n2, g/l, b, α/I]T as the vector of the unknown pa-
rameters of the error system (6), the error system pa-
rameters are assumed to lie in a bounded range to
ensure that the CFG exhibits chaos. Therefore, we
have the following condition:

‖θ‖ ≤ Θ, (7)

where ‖ . ‖ denotes the Euclidean norm in Rn and Θ

is a known positive constant.
Finite-time synchronization of two chaotic CFGs

means that there is a finite time T such that the state
trajectories of the slave CFG converge to the trajecto-
ries of the master CFG within the finite time T , i.e.,

Limt→T ‖e(t)‖ = 0, ‖e(t)‖ ≡ 0, t ≥ T. (8)

In what follows, proper control laws are intro-
duced to guarantee the finite-time synchronization of
two uncertain CFGs with identical parameters.

u1(t) = e2 + µ
(
Θ + ‖θ̂‖

) (
e1

‖e‖2

)
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+ (d1 + η1) sgn(e1),

u2(t) = θ̂1(sinx1 cos x1 − sin y1 cos y1 − sinx1

+ sin y1) + θ̂2(x2
3 sinx1 cos x1

− y2
3 sin y1 cos y1) − θ̂3 (sinx1 − sin y1)

− θ̂4e2 + µ
(
Θ + ‖θ̂‖

) (
e2

‖e‖2

)
+ (d2 + η2) sgn(e2),

u3(t) = θ̂5 (cos x1 − cos y1) + µ
(
Θ + ‖θ̂‖

) (
e3

‖e‖2

)
+ (d3 + η3) sgn(e3), (9)

where θ̂ = [θ̂1, θ̂2, θ̂3, θ̂4, θ̂5]T is an estimation for un-
known parameter vector θ; µ = min {ηi}, i = 1, 2, 3,
ηi > 0 is a constant gain, if ei = 0, then ei/‖e‖2 = 0,
i = 1, 2, 3 and sgn(.) is the signum function.

In order to deal with the unknown parameters of
the CFGs, the following update laws are proposed:

˙̂
θ1(t) = e2(sinx1 cos x1 − sin y1 cos y1

− sinx1 + sin y1), θ̂1(0) = θ̂10,

˙̂
θ2(t) = e2(x2

3 sinx1 cos x1

− y2
3 sin y1 cos y1), θ̂2(0) = θ̂20,

˙̂
θ3(t) = −e2 (sinx1 − sin y1) , θ̂3(0) = θ̂30,

˙̂
θ4(t) = −e2

2, θ̂4(0) = θ̂40,

˙̂
θ5(t) = e3 (cos x1 − cos y1) , θ̂5(0) = θ̂50, (10)

where θ̂10, θ̂20, θ̂30, θ̂40 and θ̂50 are initial values of the
update parameters θ̂1, θ̂2, θ̂3, θ̂4 and θ̂5, respectively.

Theorem 1 If the synchronization error system
(6) is controlled by the control signals (9) with the
update laws (10), then the state trajectories of the
synchronization error system (6) will converge to zero
in the finite time

T1 =
√

2
µ

(
1
2

(
‖e(0)‖2 + ‖θ̂(0) − θ‖2

))1/2

.

Therefore, two non-autonomous chaotic CFGs (2) and
(3) with identical unknown parameters, model un-
certainties and external disturbances will be synchro-
nized in the finite time T1.

Proof See Appendix A.
Remark 1 If the error system’s parameters θ

vary with time in a bounded range, the variations of
the parameters will lead to some parameter uncertain-
ties. These uncertainties can be regarded as extra
model uncertainties added to the system uncertain-
ties. It is worth noticing that the designed controller
(9) and (10) can be simply extended to this case as
follows:

One can rewrite the error system (6) in the fol-
lowing form:

ė(t) = f(x, y, e, t) + F (x, y, e, t)θ

+ ∆f(x, y, e, t) − u(t), (11)

where f(x, y, e, t) = [e2, 0, 0]T, F (x, y, e, t) =
diag{sinx1 cos x1 − sin y1 cos y1 − sinx1 + sin y1,

x2
3 sinx1 cos x1 − y2

3 sin y1 cos y1, sinx1 − sin y1, −e2,

cos x1 − cos y1}, and ∆f(x, y, e, t) = [∆f1(x, t) −
∆g2(y, t),∆f2(x, t)−∆g2(y, t),∆f3(x, t)−∆g3(y, t)]T.

In the case of time-varying parameters, we have

θ = θ̄ + ∆θ, (12)

where θ̄ is the unknown nominal value of θ and ∆θ,
which is norm-bounded by a known constant, is the
time-varying part of θ.

Inserting θ from (12) into the right hand side of
(11), it yields

ė(t) = f(x, y, e, t) + F (x, y, e, t)
(
θ̄ + ∆θ

)
+ ∆f(x, y, e, t) − u(t)

= f(x, y, e, t) + F (x, y, e, t)θ̄

+ ∆f̃(x, y, e, t) − u(t), (13)

where

∆f̃(x, y, e, t) = F (x, y, e, t)∆θ + ∆f(x, y, e, t)

is the new bounded uncertain part of the error system.
One can see that the new error system (13) is in

the form of the error system (6). Therefore, the pro-
posed finite-time controller is also valid for the case of
the time-varying unknown parameters and the bounds
of the uncertainties can be modified according to the
bounds of ∆θ and F (x, y, e, t).

2.3. Finite-time synchronization of two

different CFGs

Here, it is assumed that the unknown parame-
ters of the CFGs are not in the same values. Con-
sider the following master and slave CFGs with the
unknown parameters of different values, model uncer-
tainties and external disturbances.

Master system

ẋ1 = x2 + ∆f1(x, t),

ẋ2 =
(
Em + n2

mx2
3

)
sinx1 cos x1

− (Em + gm/lm) sin x1 − bmx2 + ∆f2(x, t),

ẋ3 = (αm cos x1 − Fm) /Im

− am sinwmt + ∆f3(x, t); (14)
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slave system:

ẏ1 = y2 + ∆g1(y, t) + u1(t),

ẏ2 =
(
Es + n2

sy
2
3

)
sin y1 cos y1 − (Es + gs/ls) sin y1

− bsy2 + ∆g2(y, t) + u2(t),

ẏ3 = (αs cos y1 − Fs) /Is − as sinwst

+ ∆g3(y, t) + u3(t); (15)

where Em, nm, gm, lm, bm, αm, Fm, Im, am, wm, Es,
ns, gs, ls, bs, αs, Fs, Is, as and ws are positive con-
stants.

Subtracting Eq. (15) from Eq. (14), we obtain the
synchronization error dynamics as follows:

ė1 = e2 + ∆f1(x, t) − ∆g1(y, t) − u1(t),

ė2 =
(
Em + n2

mx2
3

)
(sinx1 cos x1)

− (Em + gm/lm) sin x1 − bmx2

−
(
Es + n2

sy
2
3

)
(sin y1 cos y1)

+ (Es + gs/ls) sin y1 − bsy2 + ∆f2(x, t)

− ∆g2(y, t) − u2(t),

ė3 = (αm cos x1 − Fm) /Im − am sinwmt

− (αs cos y1 − Fs) /Is − as sinwst

+ ∆f3(x, t) − ∆g3(y, t) − u3(t). (16)

Assumption 3 It is assumed that the pa-
rameters Em, nm, gm, lm, bm, αm, Fm, Im, am,
wm, Es, ns, gs, ls, bs, αs, Fs, Is, as and ws

are fully unknown in advance. Furthermore, con-
sider θm = [θm1, θm2, θm3, θm4, θm5, θm6, θm7]T =
[Em, n2

m, gm/lm, bm, αm/Im, Fm, |am|]T and θs =
[θs1, θs2, θs3, θs4, θs5, θs6, θs7]T = [Es, n

2
s , gs/ls, bs,

αs/Is, Fs, |as|]T to be the unknown parameter vectors
of the CFG master and slave systems, respectively.
Then, θm and θs are bounded by

‖θm‖ ≤ Θm and ‖θs‖ ≤ Θs, (17)

where Θm and Θs are given positive constants.
To guarantee the finite-time stability of the error

system (16), the following control inputs are designed:

u1(t) = e2 + µ
(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

) (
e1

‖e‖2

)
+ (d1 + η1) sgn(e1),

u2(t) = θ̂m1 (sinx1 cos x1 − sinx1)

− θ̂s1 (sin y1 cos y1 − sin y1)

+ θ̂m2x
2
3 sinx1 cos x1 − θ̂s2y

2
3 sin y1 cos y1

− θ̂m3 sinx1 + θ̂s3 sin y1 − θ̂m4x2 + θ̂s4y2

+ µ
(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

) (
e2

‖e‖2

)

+ (d2 + η2) sgn(e2),

u3(t) = θ̂m5 cos x1 − θ̂s5 cos y1 − θ̂m6 + θ̂s6 + (θ̂m7

+ θ̂s7)sgn(e3) + µ
(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

)
×

(
e3

‖e‖2

)
+ (d3 + η3) sgn(e3), (18)

where θ̂m = [θ̂m1, θ̂m2, θ̂m3, θ̂m4, θ̂m5, θ̂m6, θ̂m7]T and
θ̂s = [θ̂s1, θ̂s2, θ̂s3, θ̂s4, θ̂s5, θ̂s6, θ̂s7]T are estimations
for θm and θs, respectively and if ei = 0, then
ei/‖e‖2 = 0, i = 1, 2, 3.

Subsequently, the following update laws are pro-
posed:
˙̂
θm1(t) = e2 (sinx1 cos x1 − sinx1) , θ̂m1(0) = θ̂m10;
˙̂
θm2(t) = e2x

2
3 sinx1 cos x1, θ̂m2(0) = θ̂m20;

˙̂
θm3(t) = −e2 sinx1, θ̂m3(0) = θ̂m30;
˙̂
θm4(t) = −e2x2, θ̂m4(0) = θ̂m40;
˙̂
θm5(t) = e3 cos x1, θ̂m5(0) = θ̂m50;
˙̂
θm6(t) = −e3, θ̂m6(0) = θ̂m60;
˙̂
θm7(t) = |e3| , θ̂m7(0) = θ̂m70;
˙̂
θs1(t) = e2 (− sin y1 cos y1 + sin y1) , θ̂s1(0) = θ̂s10;
˙̂
θs2(t) = −e2y

2
3 sin y1 cos y1, θ̂s2(0) = θ̂s20;

˙̂
θs3(t) = e2 sin y1, θ̂s3(0) = θ̂s30;
˙̂
θs4(t) = −e2y2, θ̂s4(0) = θ̂s40;
˙̂
θs5(t) = −e3 cos y1, θ̂s5(0) = θ̂s50;
˙̂
θs6(t) = e3, θ̂s6(0) = θ̂s60;
˙̂
θs7(t) = |e3| , θ̂s7(0) = θ̂s70; (19)

where θ̂m10, θ̂m20, θ̂m30, θ̂m40, θ̂m50, θ̂m60, θ̂m70, θ̂s10,
θ̂s20, θ̂s30, θ̂s40, θ̂s50, θ̂s60 and θ̂s70 are the initial values
of the update parameters θ̂m1, θ̂m2, θ̂m3, θ̂m4, θ̂m5, θ̂m6,
θ̂m7, θ̂s1, θ̂s2, θ̂s3, θ̂s4, θ̂s5, θ̂s6 and θ̂s7, respectively.

Theorem 2 Suppose that the control inputs
(18) with the update laws (19) are used to control
the synchronization error system (16). Consequently,
the state trajectories of the error system (16) converge
to zero in the finite time

T2 =
√

2
µ

(
1
2

(
‖e(0)‖2 + ‖θ̂m(0) − θm‖2

+ ‖θ̂s(0) − θs‖2
))1/2

.

This means that two chaotic non-autonomous CFGs
(15) and (16) with fully unknown parameters of dif-
ferent values, model uncertainties and external dis-
turbances are finite-time synchronized with the con-
vergence time T2.

Proof See Appendix B.
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3. Illustrative examples

In this section, some numerical simulations are
presented to validate the robustness and feasibility of
the proposed finite-time controllers in the synchro-
nization of two identical/different uncertain chaotic
non-autonomous CFGs with unknown parameters.
The simulations are performed using MATLAB soft-
ware. Two illustrative examples are presented. In the
examples, the following uncertainties and disturbances
are applied:

∆f1(x, t) = −0.3 sin(x1) − 0.2 cos(5t),

∆f2(x, t) = −0.2 cos(3x2) − 0.25 sin(4t),

∆f3(x, t) = −0.2 cos(2x3) + 0.25 sin(4t),

∆g1(y, t) = 0.25 cos(2y1) − 0.3 sin(3t),

∆g2(y, t) = −0.2 sin(5y2) + 0.25 cos(2t),

∆g3(y, t) = −0.35 cos(6y3) + 0.25 sin(3t). (20)

In all simulations, the values of the constant gains
η1, η2 and η3 are chosen to be 1 and the initial values
of all update parameters are set to be 0.5. Note that
the control inputs are activated at t = 5 s.

3.1. Example 1

In this example, the efficient performance of the
proposed finite-time controller (9) and (10) in synchro-
nization of two identical CFGs with unknown param-
eters is illustrated. The parameters n = 3, l = 1.5,
a = 0.8, w = 1, E = 0.3, b = 0.4, I = 1.2, α = 0.611,
F = 0.3 and g = 9.8 are selected for both master
and slave systems. Θ is chosen to be equal to 10.
The initial values of the master and slave systems are
chosen as x1(0) = 0.3, x2(0) = 0.2, x3(0) = 0.1 and
y1(0) = 0.01, y2(0) = 0.02, y3(0) = 0.03, respectively.
According to Theorem 1 and Eqs. (9) and (10), the
proper control laws are applied.

The state trajectories of the synchronization error
system (6) are depicted in Fig. 3. It is clear that the
synchronization errors converge to zero quickly. This
means that by applying the proposed robust adap-
tive controller, the state trajectories of the uncertain
CFG slave system (3) approach the state trajectories
of the uncertain CFG master system (2) in a finite
time. The time history of the update parameter vec-
tor θ̂ is revealed in Fig. 4. One can see that all the
update parameters converge to fixed values.

For comparison, the adaptive controller proposed
in Ref. [34] is used to synchronize two identical CFGs

with unknown parameters. Figures 5 and 6 show
the state trajectories of the error system (6) with
and without the uncertainties (20), respectively. It
can be seen that in the absence of the uncertainties
the synchronization errors converge to zero slowly.
However, when the uncertainties exist in the systems’
dynamics, the synchronization errors have permanent
oscillations and the synchronization purpose is not

Fig. 3. State trajectories of the synchronization error

system (6) with the controller of Eqs. (9) and (10).

Fig. 4. Time response of the update parameter vector θ̂

obtained by Eq. (10).

Fig. 5. State trajectories of the synchronization error

system (6) with the adaptive controller in Ref. [34] and

without uncertainties.

Fig. 6. State trajectories of the synchronization error sys-

tem (6) with the adaptive controller in Ref. [34] and the

uncertainties (20).
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completely achieved. In other words, the controller in
Ref. [34] is not robust against the system uncertain-
ties. On the other hand, our controller (9) and (10)
has both robustness against the uncertainties and fast
convergence properties.

3.2. Example 2

In this example, it is assumed that the unknown
parameters of the master and slave systems do not
have the same values. The parameters nm = 4,
lm = 0.5, am = 0.4, wm = 2, Em = 0.5, bm = 0.3,
Im = 0.5, αm = 0.432, Fm = 0.35 and gm = 10
are selected for the master system and the parame-
ters ns = 3, ls = 1.5, as = 0.8, ws = 1, Es = 0.3,
bs = 0.4, Is = 1.2, αs = 0.611, Fs = 0.3 and
gs = 9.8 are chosen for the slave system. Θm and
Θs are set to be 26 and 10, respectively. The ini-
tial values of the master and slave systems are se-
lected as x1(0) = 0.2, x2(0) = 0.1, x3(0) = 0.3 and
y1(0) = 0.03, y2(0) = 0.01, y3(0) = 0.02, respectively.
Using Eqs. (18) and (19) and Theorem 2, suitable con-
trol laws are employed.

Figure 7 displays the state trajectories of the syn-
chronization error system (16). Obviously, the syn-
chronization errors reach zero rapidly. This indicates
that when the proposed robust adaptive controller
(18) and (19) is turned on, the state trajectories of
the uncertain CGF slave system (15) get to the state
trajectories of the uncertain CGF master system (14)
as quickly as possible. The time histories of the update
parameter vectors θ̂m and θ̂s are depicted in Figs. 8
and 9, respectively. It is seen that all the update pa-
rameters are bounded.

To compare the performance of the proposed tech-
nique, the adaptive synchronization strategy intro-
duced in Ref. [34] is used to synchronize two CFGs
with different parameters. System synchronization er-
rors with and without the uncertainties (20) appear
in Figs. 10 and 11, respectively. One can see that the
proposed adaptive controller in Ref. [34] can asymp-
totically synchronize two different CFGs without the
uncertainties. However, when the uncertainties (2)
are present in the dynamics of the systems, there are
nonzero steady state oscillations in the error trajec-
tories. This means that the proposed adaptive con-
troller in Ref. [34] is not robust to system uncertain-
ties. However, the method proposed in our paper can
robustly and quickly synchronize two different CFGs
in the presence of model uncertainties and external
disturbances in both the master and slave systems.

Fig. 7. State trajectories of the synchronization error

system (16) with the controller of Eqs. (18) and (19).

Fig. 8. Time response of the update parameter vector θ̂m

obtained by Eq. (19).

Fig. 9. Time response of the update parameter vector θ̂s

obtained by Eq. (19).

Fig. 10. State trajectories of the synchronization error

system (16) with the adaptive controller in Ref. [34] and

without uncertainties.

Fig. 11. State trajectories of the synchronization error

system (16) with the adaptive controller in Ref. [34] and

the uncertainties (20).
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4. Conclusions

This paper is dedicated to solving the problem of
robust finite-time synchronization of non-autonomous
centrifugal flywheel governors (CFGs). It is assumed
that the parameters of both master and slave CFGs
are completely unknown with identical/different val-
ues. Besides, unknown model uncertainties and ex-
ternal disturbances are added to the systems’ dy-
namics. Based on the finite-time control theory and
some update parameters, proper finite-time robust
adaptive controllers are derived. Numerical simula-
tions reveal that the proposed controllers can synchro-
nize two identical/different chaotic non-autonomous
CFGs, even when the parameters of the systems are
fully unknown and some uncertainties are present in
the dynamics of both master and slave systems. The
efficiency and benefits of our method are highlighted
in comparison with an adaptive method proposed in
the literature. Note that the proposed finite-time con-
trollers can be extended to the synchronization of com-
plex multi-scroll chaotic systems,[35−40] which remains
the future work of the author.

Appendix A

Before proving Theorem 1, the following lemmas,
which are needed to prove the finite-time stability of
the error system, are presented.

Lemma 1[41] Suppose that a continuous,
positive-definite function V (t) satisfies the following
differential inequality:

V̇ (t) ≤ −pV ξ(t) ∀ t ≥ t0, V (t0) ≥ 0, (A1)

where p > 0, 0 < ξ < 1 are two constants. Then, V (t)
satisfies the following inequality:

V 1−ξ(t) ≤ V 1−ξ(t0) − p( 1 − ξ)(t − t0), t0 ≤ t ≤ t1,

(A2)

and V (t) ≡ 0, ∀ t ≥ t1 with t1 given by

t1 = t0 +
V 1−ξ(t0)
p(1 − ξ)

. (A3)

Lemma 2 For α1, α2, . . . , αn ∈ R, the following
inequality holds:

|α1| + |α2| + |αn| ≥
√

α2
1 + α2

2 + ... + α2
n. (A4)

Proof of Theorem 1 Choose a positive definite
function in the form of

V1(t) =
1
2
‖e‖2 +

1
2
‖θ̂ − θ‖2. (A5)

Taking the time derivative of V (t), one has

V̇1(t) =
3∑

i=1

eiėi +
(
θ̂ − θ

)T ˙̂
θ. (A6)

Inserting ėi from Eq. (6) into the above equation, we
obtain

V̇1(t) = e1 (e2 + ∆f1(x, t) − ∆g1(y, t) − u1(t)) + e2 (E (sinx1 cos x1 − sin y1 cos y1 − sinx1 + sin y1)

+ n2
(
x2

3 sinx1 cos x1 − y2
3 sin y1 cos y1

)
− (g/l) (sin x1 − sin y1) − be2 + ∆f2(x, t) − ∆g2(y, t) − u2(t)

)
+ e3 (α/I (cos x1 − cos y1) + ∆f3(x, t) − ∆g3(y, t) − u3(t)) + (θ̂ − θ)T ˙̂

θ. (A7)

It is obvious that

V̇1(t) ≤ e1 (e2 − u1(t)) + |e1| |∆f1(x, t) − ∆g1(y, t)| + e2 (E (sinx1 cos x1 − sin y1 cos y1 − sinx1 + sin y1)

+ n2
(
x2

3 sinx1 cos x1 − y2
3 sin y1 cos y1

)
− (g/l) (sin x1 − sin y1) − be2 − u2(t)

)
+ |e2| |∆f2(x, t)

− ∆g2(y, t)| + e3 (α/I (cos x1 − cos y1) − u3(t)) + |e3| |∆f3(x, t) − ∆g3(y, t)| + (θ̂ − θ)T ˙̂
θ. (A8)

Using θT ˙̂
θ = Ee2 (sinx1 cos x1 − sin y1 cos y1 − sinx1 + sin y1)+n2e2

(
x2

3 sinx1 cos x1 − y2
3 sin y1 cos y1

)
(g/l)e2

(sinx1 − sin y1) − be2
2 + (α/I) e3 (cos x1 − cos y1) and Assumption 1, we have

V̇1(t) ≤ e1 (e2 − u1(t)) + d1 |e1| − e2u2(t) + d2 |e2| − e3u3(t) + d3 |e3| + θ̂T ˙̂
θ. (A9)

Using the control inputs u1(t), u2(t) and u3(t) from Eq. (9), one has

V̇1(t) ≤ e1

(
e2 −

[
e2 + µ

(
Θ + ‖θ̂‖

) (
e1

‖e‖2

)
+ (d1 + η1) sgn(e1)

])
+ d1 |e1|
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− e2

[
θ̂1 (sinx1 cos x1 − sin y1 cos y1 − sinx1 + sin y1) + θ̂2

(
x2

3 sinx1 cos x1 − y2
3 sin y1 cos y1

)
− θ̂3 (sinx1 − sin y1) − θ̂4e2 + µ

(
Θ + ‖θ̂‖

) (
e2

‖e‖2

)
+ (d2 + η2) sgn(e2)

]
+ d2 |e2|

− e3

[
θ̂5 (cos x1 − cos y1) + µ

(
Θ + ‖θ̂‖

) (
e3

‖e‖2

)
+ (d3 + η3) sgn(e3)

]
+ d3 |e3| + θ̂T ˙̂

θ. (A10)

Based on θ̂T ˙̂
θ = θ̂1e2 (sinx1 cos x1 − sin y1 cos y1 − sinx1 + sin y1) + θ̂2e2

(
x2

3 sinx1 cos x1 − y2
3 sin y1 cos y1

)
+θ̂3e2 (sinx1 − sin y1) − θ̂4e

2
2 + θ̂5e3 (cos x1 − cos y1) , e2

1/‖e‖2 + e2
2‖e‖2 + e2

3‖e‖2 = 1 and eisgn(ei) = |ei|, one
has

V̇1(t) ≤ −η1 |e1| − η2 |e2| − η3 |e3| − µ
(
Θ + ‖θ̂‖

)
. (A11)

From Lemma 2, we can obtain

V̇1(t) ≤ −µ‖e‖ − µ
(
Θ + ‖θ̂‖

)
. (A12)

On the basis of Assumption 2 and ‖θ̂ − θ‖ ≤ ‖θ̂‖ + ‖θ‖ ≤ ‖θ̂‖ + Θ, we have

V̇1(t) ≤ −µ
(
‖e‖ + ‖θ̂ − θ‖

)
. (A13)

Again according to Lemma 2, one has

V̇1(t) ≤ −
√

2µ

(
1
2

(
‖e‖2 + ‖θ̂ − θ‖2

))1/2

= −
√

2µV
1/2

1 (t). (A14)

Therefore, from Lemma 1, the error system trajectories e(t) of Eq. (6) will converge to zero, in the finite time

T1 =
√

2
µ

(
1
2

(
‖e(0)‖2 + ‖θ̂(0) − θ‖2

))1/2

.

Hence, the chaotic non-autonomous CFGs (2) and (3) with identical unknown parameters, model uncertainties
and external disturbances will be finite-time synchronized and the proof is achieved completely.

Appendix B

Proof of Theorem 2 Selecting a positive definite function in the form of

V2(t) =
1
2
‖e‖2 +

1
2
‖θ̂m − θm‖2 +

1
2
‖θ̂s − θs‖2

and taking its derivative with respect to time, one has

V̇2(t) =
3∑

i=1

eiėi +
(
θ̂m − θm

)T ˙̂
θm +

(
θ̂s − θs

)T ˙̂
θs. (B1)

Replacing for ėi from Eq. (16), we have

V̇2(t) = e1 (e2 + ∆f1(x, t) − ∆g1(y, t) − u1(t)) + e2

((
Em + n2

mx2
3

)
(sinx1 cos x1) − (Em + gm/lm) sin x1

−bmx2 −
(
Es + n2

sy
2
3

)
(sin y1 cos y1) + (Es + gs/ls) sin y1 − bsy2 + ∆f2(x, t) − ∆g2(y, t) − u2(t)

)
+ e3((αm cos x1 − Fm) /Im − am sinwmt − (αs cos y1 − Fs) /Is − as sinwst + ∆f3(x, t) − ∆g3(y, t)

− u3(t)) + (θ̂m − θm)T ˙̂
θm + (θ̂s − θs)T

˙̂
θs. (B2)

It is clear that

V̇2(t) ≤ e1 (e2 − u1(t)) + |e1| |∆f1(x, t) − ∆g1(y, t)| + e2

((
Em + n2

mx2
3

)
(sinx1 cos x1) − (Em + gm/lm) sin x1
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−bmx2 −
(
Es + n2

sy
2
3

)
(sin y1 cos y1) + (Es + gs/ls) sin y1 − bsy2 − u2(t)

)
+ |e2| |∆f2(x, t) − ∆g2(y, t)|

+ e3 ((αm cos x1 − Fm) /Im − (αs cos y1 − Fs) /Is − u3(t)) + |e3| (|am| + |as|) + |e3| |∆f3(x, t)

− ∆g3(y, t)| + (θ̂m − θm)T ˙̂
θm + (θ̂s − θs)T

˙̂
θs. (B3)

Using θT
m

˙̂
θm = Eme2 (sinx1 cos x1 − sinx1)+n2

me2

(
x2

3 sinx1 cos x1

)
−(gm/lm)e2 sinx1−bme2x2+(αm/Im) e3 cos x1−

(Fm/Im) e3 + |am| |e3|, θT
s

˙̂
θs = Ese2 (− sin y1 cos y1 + sin y1)−n2

se2

(
y2
3 sin y1 cos y1

)
+(gs/ls)e2 sin y1 + bse2y2 −

(αs/Is) e3 cos y1 − (Fs/Is) e3 + |as| |e3| and inequality (5), one obtains

V̇2(t) ≤ e1 (e2 − u1(t)) + d1 |e1| − e2u2(t) + d2 |e2| − e3u3(t) + d3 |e3| + θ̂T
m

˙̂
θm + θ̂T

s
˙̂
θs. (B4)

Using the control laws u1(t), u2(t) and u3(t) in Eq. (18), we have

V̇2(t) ≤ e1

(
e2 −

[
e2 + µ

(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

) (
e1

‖e‖2

)
+ (d1 + η1) sgn(e1)

])
+ d1 |e1|

− e2

[
θ̂m1 (sinx1 cos x1 − sinx1) − θ̂s1 (sin y1 cos y1 − sin y1) + θ̂m2x

2
3 sinx1 cos x1 − θ̂s2y

2
3 sin y1 cos y1

− θ̂m3 sinx1 + θ̂s3 sin y1 − θ̂m4x2 + θ̂s4y2 + µ
(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

) (
e2

‖e‖2

)
+ (d2 + η2) sgn(e2)

]

+ d2 |e2| − e3

[
θ̂m5 cos x1 − θ̂s5 cos y1 − θ̂m6 + θ̂s6 +

(
θ̂m7 + θ̂s7

)
sgn(e3)

+ µ
(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

) (
e3

‖e‖2

) ]
+ (d3 + η3) sgn(e3) + d3 |e3| + θ̂T

m
˙̂
θm + θ̂T

s
˙̂
θs. (B5)

By means of θ̂T
m

˙̂
θm = θ̂m1e2 (sinx1 cos x1 − sinx1) + θ̂m2e2

(
x2

3 sinx1 cos x1

)
− θ̂m3 sinx1 − θ̂m4e2x2 +

θ̂m5e3 cos x1 −θ̂m6e3 + θ̂m7 |e3|, θ̂T
s

˙̂
θs = θ̂s1e2 (− sin y1 cos y1 + sin y1) − θ̂s2e2

(
y2
3 sin y1 cos y1

)
+ θ̂s3e2 sin y1 +

θ̂s4e2y2 −θ̂s5e3 cos y1 − θ̂s6e3 + θ̂s7 |e3|, e2
1/‖e‖2 + e2

2/‖e‖2 + e2
3/‖e‖2 = 1 and eisgn(ei) = |ei|, we have

V̇2(t) ≤ −η1 |e1| − η2 |e2| − η3 |e3| − µ
(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

)
. (B6)

Using the fact in Lemma 2 yields

V̇2(t) ≤ −µ‖e‖ − µ
(
Θm + ‖θ̂m‖ + Θs + ‖θ̂s‖

)
. (B7)

By Assumption 2 and inequality ‖θ̂i − θi‖ ≤ ‖θ̂i‖ + ‖θi‖ ≤ ‖θ̂i‖ + Θi, i = m, s, one obtains

V̇2(t) ≤ −µ
(
‖e‖ + ‖θ̂m − θm‖ + ‖θ̂s − θs‖

)
. (B8)

Using Lemma 2, we have

V̇2(t) ≤ −
√

2µ

(
1
2

(
‖e‖2 + ‖θ̂m − θm‖2 + ‖θ̂s − θs‖2

))1/2

= −
√

2µV
1/2

2 (t). (B9)

As a result, according to Lemma 1, the error trajectories e(t) of Eq. (16) will converge to zero, in the finite time

T2 =
√

2
µ

(
1
2

(
‖e(0)‖2 + ‖θ̂m(0) − θm‖2 + ‖θ̂s(0) − θs‖2

))1/2

.

Therefore, the chaotic non-autonomous CFGs (14) and (15) with unknown parameters of different values,
model uncertainties and external disturbances will be finite-time synchronized and the proof is complete.
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