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Abstract
In recent years, researchers focused their attention on the construction of nonlocal product states
in multipartite quantum systems. This paper proposes a novel partitioning method for
multipartite quantum systems, aiming to improve the operation efficiency. Firstly, we divide 2n
subsystems into n parts two by two and implement orthogonality-preserving local measurement
on the partitioned composite systems. Subsequently, based on the partitioning mode, nonlocal
orthogonal product states in (C3)⊗6 and (C4)⊗6 are given. Finally, we construct nonlocal
orthogonal product states in (Cd)⊗2n and discuss the cases where d is odd and even. Our results
demonstrate the phenomenon of nonlocality without entanglement in a 2n-partite system.

Keywords: Hilbert space, quantum nonlocal, multipartite systems, product basis

1. Introduction

The local discrimination of quantum states is a fundamental
problem in quantum information theory. When a set of ortho-
gonal states cannot be distinguished through local operations
and classical communication (LOCC), it is referred to as loc-
ally indistinguishable [1, 2]. Entangled states are nonlocal
because they violate Bell inequalities [3–5]. Locally indistin-
guishable sets also exhibit quantum nonlocality, which is dif-
ferent from Bell nonlocality. Consequently, locally indistin-
guishable sets have found useful application in quantum cryp-
tography primitives such as quantum secret sharing [6] and
quantum information masking [7, 8].

In 1999, Bennett et al [9] firstly presented an initial res-
ult by demonstrating a LOCC indistinguishable orthogonal
product basis in C3 ⊗C3. Under their influence many ortho-
gonal product sets with quantum nonlocality were provided
in bipartite [10, 11] and multipartite systems [12–26]. Zhang
et al [27] found a set of orthogonal product states which
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cannot be locally distinguished in Cm⊗Cn, where 3⩽ m⩽ n.
Afterwards, significant advancements were achieved in mul-
tipartite quantum systems. For instance, Zhang et al [28]
provided an important method to verify the local indistin-
guishability of orthogonal product states and showed that no
matter which local party goes first to be operated, only trivial
measurements can be performed. Subsequently, Zhen et al
[29] successfully proposed the current minimum number of
locally indistinguishable quantum states in Cd1 ⊗Cd2 ⊗ ·· ·⊗
Cdn , for 3⩽ d1 ⩽ d2 · · ·⩽ dn and n⩾ 3. In addition, Cao et al
[30] presented the locally stable sets and proved that the num-
ber of quantum states constructed by them reaches the lower
bound of the cardinality.

Nowadays, nonlocal multipartite orthogonal product states
continue to be extensively researched. However, the research
mentioned above focused on performing local measurements
on a single quantum subsystem, and researchers did not
consider the case of local measurements on two or mul-
tiple subsystems. Hence, we investigate whether local meas-
urements can be performed on two subsystems. In this
paper, we provide a new partitioning method in multipartite
quantum systems. Under this division scheme, two subsystems
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constitute a composite system. We handle the two subsystems
together, improving work efficiency. Thus, this method is very
practical and effective. Orthogonal quantum states that involve
entanglement will increase the difficulty of distinguishing
them using LOCC. Therefore, the without entanglement non-
local orthogonal product states are based on the partitioning
condition. We construct a set of orthogonal product states in
specific quantum systems, including(C3)⊗6 and (C4)⊗6. Then
we separately discuss the situations in (Cd)⊗2n where d is odd
and even.

The organization of the paper is as follows. In section 2,
we provide a new partitioning method in multipartite quantum
systems. In section 3, we construct a set of orthogonal product
states in specific quantum systems: (C3)⊗6 and (C4)⊗6. In
section 4, under the divide method, we construct a set of ortho-
gonal product states in (Cd)⊗2n which is indistinguishable
by LOCC. We conclude the paper with a brief summary in
section 5.

2. Preliminaries

In this section, we present a novel partitioning scheme for mul-
tipartite quantum systems. Subsequently, we provide a com-
prehensive review of the relevant knowledge used in this paper.

Consider a composite quantum system H=
⊗2n

k=1Hk,
where n⩾ 3, and dim Hk ⩾ 3 for k= 1,2, . . . ,2n. We divide
those 2n subsystems into n parts two by two, i.e.,

(H⊗H)⊗ (H⊗H)⊗ ·· ·⊗ (H⊗H)⊗ (H⊗H)︸ ︷︷ ︸
2n

. (1)

For convenience, the above formula is written as:

(H⊗H)1 ⊗ (H⊗H)2 ⊗ ·· ·⊗ (H⊗H)n−1 ⊗ (H⊗H)n . (2)

We take the computational basis {|i⟩}d−1
i=0 for each sub-

system Hk. On the composite system H⊗H, we denote the
basis {|i⟩⊗ |j⟩}d−1

i,j=0 as {|ij⟩}
d−1
i,j=0. Throughout this paper, we

exclusively focus on pure states, and we do not normalize
states for simplicity.

A positive operator valued measure (POVM) on Hilbert
spaceH is a set of positive operators {Em =M†

mMm} such that∑
mEm = Im, where each Em is called a POVM element, and

I is the identity operator on H.
A measurement is nontrivial if not all the POVM elements

are proportional to the identity operator. Otherwise, the meas-
urement is trivial. If all the POVMs are trivial, the set of ortho-
gonal quantum states cannot be distinguished by LOCC.

Based on this particular division, we perform local POVM
measurements on two subsystems. Consider a pair of multi-
partite orthogonal product states {|ϕi⟩, |ϕj⟩}d−1

i,j=0 whose n− 1
composite subsystems are not mutually orthogonal except for
the tth composite subsystem. A local POVM is preformed on
the tth composite subsystem and identity operators are pre-
formed on the rest of the n− 1 composite subsystems. The
postmeasurement states {I1 ⊗ ·· ·⊗Mt⊗ ·· ·In|ϕi⟩} and {I1 ⊗

·· ·⊗Mt⊗ ·· ·In|ϕj⟩} should be mutually orthogonal, we have

⟨ϕi|
(
I1 ⊗ ·· ·⊗M†

tMt⊗ ·· ·In
)
|ϕj⟩= 0. (3)

Each POVM element M†
tMt can be expressed as a d2 ×

d2 matrix Et in the computational basis of {|ij⟩}d−1
i,j=0.

From equation (3) , we obtain the elements of matrix Et.
Furthermore, we can determine whether the POVM measure-
ment is trivial. This approach enables us to proficiently analyze
andmanipulate the composite system as a higher-dimensional.
This is pivotal for comprehending the characteristics of mul-
tipartite quantum systems and holds implications for diverse
quantum information processing tasks. Consequently, our
research predominantly operates within this division.

3. Construction of nonlocal states in (C3)⊗6

and(C4)⊗6

Under the partitioning method described in section 2, compos-
ite quantum system (C3)⊗6 and (C4)⊗6 divided into(

C3 ⊗C3
)
1
⊗
(
C3 ⊗C3

)
2
⊗
(
C3 ⊗C3

)
3

(4)

and (
C4 ⊗C4

)
1
⊗
(
C4 ⊗C4

)
2
⊗
(
C4 ⊗C4

)
3
. (5)

We first construct a nonlocal set of orthogonal product states
in (C3 ⊗C3)1 ⊗ (C3 ⊗C3)2 ⊗ (C3 ⊗C3)3.

Theorem 1. The set of orthogonal product quantum states
is distinguishable by LOCC in (C3 ⊗C3)1 ⊗ (C3 ⊗C3)2 ⊗
(C3 ⊗C3)3 :

|α1
±i,0⟩= |i0⟩1(|00⟩± |i0⟩)2|00⟩3,

|α2
±i,0⟩= |00⟩1|i0⟩2(|00⟩± |i0⟩)3,

|α3
±i,0⟩= (|00⟩± |i0⟩)1|00⟩2|i0⟩3,

|β1
±m,i⟩= |mi⟩1(|m0⟩± |mi⟩)2|00⟩3,

|β2
±m,i⟩= |00⟩1|mi⟩2(|m0⟩± |mi⟩)3,

|β3
±m,i⟩= (|m0⟩± |mi⟩)1|00⟩2|mi⟩3,

|γ1
±i,1⟩= (|i1⟩± |i2⟩)1|00⟩2|00⟩3,

|γ2
±i,1⟩= |00⟩1(|i1⟩± |i2)⟩)2|00⟩3,

|γ3
±i,1⟩= |00⟩1|00⟩2(|i1⟩± |i2⟩)3, (6)

where 0⩽ m⩽ 2, 1⩽ i ⩽ 2.

Proof. In order to prove the nonlocality of the set of mul-
tipartite orthogonal product states, we perform local POVM
on these states such that the postmeasurement states remain
orthogonal. Due to the symmetric of the states, we only need
to prove that any orthogonality-preserving local POVM per-
formed on the first composite subsystem must be trivial. We
perform a local POVM measurement on the first composite
subsystems and apply identity operator to the second and third
composite subsystems. Let the POVM measurement operator
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Π1 describe a general orthogonality-preserving measurement
on the first composite subsystem. Each POVM element con-
sists of nine block matrices. Assume one element in Π1 is as
follows,  A00 A01 A02

A10 A11 A12

A20 A21 A22

 . (7)

Each block matrix Apq(0⩽ p,q⩽ 2) can be written as a 3×
3 matrix on the {|0⟩, |1⟩, |2⟩} basis, apq,00 apq,01 apq,02

apq,10 apq,11 apq,12
apq,20 apq,21 apq,22

 . (8)

First, we consider the zero entries of matrices Apq(p= q).
A pair of multipartite orthogonal product states, denoted
as |β1

+0,i⟩and |β2
+0,i⟩, where the first composite subsys-

tem are mutually orthogonal, while the second and third
composite subsystems are not mutually orthogonal. Since
the postmeasurement states M1 ⊗ I2 ⊗ I3|β1

+0,i⟩ and M1 ⊗
I2 ⊗ I3|β2

+0,i⟩ should be mutually orthogonal, we have
⟨β1

0,i|(Π1 ⊗ I2 ⊗ I3)|β2
0,i⟩= 0, which implies a00,0i = a00,i0 =

0. For |β1
+m,i⟩, |β1

+m,j⟩, we have the ability to acquire amm,ij =
amm,ji = 0, where 1⩽ i ̸= j⩽ 2. For |α1

+i,0⟩, |γ1
+i,1⟩, we can

obtain aii,01 = aii,10 = 0,aii,02 = aii,20 = 0.
Second, we seek the zero elements of matrices Apq(p ̸= q ̸=

0). Considering the states |α1
+i,0⟩ and |α1

+j,0⟩ (1⩽ i ̸= j ⩽ 2),
we directly get aij,00 = aji,00 = 0. For |γ1

+i,1⟩, |γ1
+j,1⟩, we are

able to abtain

aij,11 = aji,11 = 0,aij,22 = aji,22 = 0,

aij,21 = aji,12) = 0,aij,12 = aji,21 = 0. (9)

For |α1
+i,0⟩, |γ1

+j,1⟩, we know

aij,01 = aji,10 = 0,aij,02 = aji,20 = 0, (10)

where 1⩽ i ̸= j ⩽ 2.
Third, we want to find the zero elements of matrices

Ap0,A0p (p ̸= 0). For state |β1
+0,i⟩, |α1

+k,0⟩ (1⩽ i,k⩽ 2),
a0k,i0 = ak0,0i = 0 can be deduced. From states |α1

+i,0⟩ and
|α2

+i,0⟩, we directly deduce that a0i,00 = ai0,00 = 0. For state
|β1

+i,1⟩, |β1
+i,2⟩, |γ2

+i,1⟩, we can obtain

a0i,01 = ai0,10 = 0,a0i,02 = ai0,20 = 0. (11)

For state |β1
+0,i⟩, |γ1

+k,1⟩ (1⩽ i,k⩽ 2), we have

a0k,i1 = ak0,1i = 0,a0k,i2 = ak0,2i = 0. (12)

All the discussion above shows that all off-diagonal elements
are equal to 0.

Last, we have the relations among the diagonal entries of
Π1. For instance, from the states |α3

±i,0⟩, we know

⟨α3
+i,0|Π1 ⊗ I2 ⊗ I3|α3

−i,0⟩= 0, (13)

Table 1. Off-diagonal elements of K1.

States Off-diagonal elements Range

|β1
+0,i ⟩, |β2

+0,i⟩ a00,0i,a00,i0
1⩽ i⩽ 3|α1

+i,0⟩, |ζ1+i,1⟩ aii,02,aii,20,aii,03,aii,30
|α1

+i,0⟩, |φ1
+i,1⟩ aii,01,aii,10

|β1
+m,i ⟩, |β1

+m,j⟩ amm,ij,amm,ji 1⩽ i ̸= j⩽ 3

|α1
+i,0⟩, |α1

+j,0⟩ aij,00,a00,ji

1⩽ i ̸= j⩽ 3

|ζ1+i,1⟩, |ζ1+j,1⟩
aij,22, aji,22, aij,33, aji,33
aij,23, aji,32, aij,32, aji,23

|α1
+i,0⟩, |ζ1+j,1⟩ aij,02,aji,20,aij,03,aji,30

|ζ1+i,1⟩, |φ1
+j,1⟩ aij,21,aji,12,aij,13,aji,31

|α1
+i,0⟩, |φ1

+j,1⟩ aij,01,aji,10
|φ1

+i,1⟩, |φ1
+j,1⟩ aij,11,aji,11

|β1
+i,1⟩, |φ2

+i,1⟩ a0i,01,ai0,10
1⩽ i⩽ 3|α1

+i,0⟩, |α2
+i,0⟩ a0i,00,ai0,00

|β1
+i,2⟩, |β1

+i,3⟩, |ζ2+i,1⟩ a0i,02,ai0,20,a0i,03,ai0,30

|β1
+0,i⟩, |ζ1+k,1⟩ a0k,i2,ak0,2i,a0k,i3,ak0,3i

1⩽ i,k⩽ 3|β1
+0,i⟩, |φ1

+k,1⟩ a0k,i1,ak0,1i
|β1

+0,i⟩, |α1
+k,0⟩ a0k,i0,ak0,0i

which results in a00,00 = aii,00. For states |β3
±m,i⟩, we can get

⟨β3
+m,i|Π1 ⊗ I2 ⊗ I3|β3

−m,i⟩= 0, (14)

which implies amm,00 = amm,ii. That is, all the diagonal ele-
ments are equal. Thus, nobody can start with a nontrivial meas-
urement on any subsystem. This completes the proof.

Then,we consider another quantum system (C4)⊗6 and pro-
pose a nonlocal set of orthogonal product states in (C4 ⊗
C4)1 ⊗ (C4 ⊗C4)2 ⊗ (C4 ⊗C4)3.

Theorem 2. The set of orthogonal product quantum states
in (C4 ⊗C4)1 ⊗ (C4 ⊗C4)2 ⊗ (C4 ⊗C4)3 cannot be perfectly
distinguished by LOCC:

|φ1
±i,1⟩= |i1⟩1|00⟩2|00⟩3,

|φ2
±i,1⟩= |00⟩1|i1⟩2|00⟩3,

|φ3
±i,1⟩= |00⟩1|00⟩2|i1⟩3,

|α1
±i,0⟩= |i0⟩1 (|00⟩± |i0⟩)2 |00⟩3,

|α2
±i,0⟩= |00⟩1|i0⟩2 (|00⟩± |i0⟩)3 ,

|α3
±i,0⟩= (|00⟩± |i0⟩)1 |00⟩2|i0⟩3,

|β1
±m,i⟩= |mi⟩1 (|m0⟩± |mi⟩)2 |00⟩3,

|β2
±m,i⟩= |00⟩1|mi⟩2 (|m0⟩± |mi⟩)3 ,

|β3
±m,i⟩= (|m0⟩± |mi⟩)1 |00⟩2|mi⟩3,

|ζ1±i,1⟩= (|i2⟩± |i3⟩)1 |00⟩2|00⟩3,
|ζ2±i,1⟩= |00⟩1 (|i2⟩± |i3⟩)2 |00⟩3,
|ζ3±i,1⟩= |00⟩1|00⟩2 (|i2⟩± |i3⟩)3 , (15)

where 0⩽ m⩽ 3, 1⩽ i⩽ 3.
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Proof. Let the POVM K1 describe a general orthogonality-
preserving measurement on the first composite subsystem. By
employing the proof methodology outlined in theorem 1, we
can demonstrate that all off-diagonal elements of K1 are equal
to 0 (further details are provided in table 1).

From the states |α3
±i,0⟩, we know

⟨α3
+i,0|K1 ⊗ I2 ⊗ I3|α3

−i,0⟩= 0, (16)

which implies amm,00 = amm,ii. For state |β3
±m,i⟩, we know

⟨β3
+m,i|K1 ⊗ I2 ⊗ I3|β3

−m,i⟩= 0, (17)

which implies a00,00 = aii,00. In conclusion, all parties can-
not start with a nontrivial measurement. The set of orthogonal
product states is indistinguishable by LOCC.

4. Construction of nonlocal states in (Cd)⊗2n

According to theorems 1 and 2, we propose the general con-
struction on (Cd)⊗2n. When the dimension of the subsystem
is odd or even, the constructed quantum state will also exhibit
differences. We first show our construction in (Cd⊗Cd)1 ⊗
·· ·⊗ (Cd⊗Cd)n, where d is odd.

Theorem 3. The following orthogonal product states in (Cd⊗
Cd)1 ⊗ ·· ·⊗ (Cd⊗Cd)n cannot be perfectly distinguished by
LOCC:

|αw±i,0⟩= |00⟩1|00⟩2 · · · |00⟩w−1|i0⟩w (|00⟩± |i0⟩)w+1 · · · |00⟩n−1|00⟩n,
|βw±m,i⟩= |00⟩1|00⟩2 · · · |00⟩w−1|mi⟩w (|m0⟩± |mi⟩)w+1 · · · |00⟩n−1|00⟩n,
|γw±i,l⟩= |00⟩1|00⟩2 · · · |00⟩w−1 (|il⟩± |i(l+ 1)⟩)w |00⟩w+1 · · · |00⟩n−1|00⟩n,
|αn±i,0⟩= (|00⟩± |i0⟩)1 |00⟩2 · · · |00⟩n−1|i0⟩n,
|βn±m,i⟩= (|m0⟩± |mi⟩)1 |00⟩2 · · · |00⟩n−1|mi⟩n,
|γn±i,l⟩= |00⟩1|00⟩2 · · · |00⟩n−1 (|il⟩± |i(l+ 1)⟩)n , (18)

where 0⩽ m⩽ d− 1, 1⩽ i⩽ d− 1,1⩽ w⩽ n− 1,n⩾
3,1⩽ l⩽ d− 2, and l is odd.

Proof. We exploit the triviality of an orthogonality-preserving
POVM to infer quantum nonlocality. It is noteworthy that the
sets remain invariant under cyclic permutation. So we only
need to prove that the measurement applied to the (Cd⊗Cd)1
system is trivial. Let B1 be a general orthogonal-preserving
measurement opertor on (Cd⊗Cd)1. Assume one element in
B1 is as follows: A00 · · · A0(d−1)

...
. . .

...
A(d−1)0 · · · A(d−1)(d−1)

 . (19)

The matrix B1 is composed of block matrix Apq (0⩽ p,q⩽
d− 1). Each block matrix Apq can be written as a (d− 1)×
(d− 1) matrix on the {|0⟩, |1⟩, . . . , |d− 1⟩} basis : apq,00 · · · apq,0(d−1)

...
. . .

...
apq,(d−1)0 . . . apq,(d−1)(d−1)

 . (20)

Since one performs local POVM on these states such
that the post measurement states remain orthogonal, all off-
diagonal elements of B1 are equal to zero. The details are
presented in table 2.

Furthermore, from the states |α3
±i,0⟩, we know a00,00 =

aii,00. For state |β3
±m,i⟩, we can get amm,00 = amm,ii. That is, all

diagonal elements in B1 are equal.
In a word, B1 is proportional to the identity matrix, which

implies that one cannot start with a nontrivial measurement
on the first combined subsystem. Thus, the states cannot be
distinguished by LOCC.

For even-dimensional subsystems, the constructed
quantum state is different from that in the case of odd dimen-
sion. Next, we need more complex construction methods to
construct quantum states in (Cd⊗Cd)1 ⊗ ·· ·⊗ (Cd⊗Cd)n,
where d is even.

Theorem 4. The following set of orthogonal product states
in (Cd⊗Cd)1 ⊗ ·· ·⊗ (Cd⊗Cd)n cannot be perfectly distin-
guished by LOCC,
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Table 2. Off-diagonal elements of B1 (d is odd).

States Zero elements Range

|β1
+0,i ⟩, |β2

+0,i⟩ a00,0i,a00,i0 1⩽ i⩽ d− 1|α1
+i,0⟩, |γ1

+i,l⟩ aii,0l,aii,l0,aii,0(l+1),aii,(l+1)0

|β1
+m,i ⟩, |β1

+m,j⟩ amm,ij,amm,ji 1⩽ i ̸= j⩽ d− 1

|α1
+i,0⟩, |α1

+j,0⟩ aij,00,a00,ji 1⩽ i ̸= j⩽ d− 1

|γ1
+i,l⟩, |γ1

+j,h⟩ aij,lh, aji,hl, aij,(l+1)(h+1), aji,(h+1)(l+1) aij,l(h+1), aji,(h+1)l, aij,(l+1)h, aji,h(l+1) 1⩽ i ̸= j⩽ d− 1 l,h is odd
|α1

+i,0⟩, |α2
+i,0⟩ a0i,00,ai0,00 1⩽ i⩽ d− 1|β1

+i,l⟩, |β1
+i,l+1⟩, |γ2

+i,l⟩ a0i,0l,ai0,l0,a0i,0(l+1),ai0,(l+1)0

|β1
+0,i⟩, |γ1

+k,l⟩ a0k,il,ak0,li,a0k,i(1+1),ak0,(1+1)i 1⩽ i,k⩽ d− 1|β1
+0,i⟩, |α1

+k,0⟩ a0k,i0,ak0,0i

Table 3. Off-diagonal elements of B1 (d is even).

States Zero elements Range

|β1
+0,i ⟩, |β2

+0,i⟩ a00,0i,a00,i0
1⩽ i⩽ d− 1|α1

+i,0⟩, |ζ1+i,t⟩ aii,0(t+1),aii,(t+1)0,aii,0(t+2),aii,(t+2)0

|α1
+i,0⟩, |φ1

+i,1⟩ aii,01,aii,10

|β1
+m,i ⟩, |β1

+m,j⟩ amm,ij,amm,ji 1⩽ i ̸= j⩽ d− 1

|α1
+i,0⟩, |α1

+j,0⟩ aij,00,a00,ji

1⩽ i ̸= j⩽ d− 1
|α1

+i,0⟩, |ζ1+j,t⟩ aij,0(t+2),aji,(t+2)0,aij,0(t+1),aji,(t+1)0

|α1
+i,0⟩, |φ1

+j,1⟩ aij,01,aji,10
|φ1

+i,1⟩, |φ1
+j,1⟩ aij,11,aji,11

|ζ1+i,t⟩, |φ1
+j,1⟩ aij,(t+1)1,aji,1(t+1),aij,1(t+2),aji,(t+2)1

|ζ1+i,t⟩, |ζ1+j,s⟩

aij,(t+2)(s+2), aji,(s+2)(t+2) 1⩽ i ̸= j⩽ d− 1 t,s is odd
aij,(t+1)(s+1), aji,(s+1)(t+1)

aij,(t+2)(s+1), aji,(s+1)(t+2)

aij,(t+1)(s+2), aji,(s+2)(t+1)

|β1
+i,1⟩, |φ2

+i,1⟩ a0i,01,ai0,10
1⩽ i⩽ d− 1|α1

+i,0⟩, |α2
+i,0⟩ a0i,00,ai0,00

|β1
+i,(t+1)⟩, |β1

+i,(t+2)⟩, |ζ2+i,t⟩ a0i,0t,ai0,t0,a0i,0(t+1),ai0,(t+1)0

|β1
+0,i⟩, |ζ1+k,t⟩ a0k,i(t+1),ak0,(t+1)i,a0k,i(t+2),ak0,(t+2)i

1⩽ i,k⩽ d− 1|β1
+0,i⟩, |φ1

+k,1⟩ a0k,i1,ak0,1i
|β1

+0,i⟩, |α1
+k,0⟩ a0k,i0,ak0,0i

|φw±i,1⟩= |00⟩1|00⟩2 · · · |00⟩w−1|i1⟩w|00⟩w+1 · · · |00⟩n−1|00⟩n,
|αw±i,0⟩= |00⟩1|00⟩2 · · · |00⟩w−1|i0⟩w (|00⟩± |i0⟩)w+1 · · · |00⟩n−1|00⟩n,
|βw±m,i⟩= |00⟩1|00⟩2 · · · |00⟩w−1|mi⟩w (|m0⟩± |mi⟩)w+1 · · · |00⟩n−1|00⟩n,
|ζw±i,t⟩= |00⟩1|00⟩2 · · · |00⟩w−1 (|i(t+ 1)⟩± |i(t+ 2)⟩)w |00⟩w+1 · · · |00⟩n−1|00⟩n,
|φn±i,1⟩= |00⟩1|00⟩2 · · · |00⟩n−1|i1⟩n,
|αn±i,0⟩= (|00⟩± |i0⟩)1 |00⟩2 · · · |00⟩n−1|i0⟩n,
|βn±m,i⟩= (|m0⟩± |mi⟩)1 |00⟩2 · · · |00⟩n−1|mi⟩n,
|ζn±i,t⟩= |00⟩1|00⟩2 · · · |00⟩n−1 (|i(t+ 1)⟩± |i(t+ 2)⟩)n , (21)
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where 0⩽ m⩽ d− 1,1⩽ i⩽ d− 1,1⩽ w⩽ n− 1, n⩾
3,0< t< d− 2, t is odd and d is even.

Proof. It is important to note that these sets remain invariant
under cyclic permutation. So we only need to prove that the
measurement on the (Cd⊗Cd)1 system is trivial.

Similar to the proof of theorem 3, one performs local
POVM on these states such that the postmeasurement states
remain orthogonal, all off-diagonal elements of B1 are equal
to zero. The details are presented in table 3.

Furthermore, we shows that all diagonal elements in B1 are
equal. From the states |α3

±i,0⟩, we can get a00,00 = aii,00. For
state |β3

±m,i⟩, we obtain amm,00 = amm,ii. That is, all diagonal
elements in B1 are equal.

In conclusion, no individual party can commence with a
nontrivial measurement. The set of orthogonal product states
is indistinguishable by LOCC.

5. Conclusion

In summary, the majority of papers investigating local
indistinguishability focuses on performing POVM local
measurement on a single quantum subsystem. In contrast, this
paper proposed a novel partitioning method for multipartite
quantum systems. Our results deepen our understanging of the
structures of nonlocal sets. Under this partitioning scheme, we
conducted POVM local measurement on composite multiple
quantum systems. This approach had the potential to signific-
antly reduce workload by half, thereby enhancing operational
efficiency. Furthermore, we provided explicit expressions for
nonlocal orthogonal product states in (C3)⊗6 and (C4)⊗6.
Then, we presented a construction of nonlocal quantum states
orthogonal product states in (Cd)⊗2n (d is odd), and built
orthogonal product states in (Cd)⊗2n (d is even) which have
been proved to be nonlocal. In the future, we will explore the
construction of other nonlocal states in multipartite quantum
systems using this method.
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