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Abstract

This paper proposes a new approach to free-form cluster lens modeling that is inspired by the JPEG image
compression method. This approach is motivated specifically by the need for accurate modeling of high-
magnification regions in galaxy clusters. Existing modeling methods may struggle in these regions due to their
limited flexibility in the parameterization of the lens, even for a wide variety of free-form methods. This limitation
especially hinders the characterization of faint galaxies at high redshifts, which have important implications for the
formation of the first galaxies and even for the nature of dark matter. JPEG images are extremely accurate
representations of their original, uncompressed counterparts but use only a fraction of number of parameters to
represent that information. Its relevance is immediately obvious to cluster lens modeling. Using this technique, it is
possible to construct flexible models that are capable of accurately reproducing the true mass distribution using
only a small number of free parameters. Transferring this well-proven technology to cluster lens modeling, I
demonstrate that this “JPEG parameterization” is indeed flexible enough to accurately approximate an N-body
simulated cluster.
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1. Introduction

One of the most active research topics on high-redshift
galaxies is to measure the faint-end of their luminosity function
(LF). The potential downturn (commonly referred to as the
“turnover”) in the number density of faint galaxies at high
redshifts has important implications to many of the following
questions: (1) what are the sources that reionized the universe?
(2) how do baryonic processes affect star formation efficiency
in low-mass halos? and (3) what are the properties of dark
matter?

Cluster lenses provide the most promising prospect of
detecting the turnover in the faint-end LF because of their
high magnification of background sources over modest areas
(�1 arcmin2). This advantage drastically reduces the investment
in observational time required, compared with conventional
blank, deep fields (Postman et al. 2012; Lotz et al. 2017; Coe
et al. 2019). Currently, the potential turnover in the LF is likely
still a few magnitudes out of reach of even the state-of-the-art
analyses of the deepest cluster-lensed deep field data (Atek et al.
2015a, 2015b, 2018; Laporte et al. 2016; Bouwens et al. 2017;
Livermore et al. 2017; Ishigaki et al. 2018; Kawamata et al.
2018). The main challenge to measuring many valuable intrinsic
properties of the lensed sources is to construct accurate lens
models for magnification correction.

From the perspective of a user of lens models, because the
underlying truth is unknown, concurrence among lens models
is generally taken as an indication of their reliability.
Conversely, where lens models show significant differences
is also where users start losing confidence in the models. From
the point of view of a modeler, the accuracy with which various
lens modeling methods recover the mass distribution of a
cluster can be evaluated through end-to-end tests and modeling
challenges. In an impressive effort, Meneghetti et al. (2017)
performed exactly such an end-to-end test using two mock
clusters, one constructed by superimposing parametric func-
tions together (Ares), and another by an N-body simulation
(Hera). They constructed a realistic set of data “observing”
each mock cluster, employed various modeling techniques to
determine their mass distributions, and then compared the
recovered mass distributions with the actual distributions.
Meneghetti et al. (2017) find that the best performing method
(GLAFIC, Oguri 2010) is able to reconstruct the magnification
of Hera to within 10% in the median at a true magnification of
μtrue≈3, and within 30% in the median at μtrue≈10 using
strong lensing constraints.
However, one should note that this test is the first of its kind,

and so is justifiably simplistic compared with the real universe.
For example, Hera is constructed from a dark matter-only N-
body simulation. In reality, a non-negligible fraction of the
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cluster mass resides in the hot intracluster gas, and it is not
obvious that its spatial distribution should be well-described by
any of the commonly chosen parametric functions (e.g.,
Navarro–Frenk–White (NFW) profile Navarro et al. 1996),
especially for merging cluster–cluster collisions, where the gas
and dark matter are displaced spatially (Clowe et al. 2006).

Fundamentally, magnification μ depends on the gradients of
the scaled deflection field a,
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where δij is the Kronecker delta, and q is the angular position
on the sky. The scaled deflection field in turn depends on the
surface mass density Σ,
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where x is the physical position on the lens plane, Dds is the
angular diameter distance between the deflector (the cluster
lens) and the source, and Ds is the angular diameter distance
between the observer (z= 0) and the source. The (in)flexibility
in the mass model is translated into that of the deflection field,
which ultimately limits the accuracy of the modeled
magnification.

For parametric models, their flexibility is inherently limited
because the parametric halos typically have few free parameters
and thus have restricted shapes. For most free-form, or
nonparametric models, however, flexibility is still somewhat
limited by the particular choice of basis functions that one
places on a grid (Diego et al. 2005; Liesenborgs et al. 2006).
This is because the mass model is a summation of the basis
functions that are required to be nonnegative. As a result, mass
models can only be steeper if and only if there is an increase of
the total mass of a model. The only truly nonparametric model
involves grids of independent pixels, each having its own free
parameter (see e.g., Saha & Williams 2004; Coles et al. 2018).
Such a model indeed has unlimited flexibility, but the number
of free parameters will be unfeasibly large for any practical
spatial resolution required to study galaxy clusters. These
limitations found in the current landscape of cluster lens
modeling call for a new approach.

This paper proposes a new free-form parameterization that
can model mass distributions of galaxy clusters with high
degrees of accuracy, efficiency, and flexibility. This approach is
inspired by the widely used JPEG image compression
algorithm, which uses a linear combination of two-dimensional
cosine functions to model the original image. The fact that
JPEG image compression is able to accurately and efficiently
approximate all kinds of images makes it an interesting case to
consider for modeling the mass distributions within galaxy
clusters.

Compared with existing free-form modeling methods that
use local basis functions (e.g., Gaussian functions by WSLAP
+ Diego et al. 2005, 2007; Sendra et al. 2014, and Plummer
functions by GRALE Liesenborgs et al. 2006), the global JPEG
basis functions have the advantage of capturing both small- and
large-scale features while using fewer free parameters. For
conventional free-form models to better capture small-scale
features, it is necessary to shrink the size of the basis functions.
At the same time, adjacent basis functions must have sufficient
overlap. Otherwise, the lens model will have “clumpy”
artifacts. To prevent this problem, the number of basis
functions, hence the number of free parameters, must increase.
As I will show in this paper, the JPEG parameterization
circumvents this cost by using sinusoidal fluctuations of
different frequencies that span the entire field of view.
This paper is structured as follows. In Section 2, I explain the

core idea of JPEG image compression that is relevant to lens
modeling. Next, I describe the lens parameterization, and apply
it to model an N-body simulated cluster first using all the pixels
of the deflection field as constraint, and then using only 200
random pixels. Section 3 presents the best-fit deflection field
models and the reconstructed mass and magnification models.
In Section 4 I discuss the strengths and improvement in
efficiency of the JPEG parameterization compared with
existing free-form lens modeling methods. In Section 5, I
provide a summary of the methodology and results.

2. Methodology

2.1. Utility of JPEG Image Compression for Cluster Lens
Modeling

I begin by describing the utility of JPEG image for
encapsulating information in an efficient way. Without dwell-
ing on every detail of how it works, this section provides a brief
description that is relevant to cluster lens modeling.
Depending on the compression ratio, JPEG images can be

extremely accurate approximations of their original, uncom-
pressed counterparts. They are often visually indistinguishable
from the original images while taking up only 10–20 times less
storage space.
The original, uncompressed image is first divided into 8×8

pixel blocks. Each of them is approximated separately using the
same treatment. A color image consists of a luminosity and
a color component. Here, only the approximation for the
former is used as an example. Panel (b) of Figure 1 shows an
8 pixel×8 pixel image of a hand-drawn figure smoothed with
a Gaussian filter.
At the heart of JPEG compression is a set of 8×8=64

cosine basis functions,
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where i and j are integers ranging from 0 to 7, while x and y are
pixel coordinates and each take eight equally separated values
from 0 to 2π. 14 of the basis functions ( j= 0 and i>0, and
i=0 and j>0) consist of two-dimensional cosine functions
of various wavelengths that propagate in the x- and y-
directions, respectively. Forty-nine of them (i>0 and j>0)
are the products of each of these cosine basis functions
oscillating in the x-direction with each of those oscillating in
the y-direction. The remaining one (i=j=0) is constant over
all pixels and simply act as a “floor.” Panel (b) of Figure 1
shows what the basis functions look like.

As with most image files, the input image has pixel values
ranging from 0 to 255. However, the basis functions range from
−1 to +1. Therefore, to approximate the image with those
basis functions, it has to be centered around 0 by subtracting
128 throughout. In the end, all pixel values are raised by 128 to
give the final output.

Each basis function has its own coefficient, which can be
negative or positive. They are calculated such that the linear
combination of all the basis functions gives the best
approximation. This technique central to JPEG image com-
pression is called “discrete cosine transform.”

In our example, we found that the original image is best
reproduced with the particular set of coefficients listed in panel
(c) of Figure 1. In fact, the original image (panel a) of Figure 1)
is perfectly reproduced after rounding the pixel values to
integers. This is expected because the cosine functions are
orthogonal, and so the transformation is invertible. In real-
world applications, short-wavelength components can often be

discarded without degrading the approximate image much, thus
reducing the storage space needed. As one can see, the short-
wavelength coefficients are typically smaller in Figure 1(c)). In
addition, the human eye is even less sensitive to color changes
than to brightness changes. Therefore, compression in color
space can be even more aggressive than in luminosity without
making much noticeable difference.
This subsection briefly demonstrated how JPEG compres-

sion works. For the presented case, the number of free
parameters (coefficients), even at high compression, is of the
order of the number of pixels. By contrast, in the setting of
cluster lens modeling, which I will introduce in the next
subsection, a usable lens model should be at least a few
hundred pixels across, which means the number of pixels is of
the order of a hundred thousand.
Fortunately, as abrupt pixel-to-pixel variations in general are

not common in cluster lenses, the number of free parameters can
be set drastically lower than the number of pixels, at the expense
of ensuring that the information on the smallest spatial scale is
correct. Ideally, the number of free parameters should not greatly
exceed the number of constraints available, which is about a few
hundred for a well-studied Frontier Field-like cluster including
weak lensing constraints. This is because models that have many
more free parameters than constraints tend to show large
erroneous fluctuations in unconstrained regions.

2.2. Example Simulated Cluster

To illustrate how a JPEG parameterization would work with
a cluster mass distribution, I use as an example the lensing

Figure 1. Brief illustration of the JPEG image compression method. a): The original Gaussian-smoothed hand-drawn image. It has a size of 8 pixels by 8 pixels. b):
The 64 basis functions used in JPEG image compression. Each basis function is the product of a two-dimensional cosine function varying in the x-direction and one in
the y-direction. Products of short-wavelength functions are useful at capturing small-scale features in the image, and vice versa. Each basis function is 8 pixels by
8 pixels across. c): The optimal coefficients of the basis functions such that the original image is best reproduced. The background shading of each sub-panel denotes
the absolute amplitude of that coefficient. In this case, the replication is perfect after rounding off the decimals because the cosine basis functions are orthogonal, and
so the transformation is invertible. In real-world applications, short-wavelength components can often be discarded to save storage space without significantly
degrading the image quality.
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cluster Hera, which is identified in a collisionless N-body
cosmological simulation (Planelles et al. 2014). It is used in
Meneghetti et al. (2017) to compare how well various lens
modeling methods work. The cluster is located at a redshift of
z=0.507 and has a total mass of M=9.4×1014h−1 Me. Its
virial region is well resolved with ≈10 million dark matter
particles. For this study, the central 2 22×2 22 region of its
surface mass density is rebinned to 500×500 pixels. Panel
(K ) in Figure 2 shows its dimensionless surface mass density
(convergence κ) at z=9. The scaled deflection field (panels
(A) and (F)) is then computed pixel-by-pixel.

2.3. Parameterization of Cluster Mass Distribution

In this study, I will experiment with modeling the surface
mass density of clusters using 20×20=400 cosine basis
functions, which have the same form as in Equation (3), except
i and j now range from 0 to 19. Their coefficients can be
positive or negative—allowing for greater flexibility than
existing free-form lens parameterizations. Individual weighted
basis functions may have negative mass at certain regions, but
the first basis function, which has i=j=0, can act as a floor,
and “raise” the final mass model out of negative mass values
provided there are sufficient constraints.

2.3.1. Fitting the Entire Deflection Field: Model-1

The full set of coefficients that best represents the surface
mass density is determined in an iterative process (referred to as
optimization thereafter). I derive it by fitting to the deflection
field because in practice, that, along with the source positions,
are what is being directly constrained by the strong lensing
observations (other observational constraints such as weak
lensing shear and relative magnification among multiple
images are related to derivatives of the deflection field). The
total absolute difference between the true and the model
deflection field is minimized using the SLSQP algorithm in
scipy.minimize with all initial coefficients equal zero. The
resultant best-fit model is denoted as Model-1.

To speed up the optimization of the lens model, instead of
integrating the deflection field from the mass model at each
step, the deflection field of each of these basis functions are
computed in advance, and are simply weighted by their
coefficients and then summed to produce the overall deflection
field model at each step. Note that, unlike the models
constructed in Meneghetti et al. (2017), this model is not
derived by trying to match mock observables based on a cluster
mass distribution. Instead, the mass distribution is determined
by directly fitting the deflection field. Therefore, the results for
Model-1 only demonstrate the best achievable outcome using a
JPEG-like representation.

2.3.2. Fitting the Sampled Deflection Field: Model-2

While Model-1 is optimized over all 250,000 pixels, in
practice, lensing constraints are available over a much smaller
number of points within the overall high-magnification area. As
such, it is useful to consider a representation which is more
consistent with what one would derive from actual lensing
constraints. For this reason, I optimize the deflection field
model for Hera at only 200 sample points, which roughly
equals the number of multiple images in a well-observed
cluster. This best-fit model is denoted as Model-2. Like Model-
1, Model-2 also consists of 400 basis functions. The 200 points
of constraint are randomly and uniformly distributed within a
central circular region of 7 2 radius. The placement of these
sampling points covers most of the critical curves at z=9, and
acts as a heuristic approximation to the spatial distribution of
multiple images (including radial images) of sources over a
range of redshifts. Actual multiple images are not distributed
uniformly. They tend to straddle the critical curves and
concentrate around the more massive galaxies. For applications
to real data, it is expected the lens models would be better
constrained in regions where there are a higher number density
of multiple images.

3. Results

3.1. Accuracy and Precision of Model-1

Panels (B) and (G) in Figure 2 show the horizontal and
vertical components of the best-fit deflection field model at
z=9, respectively. All the features of the deflection field are
accurately reproduced with the exception of those near high-
density, compact halos. The differences between the true and
model deflection field can be seen more clearly in panels (D) and
(I), where the contrast is increased by 50 times and color-coded.
In regions where multiple images are present, the difference is in
general within 1″. The difference is largest (≈6″) near the central
regions of the most massive halos. These discrepancies arise
because small-scale features such as the cores of galaxy halos
cannot be accurately reproduced by even the basis functions with
the shortest “wavelengths.” In this case, one half of the shortest
wavelength equals 7″, which is the smallest “feature size” that
can be modeled by 20×20 basis functions. Any structures
smaller than this length scale cannot be modeled. The number of
free parameters are chosen such that it is slightly higher than the
typical number of constraints available in a well-studied lensing
cluster. As a result, the magnitude of the deflection is
underestimated near the high-density, compact regions.
The same problem is evident from panel (N) of Figure 2,

which shows the percentage difference between the true and
best-fit convergence at z=9. The true convergence is in
general reproduced to within a few percent, but can be
underestimated by >10% at the cores of galaxy halos. Some
local over-estimation around an isolated halo toward the
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Figure 2. Comparing the true deflection field (first row: αx, second row: αy), convergence κ (third row), and magnification μ (fourth row) of an N-body simulated
cluster, Hera, with those of Model-1 and Model-2 representations. The first column shows the true quantities; the second shows the best-fit model constructed by
minimizing the total difference between the true and model deflection field; the third shows the best-fit model constructed by minimizing the difference in deflection at
only 200 randomly sampled locations; the fourth and fifth columns highlight the differences between the models and the truth. Values in panels A to C, F to H, and K
to M are denoted by the color scales on the left while those in the difference panels are denoted by the color scales on the right. Values of all panels in the fourth row
are denoted by the same color bar at the bottom. The first best-fit model is constructed by minimizing the total difference in deflection (second column). It
demonstrates that the parameterization with cosine basis functions is indeed flexible enough to accurately capture most details of the lens. In terms of deflection, the
discrepancy (panels (D) and (I)) is typically less than 1″ with the exception for regions immediately next to the core regions of galaxy halos, where the discrepancy can
reach 6″. This is because the cosine basis functions are unable to capture any details smaller than half the shortest wavelength, which is 7″ in this case. This same
problem is evident in panel (N), which shows the percentage difference between the true (panel K ) and the model convergence (panel L), where all the core regions of
galaxy halos are underestimated by >10%. The global mass model, however, is accurate to within a few percent. The true magnification (panel P) is also mostly
accurately captured by the model (panel Q), with the exception of small-scale fluctuations. There is neither significant systematic discrepancies in the location of the
critical curves nor over large-scale, low-magnification regions. The second best-fit model is constructed by minimizing the difference in deflection at only 200
locations. The positions are randomly and uniformly distributed within a central circular region to imitate a sampled constraint of the deflection field with multiply
lensed galaxies. The discrepancies between this sampled model and the truth is slightly larger in the constraint region but still retains most of the features. Beyond the
constrained region, the best-fit model shows large fluctuations, as smoothness is not a criterion implemented in the optimization process. The color bar for
magnification at the bottom is roughly linear between −10 and +10, and is logarithmic beyond this range. All quantities are calculated at a source redshift of z=9.
Each panel spans a field of view of 2 22×2 22.
(A color version of this figure is available in the online journal.)
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bottom of the field of view is caused by the inability to
reproduce highly elliptical galaxy halos given the current
number of basis functions (a larger number of basis functions
will better reproduce small-scale features, including ellipticity).

The magnification map is accurately reproduced except the
smallest features, as shown in panels (P), (Q), and (S) of
Figure 2. There is neither significant systematic offsets in the
location of the critical curves nor in large-scale, low-
magnification regions. Figure 3 plots, pixel-by-pixel, the model
magnification versus the true magnification. The median model
magnification is in general accurate to within 10% to
μtrue=40 with only slight systematic deviation of a few
percent beyond μtrue>20. Following the convention of
Meneghetti et al. (2017), precision is defined as the 25th and
75th percentiles of the distribution of μ–μtrue, which is within
10% up to μtrue=10% and 30% up to μtrue=30.

3.2. Accuracy and Precision of Model-2

Figure 2 also compares the true deflection field, conv-
ergence, and magnification with those of Model-2. It shows

larger differences from the truth than the one optimized using
all pixels, but still recovers most of the prominent features
within the constrained region. We also remark that there are no
regions with formally negative mass densities inside the
constrained region, even though we do not explicitly force
this to be the case. Beyond where constraints exist, the best-fit
model shows large fluctuations as smoothness is not a criterion
in the optimization process.
The right panel of Figure 3 shows the comparison between

the model and the true magnification for pixels within the
constrained region. Model-2 shows a larger dispersion
compared with Model-1. The median model magnification is
still accurate to within 10% up to 40×magnification. However,
the precision of Model-2 degrades much more quickly—the
25th–75th percentile exceeds 10% and 30% difference at
magnification of 5×and 12×, respectively.

4. Discussion

What has been demonstrated in this paper is simply a direct
fit of a simulated surface mass density with the cosine basis

Figure 3. Model vs. true magnification. The colored surface density plot shows the distribution of pixels. Left: the best-fit model constructed by minimizing the total
difference between the true and model deflection field (Model-1). Right: the best-fit model constructed by minimizing the difference in deflection at 200 random
locations (Model-2). Only the constrained region is shown for Model-2. The green line shows the median model magnification as a function of true magnification. The
green shaded region shows the distribution within the 25th and 75th percentiles. The solid black line is the one-to-one line. The dashed and the dotted black lines
denote ±10% and ±30% deviation from the true magnification, respectively. The median magnification of Model-1 shows a slight underestimation beyond a true
magnification of 20 but mostly remains within 10% accurate all the way out to 40. The precision (green shaded area) is within 10% below a true magnification of 10,
and within 30% below 30. With much fewer constraints, the median of Model-2 is similarly accurate to 10% in the median up to 40 times magnification. However, the
precision degrades much more quickly—the 25th–75th percentile exceeds 10% of the true magnification beyond a magnification of 5, and 30% beyond a
magnification of 12. This plot is made following Figures 23 and 24 in Meneghetti et al. (2017) for convenient comparison.
(A color version of this figure is available in the online journal.)
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functions. By no means is it a working lens modeling code.
Nevertheless, it shows the capability of this “JPEG” approach,
which so far appears to be a promising choice of parameteriza-
tion for free-form lens modeling. The biggest hurdle needed to
be overcome to make this proof of concept into a functioning
lens modeling code is to optimize the lens model with lensing
constraints. This will be described in a future paper (D. Lam
et al. 2019, in preparation).

4.1. Comparison with other Free-form Hera Models

A significant point of this study is to present an approach that
efficiently encapsulates information about the surface mass
density of a galaxy cluster. Therefore, it is useful to compare
our approach to others used in the literature. The present JPEG
representation of the Hera cluster makes use of 400 free
parameters.

Here I compare it with the six free-form models from
Meneghetti et al. (2017). In that study, a number of lens
modeling methods are benchmarked by reconstructing lens
models for Hera using simulated lensing constraints. 19
background galaxies are strongly lensed into 65 multiple
images, and additional background galaxies are weakly lensed
with a surface number density of ≈14 arcmin−2.

The Bradac–Hoag model, constructed using the method
SWUnited (Bradač et al. 2005, 2009), has 5497 free
parameters. These free parameters correspond to values in the
gravitational potential over the same number of points. These
points are distributed over an iterative, multi-resolution grid
which is coarse in the cluster outskirts where constraints are
sparse, and fine in the cluster center, where the brightest cluster
galaxies and most multiple images reside. In addition to the 65
multiple images, this model is also constrained by 2102 weak
lensing ellipticity measurements.

Two out of three variants of Diego models, and the Lam
model, constructed using the method WSLAP+ (Diego et al.
2005, 2007; Sendra et al. 2014), have 1027 free parameters.
WSLAP+ models the mass distribution primarily as the
summation of a grid of two-dimensional Gaussian functions.
The two Diego models and the Lam model aforementioned are
evaluated on regular grids. The third variant of the Diego
models is evaluated on an adaptive grid and has only 304 free
parameters. The grid of the adaptive Diego model has varying
resolution over the field of view. The resolution of the grid is
iteratively increased over regions where the previous optim-
ization step found more mass compared with other regions. The
adaptive grid allows the model to perform comparably with
regular-grid models using roughly only half the number of free
parameters. A second component of WSLAP+ accounts for
small-scale mass features, that is, cluster galaxies. All three
Diego models use the light profile of the cluster galaxies as the
second component while the Lam model uses an NFW
parameterization.

The number of free parameters in the set of GRALE
(Liesenborgs et al. 2006) models ranges from 600 to a couple
of thousands1 The mass model comprise of a uniform mass
sheet and a large number of projected Plummer spheres. In
addition to using multiple images as constraints, the GRALE
model is also constrained by “null space,” which are regions
where no strongly lensed galaxies are present.
In summary, the JPEG parameterization appears to be able to

capture features at both small- and large-scales while using
significantly fewer free parameters compared with most
existing free-form lens modeling methods. Although the
number of free parameters can be chosen arbitrarily, and that
the JPEG models presented here are constructed in an entirely
different way from the ones in Meneghetti et al. (2017), a brief
comparison nonetheless gives the reader a better idea of the
potential gain in efficiency that the JPEG approach has.

4.2. Progressive Optimization

Although not currently implemented, parameterizing the lens
model as a linear combination of cosine basis functions allows
convenient progressive optimization of the lens model. While
each of the two models takes 1.5 days to optimize on an
ordinary desktop computer with a 6-core, 3.5 GHz CPU and
8 GB of RAM, optimizing with lensing constraints will likely
take much longer. The reason is that the chi-squared “land-
scape” in the parameter space is likely to be much more
complex with lensing constraints, thus the optimization
algorithm will take longer to find the next direction of descent.
Progressive optimization mitigates this problem. To begin,

the lens model is only parameterized with a handful of long-
wavelength basis functions. Optimizing a small number of free
parameters will quickly yield a lens model that is roughly
correct on the large scale. These optimized coefficients can then
be used as the initial solution for the next optimization, which
adds a few shorter-wavelength basis functions to the model.
Using this strategy, the optimization algorithm will start
exploring the parameter space closer to the global minimum
compared with the case where it starts at some other arbitrary
or random locations, thus shortening the time required to reach
convergence.

5. Summary

In this paper, I propose a new approach to free-form cluster
lens modeling inspired by the parameterization used in JPEG
image compression. Unlike the conventional approach to free-
form cluster lens modeling, which places two-dimensional
basis functions on a grid, this approach uses orthogonal cosine

1 The initial number of free parameters range from 600 to 1000, which
increases during optimization. The exact final number of free parameters is not
stated in Meneghetti et al. (2017).
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functions of different wavelengths and their products as basis
functions.

This approach has the advantage of being able to capture a
wider range of mass gradients and feature sizes (from 2′ to 7″)
in the lens model while using a moderate number of free
parameters. As explained in Section 1, flexibility is key to
obtaining accurate magnification, which many other science
goals rely on, such as the exciting prospect of detecting faint-
end turnovers in the high-redshift galaxy LFs.

As a proof of concept, I demonstrate the capability of this
approach by directly fitting the deflection fields of 400 cosine
basis functions to that of an N-body simulated cluster, Hera
(Meneghetti et al. 2017). For a well-studied, Frontier Field-like
cluster, this amount of free parameters roughly matches that of
available constraints (including weak lensing constraints). The
overall morphology of the mock lens is accurately reproduced
except for the central regions of individual halos. This is
because the cosine basis functions are unable to capture any
details smaller than half of their shortest wavelength.

The accuracy of the best-fit model is quantified by the
median model magnification, which varies within 10% of the
true magnification out to a magnification of 40. The precision is
quantified by the 25th–75th percentile, which is within 10% up
to μtrue=10% and 30% up to μtrue=30.

A second, more realistic model is obtained by fitting the
basis functions to a sample of only 200 positions drawn
randomly from the strong lensing region and of use for
demonstrating use of the “JPEG approach” in a more realistic
setting. It has a similar accuracy within the constrained region
although precision degrades more quickly—the 25th–75th
percentile exceeds 10% and 30% at 5 and 12 times
magnification, respectively. These encouraging capabilities
show that this “JPEG lensing” approach could be a promising
technique in future cluster lens modeling.

In the future, I plan to reconstruct the simulated N-body
cluster, Hera, with the JPEG parameterization using multiple
images and weak lensing ellipticity measurements as con-
straints. Once that is demonstrated, a more streamlined
progressive optimization will be implemented, which will

potentially result in faster optimization and more accurate
models.

The author thanks Rychard Bouwens and Jose Diego for
valuable feedback on both the write-up and science of the
manuscript, Jori Liesenborgs, Liliya Wiliams, Dan Coe, and
Masamune Oguri for stimulating discussions, Massimo Mene-
ghetti for coordinating the HFF comparison project, and the
HFF community for contributing to the conversation with all
their collective efforts.

ORCID iDs

Daniel Lam https://orcid.org/0000-0002-6536-5575

References

Atek, H., Richard, J., Jauzac, M., et al. 2015a, ApJ, 814, 69
Atek, H., Richard, J., Kneib, J.-P., et al. 2015b, ApJ, 800, 18
Atek, H., Richard, J., Kneib, J.-P., et al. 2018, MNRAS, 479, 5184
Bouwens, R., Oesch, P., Illingworth, G., et al. 2017, ApJ, 843, 129
Bradač, M., Schneider, P., Lombardi, M., & Erben, T. 2005, A&A, 437, 39
Bradač, M., Treu, T., Applegate, D., et al. 2009, ApJ, 706, 1201
Clowe, D., Bradač, M., Gonzalez, A., et al. 2006, ApJ, 648, 109
Coe, D., Salmon, B., Bradač, M., et al. 2019, arXiv:1903.02002
Coles, J. P., Read, J. I., & Saha, P. 2018, GLASS: Parallel, free-form

gravitational lens modeling tool and framework, Astrophysics Source Code
Library, ascl:1806.009

Diego, J. M., Protopapas, P., Sandvik, H. B., & Tegmark, M. 2005, MNRAS,
360, 477

Diego, J. M., Tegmark, M., Protopapas, P., & Sandvik, H. 2007, MNRAS,
375, 958

Ishigaki, M., Kawamata, R., Ouchi, M., et al. 2018, ApJ, 854, 73
Kawamata, R., Ishigaki, M., Shimasaku, K., et al. 2018, ApJ, 855, 4
Laporte, N., Infante, L., Troncoso Iribarren, P., et al. 2016, ApJ, 820, 98
Liesenborgs, J., De Rijcke, S., & Dejonghe, H. 2006, MNRAS, 367, 1209
Livermore, R., Finkelstein, S., & Lotz, J. 2017, ApJ, 835, 113
Lotz, J. M., Koekemoer, A., Coe, D., et al. 2017, ApJ, 837, 97
Meneghetti, M., Natarajan, P., Coe, D., et al. 2017, MNRAS, 472, 3177
Narayan, R., & Bartelmann, M. 1996, arXiv:astro-ph/9606001
Navarro, J., Frenk, C., & White, S. 1996, ApJ, 462, 563
Oguri, M. 2010, PASJ, 62, 1017
Planelles, S., Borgani, S., Fabjan, D., et al. 2014, MNRAS, 438, 195
Postman, M., Coe, D., Benítez, N., et al. 2012, ApJS, 199, 25
Saha, P., & Williams, L. L. R. 2004, AJ, 127, 2604
Sendra, I., Diego, J. M., Broadhurst, T., et al. 2014, MNRAS, 437, 2642

8

Publications of the Astronomical Society of the Pacific, 131:114505 (8pp), 2019 November Lam

https://orcid.org/0000-0002-6536-5575
https://orcid.org/0000-0002-6536-5575
https://orcid.org/0000-0002-6536-5575
https://orcid.org/0000-0002-6536-5575
https://doi.org/10.1088/0004-637X/814/1/69
https://ui.adsabs.harvard.edu/abs/2015ApJ...814...69A/abstract
https://doi.org/10.1088/0004-637X/800/1/18
https://ui.adsabs.harvard.edu/abs/2015ApJ...800...18A/abstract
https://doi.org/10.1093/mnras/sty1820
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.5184A/abstract
https://doi.org/10.3847/1538-4357/aa70a4
https://ui.adsabs.harvard.edu/abs/2017ApJ...843..129B/abstract
https://doi.org/10.1051/0004-6361:20042233
https://ui.adsabs.harvard.edu/abs/2005A&A...437...39B/abstract
https://doi.org/10.1088/0004-637X/706/2/1201
https://ui.adsabs.harvard.edu/abs/2009ApJ...706.1201B/abstract
https://doi.org/10.1086/508162
https://ui.adsabs.harvard.edu/abs/2006ApJ...648L.109C/abstract
http://arxiv.org/abs/1903.02002
http://www.ascl.net/1806.009
https://doi.org/10.1111/j.1365-2966.2005.09021.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.360..477D/abstract
https://ui.adsabs.harvard.edu/abs/2005MNRAS.360..477D/abstract
https://doi.org/10.1111/j.1365-2966.2007.11380.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.375..958D/abstract
https://ui.adsabs.harvard.edu/abs/2007MNRAS.375..958D/abstract
https://doi.org/10.3847/1538-4357/aaa544
https://ui.adsabs.harvard.edu/abs/2018ApJ...854...73I/abstract
https://doi.org/10.3847/1538-4357/aaa6cf
https://ui.adsabs.harvard.edu/abs/2018ApJ...855....4K/abstract
https://doi.org/10.3847/0004-637X/820/2/98
https://ui.adsabs.harvard.edu/abs/2016ApJ...820...98L/abstract
https://doi.org/10.1111/j.1365-2966.2006.10040.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.367.1209L/abstract
https://doi.org/10.3847/1538-4357/835/2/113
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..113L/abstract
https://doi.org/10.3847/1538-4357/837/1/97
https://ui.adsabs.harvard.edu/abs/2017ApJ...837...97L/abstract
https://doi.org/10.1093/mnras/stx2064
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.3177M/abstract
http://arxiv.org/abs/astro-ph/9606001
https://doi.org/10.1086/177173
https://ui.adsabs.harvard.edu/abs/1996ApJ...462..563N/abstract
https://doi.org/10.1093/pasj/62.4.1017
https://ui.adsabs.harvard.edu/abs/2010PASJ...62.1017O/abstract
https://doi.org/10.1093/mnras/stt2141
https://ui.adsabs.harvard.edu/abs/2014MNRAS.438..195P/abstract
https://doi.org/10.1088/0067-0049/199/2/25
https://ui.adsabs.harvard.edu/abs/2012ApJS..199...25P/abstract
https://doi.org/10.1086/383544
https://ui.adsabs.harvard.edu/abs/2004AJ....127.2604S/abstract
https://doi.org/10.1093/mnras/stt2076
https://ui.adsabs.harvard.edu/abs/2014MNRAS.437.2642S/abstract

	1. Introduction
	2. Methodology
	2.1. Utility of JPEG Image Compression for Cluster Lens Modeling
	2.2. Example Simulated Cluster
	2.3. Parameterization of Cluster Mass Distribution
	2.3.1. Fitting the Entire Deflection Field: Model-1
	2.3.2. Fitting the Sampled Deflection Field: Model-2


	3. Results
	3.1. Accuracy and Precision of Model-1
	3.2. Accuracy and Precision of Model-2

	4. Discussion
	4.1. Comparison with other Free-form Hera Models
	4.2. Progressive Optimization

	5. Summary
	References



