
A Model-free CAF Fringe Search Algorithm with Wavelet Boosting for
VLBI Observation

Tianyi Zhang1, Qiao Meng1,4, Congyan Chen2, Weimin Zheng3, Wei Liu1, Quantao Yu1, and Li Tong3
1 Institution of RF-&OE-ICs, Southeast University, Nanjing 210096, China

2 School of Automation, Southeast University, Nanjing 210096, China
3 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

Received 2017 January 8; accepted 2017 April 25; published 2017 May 23

Abstract

Very-Long-Baseline interferometry (VLBI) is a powerful tool in radio astronomy, geodesy, and deep space
exploration. Priori predicted delay models are needed to make interferometry fringes, but in some cases they would
be difficult to get. This paper proposes an effective algorithm named CAF-W algorithm to search fringes from the
raw data in a large search range without priori predicted delay models. The cross-ambiguity function (CAF) is used
to make a time-frequency correlation in the delay–delay rate plane. The wavelet boosting algorithm is used to
eliminate interference and enhance the CAF peak, whose position would give the delay and delay rate estimations.
Incoherent averaging and sliding search window techniques are used to overcome the wide search range and the
poor signal-to-noise ratio in VLBI observations. The CAF-W algorithm could be performed with fast algorithms so
the computation burden is affordable. This algorithm has successfully achieved VLBI fringes from the raw data
without priori predicted delay models in VLBI observations.
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1. Introduction

Very Long Baseline Interferometry (VLBI) has become a
significant technique in astronomy, geodesy and deep space
exploration due to its extremely high angular resolution (Counsel-
man 1973). Radio signals emitted by cosmic or artificial radio
sources are received by multiple telescopes simultaneously. At
each telescope, the signal is received by the antenna and down
converted to baseband, then the digital back-ends (DBE) sample
the analog signals and pack the raw data with essential
information. Packed data is fed to the specific data processors
called correlators to form the interferometry fringes, which will
give the propagation time delay measurements between telescopes
with very high accuracy (Marcello & Spencer 1989).

Due to the relative motions between sources and telescopes,
the time-variant terms in the time delay cannot be ignored
during the correlation processing. If the integration time in the
correlation is too long, the interferometry fringe would be
blurred. However, the low signal-to-noise ratio in VLBI
observations requires long integration time (Clark et al.
1985). Therefore, the time-variant terms in the time delay are
removed by the “fringe rotation” (also called “fringe stopping”)
by using the priori predicted delay models (Romney 1995).

The priori predicted delay models with enough accuracy are
very important for successful VLBI correlation. However, there

are some situations where the priori predicted delay models are
not precise enough. The model errors may be caused by errors
in the source or antenna position used, errors in the Earth
model, errors in clock drift and errors in atmospheric models
(Cotton 1995). In some worse cases, the priori predicted delay
models would even be unavailable.
In order to reduce the priori predicted delay model errors,

fringe fitting techniques are used to estimate the residuals
between the priori predicted delay models and real observa-
tions, then the priori predicted delay models are revised with
these residuals. A widely used technique, named FFT (fast
Fourier transform) fringe search algorithm, could fit a single
baseline each time (Cotton 1995; Nakajima et al. 2001; Petrov
et al. 2007). The fringe rotation is first performed using the
inaccuracy priori predicted delay model, then the time series of
the cross-spectrum are calculated and Fourier transformed to
the delay–delay rate domain. The residuals of the delay and
delay rate can be obtained by locating the maximum amplitude
in this two-dimensional (2D) plane (Moran 1976).
The search resolution of FFT fringe search algorithm is quite

high while its search range is desired to be as narrow as
possible in order to reduce the probability of false detection
(Cotton 1995). However, in some situations, e.g., the first
observation with new instruments or at new telescopes, errors
in the priori predicted delay models would be too large for the
FFT fringe search algorithm to fit. In these cases the correlation
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processing is almost impossible with the inaccurate model and
the FFT fringe search algorithm. Using multiple search
windows to perform an extended FFT fringe search could be
helpful, but the computation burden would be heavy and false
detection would appear (see more details in Section 4). Other
fringe fitting techniques (Schwab & William 1983; Alef &
Porcas 1986) estimate the model residuals with VLBI data from
multiple baselines. The VLBI fringe fitting with antenna based
residuals (Alef & Porcas 1986) is used to improve the
estimations of the FFT fringe search algorithm and its search
range is not large either. Another technique named the global
fringe search technique (Schwab & William 1983) requires
good search initial values, which is also unavailable in the
situations we concerned.

In this paper, a model-free fringe search with large search
range and acceptable computation, called cross-ambiguity
function (CAF) fringe search algorithm with wavelet boosting
(CAF-W algorithm), is proposed for VLBI fringe search
without priori predicted delay models. The CAFs make a
coarse search in the delay–delay rate plane, and the estimations
of the delay and delay rate are given by positioning the peak of
the CAF amplitude. The wavelet boosting is used to eliminate
the interference in the CAF amplitude and increase the output
signal-to-noise rate (OSNR) of the CAF peak. The desired
search range would be quite large so the sliding search window
technique is used to cover the full range and control the
computation burden. Both the CAF calculation and the wavelet
boosting could be performed with fast algorithm for computa-
tion reduction. The estimated delay and delay rate are used to
guide the FFT fringe search algorithm to get finer results. Then
the correlation is able to be made successfully. The delay
measurement results could be approximated to higher-order
models so the correlation can be made again to get the delay
measurements with higher precision.

The rest of the correspondence is organized as follows. In
Section 2, we describe the basic theory of the VLBI correlation
and the original VLBI correlation processing with priori
predicted delay models. The CAF-W algorithm is proposed
in Section 3. Section 4 shows the performance of our algorithm
with VLBI observations results and compares the CAF-W
algorithm with the extended FFT fringe search. Finally,
conclusions are drawn in Section 5.

2. Theory of VLBI Correlation

In the basic VLBI correlation processing, the signals
received and sampled at two telescopes could be denoted as
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where s n1 ( ) and s n2 ( ) is the quasar signals sampled at two
telescopes, w n1 ( ) and w n2 ( ) are the stationary, independent

white noises. s n2 ( ) is the delayed duplicate of s n1( ) and nt ( ) is
the differential time delay, which represents the time difference
between the two telescopes receive the same wavefront. nt ( )
varies with time due to the relative motions between sources
and telescopes. If the integration time is short enough that nt ( )
could be treated as a constant, 0t , x n2 ( ) could be approximated
as
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The constant time delay 0t could be got by the averaged cross-
correlation of x n1 ( ) and x n2 ( ) as:
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N-point cross-correlation is averaged with M segments to
decrease the estimation variance.
There are two methods to estimate 0t based on the cross-

correlation function given in (3). The first method is called the
time-domain method. In this method, l12t ( ) is calculated and
the peak of its amplitude would be found at a certain position l0

on the delay axis. Then the estimated time delay could be
represented as l Ts0 0t =ˆ where Ts is the sample period of x n1( )
and x n2 ( ).
Another method is called the frequency-domain method. The

averaged cross-spectrum S k12 ( ) could be calculated by discrete
Fourier transform (DFT):
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The cross-terms and the cross-spectrum of noises are ignored in
(4) to simplify the discussion. X km1, ( ), X km2, ( ), and S k1( ) are
the DFT results of x nm1, ( ), x nm2, ( ), and s n1( ). In VLBI
observations of continuum emission sources, the amplitude of
cross-spectrum is flat in the frequency domain. Its phase

k k N212 0j p t= -( ) is a straight line in the phase spectrum
and 0t could be got by estimating its slope. The estimation
accuracy is higher than the time-domain method, but its search
range is limited by the group delay ambiguity problem. Since
the phase can only be got between±π, the phase change
between neighboring DFT frequency channels should be less
than π. Therefore, the frequency-domain method provides high
estimation accuracy with small measurement range.
The time delay nt ( ) cannot be regarded as a constant when

the integration time increases, so it is impossible to get the time
delay estimation from (3) and (4) directly. The priori predicted
delay model is needed to remove the time-varying terms before
performing correlation. This procedure is called fringe rotation.
Generally, the priori predicted delay models are approximated
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to fifth order polynomial splines in the integration time:
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It is interpolated at sample period Ts and noted as nmt ( ) below.
Assume the telescope 1 is the reference telescope, the fringe
rotation at telescope 2 for this baseline could be described as
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where n n nmt t tD = -( ) ( ) ( ) is the residual of the time delay.
It could be approximated as a small constant 0tD if the priori
predicted delay model has enough precision, then the delay
estimation is obtained by the frequency-domain method
in VLBI.

The original VLBI correlation procedure is illustrated in
Figure 1. The data provided by DBEs at telescopes are decoded
and the raw data are fed to the fringe fitting module and
correlation units. The residuals in the priori predicted delay
models are estimated in the fringe fitting module then the
revised delay models are used to perform correlation and make
delay measurement.

3. CAF Fringe Search Algorithm with
Wavelet Boosting

When the priori predicted delay models are not precise
enough or even unavailable, it is hardly to make VLBI
correlation or fringe fitting. Here we propose a CAF fringe
search algorithm with wavelet boosting (CAF-W algorithm),
which could be used to make successful correlation in these
situations.

3.1. Averaged CAF Search

As we discussed in Section 2, the delay estimation could be
made by calculating the cross-correlation. The problem is the

long integration time required in VLBI observations would blur
the correlation peak since the delay is time-variant (Johnson
et al. 1983). In correlators, the fringe rotation is performed to
“stop” the delay variation, which is implemented by multi-
plying the baseband signal with j f texp 2 skyp t-( ˙ ). fsky is the
sky frequency of the signal received at antennas and ṫ is the
predicted delay rate got from the priori predicted delay model.
A joint delay–delay rate estimation with large search range and
enough precision would be able to make fringe search without
priori predicted delay models.
The CAF is a classic time-frequency signal analysis

technique for joint estimation of the differential time delay
and Doppler frequency offset, which is widely used in radar,
sonar, and acoustics signal processing (Boashash 2003). It
could also be used in VLBI fringe search and the CAF for
VLBI fringe search could be defined as
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where ṫ is the trial delay rate and t is the trial time delay. For
continuum emission sources, the amplitude of the CAF would
peak at the proper position in delay–delay rate plane.
The discrete L-point CAF for VLBI is expressed as
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where tD˙ is the search step of delay rate, fs is the sample rate,
m is the discrete lag on the delay axis, and V is the number of
sampling points in the delay rate space. Similar to the cross-
correlation function, the amplitude of the CAF would peak at
the correct delay and delay rate in the delay–delay rate plane,
so the estimations are given at discrete delay lags mTst = and
discrete delay rate vt t= D˙ ˙ .
The computation in (8) is O V L L2 +( · ( )), which is

evaluated by the times of complex multiplication. It would be
too large to afford when L and V is large. A fast CAF algorithm
with FFT is presented as Stein (1981):
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The notation X k1( ) and X k2 ( ) refer to the L-point FFT of x n1( )
and x n2 ( ), and the computation could be reduced to
O V L L2 log2+(( ) · ). Although the cyclical convolution is
widely used in VLBI correlators, it would cause estimation
errors in the CAF search. To perform the linear convolution,
the FFT size L must be at least twice as the length of the valid
samples in x n1 ( ) and x n2 ( ).
Since the delay rate compensation in (9) is performed by

shifting the discrete frequency channels of FFT, the loss of the

Figure 1. Block diagram of the original VLBI correlation.
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CAF’s amplitude peak is unavoidable due to the delay rate
mismatch. The delay rate mismatch e t(˙ ) satisfies
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where T L fc s= is the correlation time of the CAF processing.
In the worst case, the maximum peak loss is less than 1 dB,
which is acceptable in practice (Adams et al. 1980).

The search range of the L-point CAF is calculated as follows.
According to the discussion in Patzewitsch et al. (1978), the
−3 dB point of the CAF amplitude on the delay axis could be
calculated as

T
T1 0.707, 0.3 . 12

c
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The −3 dB τ-width is T0.3 c so the reliable search range in the
delay direction is L f0.3 s. And the search range on the delay
rate space isV tD˙ . The maximum geometric delay rate that can
be encountered on terrestrial baselines in quasar observations
satisfies 1.5 s smax

1t m -∣ ˙ ∣ (Keimpema et al. 2015), so V
could be calculated by fs and fsky as
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Increasing the correlation time Tc could increase the peak’s
OSNR and the search range in the delay direction, but it is
limited by the permissible FFT length and would increase the
computation burden rapidly. Incoherent averaging technique
offers an effective trade-off between the computation burden and
the peak’s OSNR loss (Scarbrough et al. 1983). A data window
with N samples is divided into R overlapped (or not) segments
with L/2 samples, and L-point CAF is calculated with each
corresponding pair of segments, then the amplitudes are
averaged, as it illustrates in Figure 2. Comparing with calculating
2N-point CAF directly, the computation burden could be
reduced from V N N2 2 log 22+( ) ( ) to R V L L2 log2+( ) .

3.2. Wavelet Boosting

The peak detection should be done in the CAF search plane
to get the estimated delay and delay rate. However, it is difficult
since the averaged CAF amplitude has a strong window-effect
interference in the delay direction, as shown in Figure 3.
According to (9), the CAF amplitude should have a sinc-like
behavior in the delay rate space as well. The response in rate
space in Figure 3 seems to be very flat because the number of
the sampling points in rate space (V ) is far less than the FFT
length (L). The data used in Figure 3 is observed at 8470MHz

and sampled at 8 MS s−1. L is chosen to be 8192 so V is 26
based on (13).
Noted that the interference in the delay space is a slow

varying component in the delay direction, while the CAF peak
is a pulse-like term. Therefore, a high-pass filter in the Fourier
transform domain of delay seems to be able to remove the
interference. However, high-pass filters would also broaden
the CAF peak and decrease the OSNR of the CAF peak. Here,
the wavelet boosting is proposed to get rid of the interference
in the averaged CAF amplitude.
The wavelet boosting is based on the wavelet multiresolution

analysis (MRA) (Donoho 1993) and is inspired by the wavelet
de-noising method (Vetterli & Herley 1992; Rosas-Orea
et al. 2005). Assume the signal f x( ) has a finite energy, then
the discrete orthogonal wavelet decomposition at resolution
level j is calculated as (Mallat 1989)

a k f x x k dx2 , 14j
jò f= --( ) ( ) ( ) ( )

d k f x x k dx2 15j
jò y= --( ) ( ) ( ) ( )

where xf ( ) is scaling function, xy ( ) is wavelet function, a kj ( )
are approximate coefficients and d kj ( ) are detail coefficients.
Both j and k should be integer. xf ( ) and xy ( ) are used as pairs.
The approximate function f xj ( ) and the detail function g xj ( ) at

Figure 2. Illustration of the incoherent averaging technique.
(A color version of this figure is available in the online journal.)
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level j are got as
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For a total J level decomposition, the original function f x( )
could be reconstructed perfectly as
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The orthogonal wavelet MRA is commonly performed by
cascaded Finite Impulse Response (FIR) filter banks (Mallat
1989). Figure 4 illustrates how the wavelet decomposition is
implemented and how to get the detail and approximate
functions by the cascaded filter banks. The detail coefficients dj

(k) and the approximate coefficients aj(k) at each level are got

by the decomposition filters (G
~

and H
~
) and decimators. Then

the detail and approximate function at resolution level j are
reconstructed by reconstruction filters G and H, respectively. X

~

indicates the mirror filter (or called symmetric filter) of X,
whose impulse response is defined as x n x n= -˜ ( ) ( ). The filter
coefficients are determined once the wavelet function is
selected.

The principle of the wavelet boosting is to separate the CAF
peak and the interference with MRA. The scaling filters H are
low-pass filters and the wavelet filters G are high-pass filters.
Unlike the classic high-pass filter in the Fourier transform
domain, the wavelet filter (high-pass) is performed on different
resolution levels. Therefore, the high frequency components

Figure 3. Averaged CAF amplitude in the delay–delay rate plane contained the
CAF peak.
(A color version of this figure is available in the online journal.)

Figure 4. Wavelet MRA implemented by filter banks.
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could be achieved without broadening features. The detail
functions only contain the peak-like components and the
approximate function at coarse resolution level retains the
window-like interference. Although the CAF peak is only
included by the detail functions, they cannot be used as the
output of the wavelet boosting because it is difficult to
determine how many resolution levels contain the CAF peak
and an inappropriate choice would decrease the OSNR of the
CAF peak. Alternatively, the approximate function is removed
from the original averaged CAF amplitude so the filtered
amplitude is achieved.

Selecting an appropriate wavelet function and resolution
level are important. After several trials, the Symlet wavelets
with order six (noted as Sym6) is selected and the resolution
level is set to be four, which has the best OSNR boosting
performance. The Symlet wavelets are orthogonal and
biorthogonal wavelets with least asymmetry, which is
proposed by Daubechies from the famous Daubechies wavelet
(Daubechies 1992). The scaling and wavelet filters of Sym6
are both 12th-order FIR filters and their coefficients are given
in Daubechies (1992).

The procedure of the wavelet boosting is summarized as
follows. The averaged CAF amplitude is sliced along the delay
axis at each sample of delay rate. These amplitude-delay
functions are decomposed to resolution level four by filter
banks. Only the approximate function on level four is
reconstructed from the approximate coefficients and removed

by subtraction. Figure 5 illustrates a simple diagram of the
wavelet boosting. Figure 6 shows the same search plane in
Figure 3 after wavelet boosting and the CAF peak is strong
enough for peak detection.

3.3. Large Range Delay Search Based on Sliding Window

According to (12), the delay search range of the CAF-W
algorithm is less than 0.3Tc, which is limited by the FFT length
and the computation requirement. However, in a real observa-
tion the delay search range would be quite large when the priori
predicted delay models are unavailable.
A sliding window is used to cover the large search range in

the delay space without increasing the correlation time and take
control of the computation burden. The CAF-W algorithm is
performed with raw data from two telescopes, and the data
window of data 2 is shifted with M samples in the time space.
Since the data window of data 1 is fixed, the center of the
search window moves MTs on the delay axis, as it shows in
Figure 7. The shift in the delay space cannot be larger than

T0.3 c so M is chosen to be 0.25L. Here we just discuss the
search window along the delay axis though it is actually a 2D
plane.

3.4. Overall CAF-W Algorithm

Figure 8 illustrates the overall CAF-W algorithm in the
VLBI observations. The priori predicted delay models are
replaced by the CAF-W algorithm. The averaged CAF search is
performed with the raw VLBI data from each baseline and the

Figure 5. Diagram of the wavelet boosting.

Figure 6. In the CAF-W search plane, the CAF peak appears after the window-
like interference is removed.
(A color version of this figure is available in the online journal.)
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wavelet boosting is performed before peak detection to increase
the CAF peak’s OSNR. Then the data window slides along the
delay space until the CAF peak is found. The coarse delay and
delay rate estimations guide the fine search module (e.g., FFT
fringe search algorithm) to give a finer one-order delay model
and the group delay measurements are made. After a series of
the group delay measurements have been got, a high-order
delay model with higher accuracy, called the post-correlation
delay model, could be got by polynomial fitting of these group
delay measurements results, and then the group delay could be
got with better accuracy.

4. Experiment Results

4.1. Search Results of CAF-W Algorithm

The CAF-W algorithm has been verified by the VLBI
observation data. An observation of source 1741-038 was
performed at X band by the Chinese VLBI network (CVN).
Figure 9 shows the telescopes and baseline lengths of CVN
(Li et al. 2007; Huang et al. 2014). In this observation, a new
kind of DBE was deployed at Station Tianma (TM) and its data
is used to make correlation with the data recorded by routine

DBEs at Station Kunming (KM) and Urumqi (UR). All DBEs
sample and record raw data with 4MHz bandwidth in either
real or complex data type.
At first, a priori predicted delay model for the routine DBEs

was provided to make correlation on KM-TM baseline between
the new DBE and the routine DBE. The phases of the cross-
spectrum plotted in Figure 10(a) show no sign of interference
fringe. Considering the provided priori predicted delay model
was not appropriate to the new DBE, the FFT fringe search

Figure 8. Diagram of the VLBI correlation procedure using CAF-W algorithm.

Figure 9. Geographical distribution of CVN. The numbers in red are the length
of baselines in kilometers.

(A color version of this figure is available in the online journal.)

Figure 7. Data window (in green) only moves on data 2, so the search window
would slide on the delay axis.
(A color version of this figure is available in the online journal.)
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algorithm was performed and the delay–delay rate plane is
showed in Figure 10(b). However, no peak appears in the
search plane.

Then, by not using this priori predicted delay model, the
CAF-W algorithm is used to find the fringe from the raw data.
The data window length is set to be about 1 s and the segments
number of the incoherent averaging (R) is 250. According to
the length of the KM-TM baseline, the search range of delay is
set to be 12 ms. The CAF-W search plane with the CAF peak is
showed in Figure 11(a). Figure 11(b) gives the OSNR of the
maximum peak in each search window and shows that the CAF
peak is about 10 dB higher than others. The estimated delay
and delay rate are used to perform the fine search by FFT fringe

Figure 11. (a) CAF-W search plane with the CAF peak; (b) OSNR of peak in
each search window; and (c) the fringe phases got with the estimated delay
model.
(A color version of this figure is available in the online journal.)

Figure 10. (a) phases of cross-spectrum and (b) the search plane of the FFT
fringe search algorithm.
(A color version of this figure is available in the online journal.)
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Table 1
Parameters of Model-free Fringe Searches

Name of method CAF-W eFFT-1 eFFT-2

Number of windows on delay space 51 26 26
Search range of each window on delay space (ms) ±0.512 ±0.512 ±0.512
Shift of each window on delay space (ms) 0.256 0.512 0.512
Delay resolution in each window (μs) 0.125 0.125 0.125
Number of windows on delay rate space 1 26 51
Search range of each window on delay rate space (s s−1) ±1.5e-6 ±5.91e-8 ±5.910e-8
Shift of each window on delay rate space (s s−1) / 1.182e-7 5.910e-8
Delay rate resolution in each window (s s−1) 1.157e-7 1.44e-11 1.44e-11
Number of segment in averaging 250 125 125
Average elapsed Time (s) 50.3 6984.8 14648.8

Figure 15. Search results with different methods and grid parameters.

(A color version of this figure is available in the online journal.)

Figure 12. Delay measurement results with the estimated one-order model.
(A color version of this figure is available in the online journal.)

Figure 13. Fringe phases using the post-correlation delay model.
(A color version of this figure is available in the online journal.)

Figure 14. CAF-W search plane of TM-UR baseline with the CAF peak.
(A color version of this figure is available in the online journal.)
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search. Then the correlation processing is made successfully
and the fringe phases are showed in Figure 11(c).

The CAF-W algorithm is performed on the entire provided
VLBI data and the correlation is made with the estimated one-
order delay model at each second. The delay results are showed
in Figure 12. Then the post-correlation delay model mentioned
in Figure 8 is got by a 5th order polynomial fitting. It is a more
precise delay model, which is able to replace the priori
predicted delay model. The correlation using the post-
correlation delay model could be made with a longer
integration time and the fringe phases are showed in Figure 13.
The fringe is clearer and the root mean square (rms) of the
linear fitting are less than that in Figure 11(c).

The difference between the post-correlation delay model and
the provided priori predicted delay model is about 10 μs. We
infer this offset is mainly caused by the differences in the signal
propagation paths and instrument delays between two kinds of
DBEs since it is the first observation with the new DBE.

CAF-W algorithm also give the estimated delay model of a
longer baseline (TM-UR) successfully, and Figure 14 shows
the CAF-W search plane with the CAF peak.

4.2. Comparison with FFT Fringe Search

As comparison, an extended FFT fringe search is performed
in the same situation. Because the search window of original
FFT fringe search is narrow on both delay and delay rate space,
the entire delay and delay search range has to be divided into
multiple search windows. The largest peak among all these
windows is treated as the fringe peak and its position would
give the delay and delay rate estimations. This method is called
eFFT fringe search (extended FFT fringe search) in this paper.

Two eFFT fringe search algorithms with different window
size are used and named eFFT-1 and eFFT-2, respectively, in

this paper. The detailed parameters of these searches are
indicated in Table 1. The delay and delay rate estimation results
given by CAF-W algorithm, eFFT-1 and eFFT-2 are illustrated
in Figure 15. The delay rate curve of eFFT-1 shows obvious
outliers at several points, which are caused by false detection.
In order to find the reason of the false detection in eFFT-1,
Figure 16 shows the search windows of three adjacent grid
nodes. Obviously there are two strong peak at different
position, and the false peak is larger than the true peak, which
causes false detection. In contrast, there is no false detection
problem in CAF-W algorithm.
The problem of false detection in eFFT-1 could be solved by

decrease the shift of each window on the delay rate space. In
eFFT-2, it is decreased by half and the false detection no longer
happened. However, the computation time increases rapidly. The
average computation elapsed times of CAF-W, eFFT-1 and
eFFT-2 are also given in the last line of Table 1. The computation
of eFFT-1 is 139 times of that of CAF-W and it has trouble with
false detection, while the eFFT-2 gives a successful search result
but its computation is 291 times as CAF-W algorithm. The speed-
up factor of CAF-W is that its search window only shift on the
delay space while the eFFT have to slide on both delay and delay
rate space, so there are less search windows in CAF-W algorithm.

5. Conclusions

This paper presents a model-free CAF fringe search algorithm
with wavelet boosting for VLBI observation. It is able to estimate
a coarse one-order delay model for the fringe fitting even if the
priori predicted delay models are unavailable. Incoherent
averaging CAF performs the joint delay–delay rate estimation
and the wavelet boosting is used to remove the serious
interference in the search plane. The large search range in the
delay direction is implemented by the sliding search window
technique to reduce computation burden. The CAF and wavelet
boosting calculation could be accelerated by fast algorithms. The
CAF-W algorithm is verified with the raw data from VLBI
quasar observations and VLBI correlation is made successfully.
The extended FFT fringe search is performed to make model-free
fringe search as a comparison and its computation of CAF-W is
far more than that of CAF-W algorithm.
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