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Abstract
Neuronal populations in the cerebral cortex engage in probabilistic coding, effectively encoding the
state of the surrounding environment with high accuracy and extraordinary energy efficiency. A
new approach models the inherently probabilistic nature of cortical neuron signaling outcomes as
a thermodynamic process of non-deterministic computation. A mean field approach is used, with
the trial Hamiltonian maximizing available free energy and minimizing the net quantity of
entropy, compared with a reference Hamiltonian. Thermodynamic quantities are always conserved
during the computation; free energy must be expended to produce information, and free energy is
released during information compression, as correlations are identified between the encoding
system and its surrounding environment. Due to the relationship between the Gibbs free energy
equation and the Nernst equation, any increase in free energy is paired with a local decrease in
membrane potential. As a result, this process of thermodynamic computation adjusts the
likelihood of each neuron firing an action potential. This model shows that non-deterministic
signaling outcomes can be achieved by noisy cortical neurons, through an energy-efficient
computational process that involves optimally redistributing a Hamiltonian over some time
evolution. Calculations demonstrate that the energy efficiency of the human brain is consistent
with this model of non-deterministic computation, with net entropy production far too low to
retain the assumptions of a classical system.

1. Introduction

To compute the most likely state of the surrounding
environment, a cortical neural network must select
an optimal system state in the present context from a
large probability distribution. Researchers have previ-
ously modeled this inherently probabilistic computa-
tion with Bayesian statistics [1], random-connection
models [2], or Fano factor analysis of spike variance
over time [3]. For individual neurons, the Hodgkin–
Huxley equations provide a good approximation of
firing patterns under steady-state conditions [4]. But
channel leak and spontaneous subthreshold fluctu-
ations inmembrane potential significantly contribute
to the likelihood of a given cell reaching action poten-
tial threshold [5–8]. Indeed, the relationship between
membrane voltage, ion conductances, and channel
activation, given by the Hodgkin–Huxley equations,

is a classical limit that emerges from intrinsically
stochastic processes [9–11]. Notably, cortical neur-
ons actively maintain a coordinated ‘up-state’, allow-
ing electrical noise to gate signaling outcomes [12].
Yet despite extensive literature on the statistical ran-
domness of neuronal population coding and inter-
spike variability, the mechanistic basis for achieving
inherently probabilistic signaling outcomes across a
cortical neural network is not well-understood.

Mean field theory has been usefully employed
to model probabilistic coding in cortical neural
networks [13, 14]. This methodology allows an
exploration of the solution space, leading to the selec-
tion of a system state from a probability distribution
[15]. At the mean field limit, the network achieves
a fixed state, where excitatory and inhibitory con-
tributions are balanced, so that fluctuations dom-
inate the network level dynamics [16, 17]. As a
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result, the application of mean field theory has
led to a better understanding of the contribu-
tion of internal membrane fluctuations to signal-
ing outcomes [18] and how stochastic events shape
network-level dynamics [19, 20].

Biological systems gradually achieve a more
ordered configuration over time by identifying amore
compatible state with their environment, simply by
reducing predictive errors [21, 22]. This view, known
as the free energy principle, asserts that learning sys-
tems strive toward ‘theminimization of surprise’, with
new information continually prompting the revision
of erroneous priors [23, 24]. Similarly, the concept
of ‘free energy’ has been regularly employed in the
machine learning field to solve optimization prob-
lems through a process of gradient descent [25, 26].
It should be noted however that ‘free energy’ is a stat-
istical quantity, not a thermodynamic quantity, in
these contexts. For the past 40 years, researchers have
striven to explain computation, in both biological and
artificial neural networks, in terms of ‘selecting an
optimal system state from a large probability distribu-
tion’ [27, 28]. Yet a mechanistic connection between
probabilistic computation and energy efficiency has
remained elusive.

This report presents a thermodynamic basis
for mean-field theory, with the Hamiltonian being
modeled not only as a computational quantity but
also as an energetic quantity. Modeling cortical
information processing as an iterative process ofmin-
imizing entropy and maximizing free energy ties
together the bio-energetic efficiency of the system
with the computational accuracy of the system. In
this model, noise drives a non-deterministic compu-
tation, with the compression of information entropy
paired with a release of free energy, which directly
affects signaling outcomes. The extraordinary energy
efficiency of the human brain is shown to be compat-
ible with this model.

2. Methods

2.1. A thermodynamic mean field model
A mechanistic process of thermodynamic computa-
tion is modeled with a Hamiltonian ⟨H⟩t, which is
the sum of all potential and kinetic energies in a non-
equilibrium system. The Hamiltonian operates on a
vector space, with some spectrum of eigenvalues, or
possible outcomes, that can be obtained from ameas-
urement. That measurement provides an exact solu-
tion for theHamiltonian. This computational process
resolves the amount of free energy available to the sys-
tem Ft, which is the total amount of energy in the sys-
tem ⟨H⟩t less the temperature-entropy generated by
the system TSt:

Ft = ⟨H⟩t − TSt. (1)

If no time has passed, or no interactions take
place, the reference Hamiltonian H0 is the sum of all

degrees of freedom ξi for all probabilistic components
of the system:

H0 =
N∑

i=1

hi (ξi) . (2)

If some time has passed, or interactions have
taken place, the Hamiltonian Ht of the system can be
modeled as themixed sumof all pairwise interactions:

Ht =
∑

(i,j)∈P

Vi,j

(
ξi , ξj

)
. (3)

The mean field is then given by:

hMF
i (ξi) =

∑
{j |(i,j)∈P}

V0

(
ξi , ξj

)
Z0

(
ξj
)

(4)

where V0 represents the trace over Vi,j and Z0 repres-

ents the trace over e−Ĥ/kBT. As the encoding system is
perturbed, by interacting with its surrounding envir-
onment, the Hamiltonian evolves over time:

Ht = H0 + ∆H. (5)

The Hamiltonian is dependent on an enormous
number of contributing parameters. For this reason,
it is computationally challenging to identify an exact
solution, and variational methods in statistical phys-
ics use approximations to do so. Of course, different
‘measurements’ may yield different solutions, with
different spectra of eigenvalues. To model this vari-
ational outcome, we can employ a trial Hamiltonian:

H̃t = H0 + ⟨∆H⟩. (6)

The original Hamiltonian has the same spectrum
of eigenvalues as the trial Hamiltonian. However,
the original Hamiltonian differs from the trial
Hamiltonian by some positive value, such that:

⟨H̃t⟩ = ⟨H0 + ⟨∆H⟩⟩ = x⟨Ht⟩. (7)

Since:

⟨H̃⟩t = x⟨H0 + ∆H⟩, (8)

the free energy of the trial Hamiltonian must be
greater than or equal to the free energy of the ori-
ginal Hamiltonian. This is known as the Bogoliubov
inequality:

F̃t = ⟨H̃⟩t − TSt ⩾ Ft = ⟨H⟩t − TSt. (9)

The computation results in energy being
redistributed across the system, with some trial
Hamiltonian maximizing free energy availability.
That trial Hamiltonian will be thermodynamic-
ally favored. Yet the full account must always be
balanced—with the total amount of energy in the
system, represented by the Hamiltonian, being the
sum of all free energy and temperature-entropy.
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2.2. The entropy of the system
For a classical thermodynamic system, themacrostate
of the system is a distribution of microstates, given by
the Gibbs entropy formula. Here, kB is the Boltzmann
constant,Ei is the energy ofmicrostate i, pi is the prob-
ability that microstate occurs, and the Gibbs entropy
of the system is given by S:

S=−kB
∑

pi ln pi . (10)

Yet the behavior of cortical neural networks
can be better described as a statistical ensemble of
microstates [1, 2]. And so, in this model, the macro-
state of the system is formally described as a statistical
ensemble of all component puremicrostates, given by
the von Neumann entropy formula:

S(ρ) =−Tr (ρ ln ρ) . (11)

Here, entropy is a high-dimensional volume of
possible system states, represented by the trace across
a density matrix ρ. ρ is the sum of all mutually-
orthogonal pure states ρx, each occurring with some
probability px:

ρ =
∑

pxρx. (12)

Each component state is described by a state vec-
tor ψx. For example, the state of each neuron |ψx⟩ at
time t is uncertain, described as having some probab-
ility of switching to an on-state (1) and some prob-
ability of remaining in an off-state (0). ρx is defined
as the outer product of this finite dimensional vector
space. The mixed sum of all these component pure
states is therefore:

ρ =
∑

px|ψx⟩⟨ψx|. (13)

The cortical neural network is an open non-
equilibrium thermodynamic system (systemA), com-
prised ofN units, each described by a state vectorψAx,
operating within a surrounding environment (sys-
tem B), comprised of M units, each with a state vec-
tor ψBx. Each system is described by a density mat-
rix, or a mixed sum of orthonormal pure states. The
system and its surrounding environment are initially
uncorrelated with each other, and the combined sys-
tem is created by the tensor product of the two density
matrices:

ρA ⊗ ρB = ρAB. (14)

Each orthonormal pure state generates a Hilbert
space, and any pure states that are identical cannot
physically co-exist. Identifying non-distinguishable
states (or linear correlations between pure states) will
therefore compress the von Neumann entropy of the
combined system. Any redundancies are eliminated

during a linear transformation. And so, as the encod-
ing thermodynamic system ‘A’ is perturbed, by inter-
acting with its surrounding environment, thermody-
namic system ‘B’, the density matrix undergoes a time
evolution, from ρAB → ρ ′

AB:

ρAB → ρ ′
AB = ρ(t) = UρABU

†. (15)

The unitary change in basis is provided by the
time shift operator U :

U = e−iĤt. (16)

The time interval is not defined until all compon-
ent pure states are defined and the trial Hamiltonian
is resolved. Only when the unitary change in basis
occurs, and the state of the encoding system (the
internal state) evolves to match the state of the sur-
rounding environment (the external state), with free
energy being maximized, will both the Hamiltonian
operator and the time interval be numerically solved.

During this time evolution, correlations are iden-
tified between the two particle systems [29, 30]. If
the systems are uncorrelated, the states are additive
and the total entropy of the combined system remains
unchanged. But if any component pure states between
the two systems are correlated, entropy will be com-
pressed. Here, entropy is additive in uncorrelated sys-
tems, but it is subtractive in correlated systems, as
mutual redundancies in system states are recognized
and reduced. This process of compression leads to the
subadditivity rule:

S(ρAB) = S(ρA)+ S(ρB)

= S(ρ ′
A)+ S(ρ ′

B)⩾ S(ρ ′
AB) .

(17)

Thermodynamic system ‘A’ essentially solves a
computationally complex problem by identifying
correlations with its surrounding environment, ther-
modynamic system ‘B’. An optimal system state in
the present context is selected from a broad prob-
ability distribution, as information is compressed.
The most thermodynamically favored and ‘optimal’
system state is the one that is both most correlated
with the surrounding environment and most com-
patible with existing anatomical and physiological
constraints.

2.3. The free energy of the system
The Helmholtz equation can be used to calculate the
net change in free energy over some period of time t.
In a thermodynamic system that traps heat to accom-
plish work, the net change in Helmholtz free energy
Ft is equivalent to the enthalpy Et, less the amount of
temperature-entropy TSt generated over that period
of time:

Ft = Et − TSt. (18)

3
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The Helmholtz free energy equation applies in
contexts where pressure is not constant, but temper-
ature is, while the Gibbs free energy equation applies
in contexts where temperature is not constant, but
pressure is. If the overall temperature and pressure of
the system remain constant, the change in Helmholtz
free energy Ft is equivalent to the change in Gibbs free
energy Gt:

Gt = Et − TSt. (19)

The Gibbs free energy of a given neuron is related
to its membrane potential:

Gt = −nFVt. (20)

Given these relationships, the neuronal mem-
brane potential at time t is given by the trial
Hamiltonian, less the temperature-entropy of the sys-
tem, divided by the Faraday constant F and the quant-
ity of electrons transferred during the computation n:

Ṽt =
⟨H̃⟩t −TS̃t

−nF
. (21)

2.4. The neuronal membrane potential
The Nernst equation calculates the temperature-
dependent voltage shift in an electrochemical cell at
thermodynamic equilibrium, based on the type and
quantity of charge moving across the cellular mem-
brane:

Vt −V0 =
RT

nF
ln (Qr) , (22)

where:
Vt is the electrochemical potential of the cell after
some time t has passed (in volts),
V0 is the starting potential of the cell (in volts),
R is the universal gas constant (R =
8.314 472 J Kmol−1),
T is the temperature in degrees Kelvin (T = 310.15K
under standard conditions),
F is the Faraday constant (F = 9.648 53×
104 Cmol−1),
n is the number of electrons that are transferred dur-
ing the reaction, and
Qr is the reaction quotient, which defines the equilib-
rium potential of the reaction.

It is important to note the Nernst equation is spe-
cifically used for describing the resting potential of
a neuron, not the action potential itself, which is a
non-equilibriumprocess. This equation calculates the
likelihood of a neuron firing an action potential upon
some perturbance to the resting state (e.g. any event
that increases the membrane potential or prompts
inward sodium currents). Once the system has shifted
away from equilibrium, the action potential goes to
completion and the Nernst equation cannot describe

that non-equilibrium process. However, this com-
putational process only affects the resting potential,
so these time-dependent perturbations, occurring in
the context of thermodynamic equilibrium, can be
described by the Nernst equation.

3. Results

3.1. A thermodynamic computationmaximizes
free energy and drives signaling outcomes
The total entropy of system A and system B, prior to
compression, is defined as:

Stotal := S0 = S(ρAB) . (23)

The net entropy of system A and system B, after
compression, is defined as:

Snet := St = S(ρ ′
AB) . (24)

The change in entropy during compression is
equivalent to the quantity of correlations identified
between system A and system B:

∆S = St − S0 = S(ρ ′
AB)− S(ρAB) . (25)

The quantity of entropy is maximized when the
system state is completely random and all non-zero
eigenvalues have equal probability px. The random-
ness of information is minimized if a more predict-
able value is identified. In general, the von Neumann
entropy of the system is less thanmaximal when some
system states are more likely than others. S(ρ ′

AB) and
S(ρAB) reach equality only if no correlations are iden-
tified at all. During the time evolution, entropy is
reduced, such that:

∆S ⩽ 0. (26)

The energetic account must always be balanced,
with the net amount of energy acquired by the encod-
ing system distributed toward either free energy or
entropy:

∆E = ∆G+T∆S. (27)

In order to balance the account, any loss of
entropy during compression must be paired with a
release of free energy, with∆G= Gt −G0:

∆G ⩾ 0. (28)

Since the total energy of the system does not
change over the time evolution, these two values are
equivalent:

−T∆S = ∆G. (29)

The compression of information entropy is paired
with free energy release. This conservation law is
known as the Landauer principle [31–34]. This free

4
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Figure 1. A prospective schematic relating visual stimuli with the computational entropy of a hypothetical single neuron,
expected signaling outcomes, and expected network dynamics. (A) Greater ‘certainty’ in the visual stimulus is characterized by
higher correlations between neighboring pixels in one orientation and higher contrast between neighboring pixels in another
orientation. Sample images are used from a study of the neural correlates of objectively uncertain visual stimuli [35]. (A′) The
reduction of uncertainty is equivalent to entropy compression, or a reduction of the probability distribution representing possible
internal states. Shown here is a hypothetical entropy profile for a neuron whose receptive field does not match the stimulus
location. (A′′) Entropy compression is paired with a partial recovery of the thermodynamic (Gibbs) free energy that was
distributed to generate that probability distribution. The recovery of Gibbs free energy prompts the neuron to lower its voltage
and return to resting potential. (A′′′) A small ensemble of neurons across the cortex fires synchronously to encode this
distinguishable stimulus. (B) Greater ‘uncertainty’ in the visual stimulus is characterized by few correlations between neighboring
pixels, obscuring recognizability of edges and orientations within the image. (B′) Shown here is a hypothetical entropy profile for
a neuron with an identical receptive field as above. (B′′) The probability distribution remains intact, and so at the completion of
the computational cycle, thermodynamic free energy remains distributed toward entropy, and insufficient free energy is available
to maintain the resting potential, so the neuron crosses threshold and fires an action potential. (B′′′) During upstate, cortical
neurons retain sensitivity to random electrical noise, allowing this computational process to have discrete effects on the membrane
voltage of each computational unit. A large ensemble of neurons across the cortex (including this one) fires synchronously to
encode this highly uncertain stimulus. Neurons represented as black circles will not fire, encoding the certainty that their receptive
field is not activated; neurons represented as red stars will fire, encoding uncertainty whether their receptive field is activated;
neurons represented as pink stars will also fire, upon receiving a suprathreshold stimulus. Reproduced from [35]. CC BY 4.0.

energy is available to do work, allowing the system
to attain a more ordered state. This work involves
shifting the resting membrane potential to optim-
ally encode the state of the surrounding environment.
This increase in Gibbs free energy, upon information
compression, is paired with an decrease in the neur-
onal membrane potential:

∆Ṽ = −∆G̃

nF
, with Ṽt ⩽ Vt. (30)

Information compression locally increases free
energy and locally decreases the membrane poten-
tial. Neurons which have gained certainty during the
computation will therefore gain free energy andmove
further away from action potential threshold, restor-
ing their resting potential. By contrast, neurons which
have gained uncertainty during the computation will
lose free energy and move toward action potential
threshold, increasing the likelihood of firing a signal.

In this model, information compression both
decreases the distribution of possible system states
and increases the amount of thermodynamic free

energy which is available to encode the optimal sys-
tem state, resulting in the synchronous firing of an
ensemble of neurons across the cortex (figure 1).
During the computation, the trial Hamiltonian is
resolved, energy is redistributed, and the systemphys-
ically instantiates the solution to a computational
problem, by identifying the most likely state of the
surrounding environment.

3.2. Estimating net entropy production in the
human brain
If the system gains internal heat over time t, then
this energy can be distributed toward increasing
entropy or increasing the amount of free energy
available to do work. Minimizing the amount of
entropy therefore leaves more free energy available
to do work within the system. Since energy is always
conserved, the account must always be balanced, as
the trial Hamiltonian is resolved. If the brain does
engage in such non-deterministic computation, with
a trial Hamiltonian maximizing free energy availabil-
ity, then the brain should exhibit better-than-classical
energy efficiency. The inefficiency of the system, or

5

https://creativecommons.org/licenses/by/4.0/


Phys. Biol. 21 (2024) 016003 E A Stoll

the net entropy production, can be calculated using
empirical measures. The amount of temperature-
entropyT∆S produced over time t=∆ is equal to the
net change in enthalpy∆E less the change in available
free energy∆G:

T∆S = ∆E − ∆G. (31)

The enthalpy E is the total heat content of the sys-
tem. If work is done on a system,∆E is equal to the net
change in internal energy of the system ∆U plus the
net work done on the system∆W. If work is done by
the system, ∆E is given by the net change in internal
energy of the system∆Uminus the net work done by
the system ∆W. In the case of reversible changes to
the quantities of either volume V or pressure p (non-
electrical work), ∆W=−V∆p. For a cortical neural
network—a far-from-equilibrium thermodynamical
system of electrochemical cells, which actively traps
energy to accomplish work—the quantity of ∆E is
given by:

∆E = ∆U − ∆W. (32)

The change in the total heat content of the system
∆E is given by the net energy gained by the system
∆U subtracted by the amount of work completed by
the system ∆W over some period of time t. The net
energy∆U is given by the quantity of thermal energy
entering the system ∆Uin subtracted by the quantity
of thermal energy exiting the system∆Uout over time
t. Combining equations (31) and (32) yields:

T∆S = ∆Uin − ∆Uout − ∆W − ∆G. (33)

The net inefficiency of the system, given the
temperature-entropy T∆S, is equal to the net change
in internal energy of the system ∆U, less the work
done by the system∆W, less the change in free energy
∆G.

Now that all energy in the system is accounted for,
we can calculate values for ∆Uin, ∆Uout, ∆W, ∆G,
and T, to estimate the quantity of ∆S generated by
the human brain. The net change in internal energy
of the system ∆U is equivalent to the caloric value
supplied by the bloodstream to serve the neural net-
work (provided by the energy input∆Uin) minus the
amount of excess heat produced during that period
of time (provided by the energy output ∆Uout). To
make a calculation based on neuronal signaling activ-
ity only, the change in free energy ∆G can be estim-
ated as the quantity of energy used to set up the rest-
ing potential, while the amount of work ∆W can be
estimated as the quantity of adenosine triphosphate
(ATP) expended on setting up the electrochemical
resting potential. Since these quantities are redundant
over these timescales, only the work done to accom-
plish these tasks,∆W, is accounted here. The quantity
of entropy∆Sproduced in the humanbrain over time

t can then be estimated by accounting for the constant
overall temperature of the system, T:

∆S =
∆Uin − ∆Uout − ∆W − ∆G

T
. (34)

The energy consumed by the human brain over
the course of a day is approximately 20% of oxy-
gen intake and 20% of calories consumed by the
body, a value that remains relatively constant regard-
less of variation in mental tasks or amount of motor
activity [36, 37]. In adult males, this energetic usage
is approximately 400 kilocalories or 1673.6 kJ per day.
This estimated rate of ∆Uin is equal to 19.37 J s−1 or
19.37W.

At rest, the human brain has an estimated meta-
bolic rate of 3.5ml O2/100 gmin−1, with venous
blood flow removing heat [38]. This rate yields a
sustained jugular venous-to-arterial temperature dif-
ference of 0.3 ◦C [39, 40]. This value corresponds
to an estimated heat production of approximately
6 J kg−1 min−1 [41, 42]. The rate of ∆Uout is there-
fore estimated to be 0.14 J s−1 or 0.14W.

The amount of energy expended on work ∆W
can be estimated by quantifying ATP turnover in
the human brain. The quantity of ATP used on sig-
naling processes in rat neocortex has been estim-
ated at 21µmol g−1 min−1 [43], with experimental
measurements of total ATP use approximating 30–
50µmol g−1 min−1 [44–47], although estimates vary
in both directions [48, 49]. Limiting the estimate to
signaling processes only, the ATP turnover in neocor-
tical grey matter (GM) is 0.35µmol g−1 s−1.

Assuming the human brain has a similar rate of
ATP turnover to other mammals, the quantity of ATP
used on signaling processes in the human brain can
be calculated by estimating the total amount of neo-
cortical GM. The size of the human brain by volume
is rather variable, with a measured range of 1053–
1499 cm3 in adult men and 975–1398 cm3 in adult
women [50, 51]. The quantity of GM is 49.4%–58.5%
in adult men and 52.1%–59.6% in adult women, both
averaging 55% [52]. Since the average adult male
brain is 1.4 kg [53], the approximate quantity of GM
is 770 g, and so the estimated ATP turnover rate in
this energetically expensive tissue is 0.27mmol s−1.
In living cells, the hydrolysis of one ATP molecule
releases 57 kJmol−1 of energy. Given these values, the
GM of the average adult male brain expends ATP on
neuronal signaling processes at a rate of 15.36 J s−1 or
15.36W. This is the estimated value of∆W.

Here, ∆Uin is the amount of incoming caloric
energy (19.37 J s−1), ∆Uout is the heat loss from the
system (0.14 J s−1), ∆W is the amount of energy
used to set up the electrochemical resting potential
(15.36 J s−1), and ∆G is the amount of free energy
stored in the neuronalmembrane that is released dur-
ing the action potential. [The latter quantity is neg-
ligible at these second-long timescales, because all
free energy is eventually distributed toward either
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entropy or work.] Each parameter is provided as a
rate of energy turnover in Joules per second, orWatts.
Equation (34) can be used to calculate the quantity
of energy lost to entropy in the human brain every
second, given by ∆S. Using the values for each para-
meter as described above, and a system temperature
T equal to 37 ◦C or 310K, the value of ∆S over the
course of t= 1 s can be calculated by substituting val-
ues into equation (34):

∆S =
19.37J − 0.14J − 15.36J − 0.00J

310
= 0.012J.

(35)

This exercise suggests the human brain is 99.9%
energy-efficient, an estimate that corresponds well
with other models demonstrating the remarkable
energetic efficiency of cortical neurons within the
central nervous system [43–49]. The high rate of ener-
getic turnover in these cells should contribute to sig-
nificant quantities of entropy and heat production,
yet this seems not to be the case. There is far too
much ordered work happening here. In addition to
electrochemical signaling, neurons undergo anabolic
metabolism, gene transcription, protein manufac-
ture, post-translational modification, protein trans-
port, and membrane remodeling, all processes which
require energetic expenditure. Notably, these activity-
dependent tasks maintain the ordered state of the
neuron and ensure the physical structure retains an
optimal configuration to encode information within
the neural network. These non-signaling tasks are not
included in the budget for ATP turnover given here,
and may further increase the energy expenditure of
cortical neurons. In addition, the 45% of brain weight
which is not cortical GM is not included in this estim-
ate, contributing to 20% of the total ATP turnover
of the brain, or an additional 3.8 J s−1. As a result,
the total amount of energy expended on performing
work appears to exactly match total caloric uptake—
leading to the astonishing conclusion that the human
brain is nearly 100% energy efficient.

And so, with excellent estimates for caloric intake,
heat output, ATP turnover, and temperature—based
on empirical data—the quantity of energy expen-
ded to complete work within the mammalian cent-
ral nervous system is found to be curiously efficient.
As a result of this extraordinary efficiency, the estim-
ated quantity of entropy produced by the humanbrain
is far too low to retain the assumptions of a classical
system.

It seems highly unlikely that a physical system
whose primary job is to process information creates
no physical information entropy at all. Usefully, this
model shows how a heat-trapping system might cyc-
lically generate and compress information entropy,

recovering free energy as that thermodynamic quant-
ity of information entropy is parsed for consistency or
correlations with the surrounding environment.

3.3. Predictions
The theoretical model presented here results in
an energy-efficient, non-deterministic, system-
wide computation. As correlations are identified,
and information entropy is physically compressed,
the thermodynamic computing system takes on a
more ordered state and becomes more compatible
with its surrounding environment. This theoretical
framework therefore offers a putative mechanistic
link between non-deterministic computation and
extraordinary energy efficiency in the mammalian
brain.

This new framework for modeling non-
deterministic computation in cortical neural net-
works makes specific predictions with regard to the
wavelength of thermal free energy released upon
information compression [54], and the contribution
of these localized thermal fluctuations to network
dynamics [55]. This approach also makes specific
predictions about the expected effects of electromag-
netic stimulation and pharmacological interventions
on perceptual content during neural computation
[56]. Some further predictions of the theory, promp-
ted by the present model, include:

3.3.1. Cortical neurons should exhibit characteristics of
a quantum system
In this new theoretical model, cortical neurons redis-
tribute a Hamiltonian operator to minimize entropy
and maximize free energy, with this computational
process driving signaling outcomes. This is expli-
citly a model of quantum computation, with prob-
abilistic coding cyclically generating and compress-
ing quantum information. Certainly doubt has been
cast on the hypothesis that the brain is a quantum
system [57]. If this hypothesis is true, then empir-
ical measures of Coulomb scattering profiles, deco-
herence timescales, ionization dynamics and dissip-
ation rates should meet the established criteria for
a quantum system. In addition, there should be a
demonstrable relationship between thermodynamic
quantities, evident in neurophysiological data. The
reduction of uncertainty during information com-
pression (a reduction in the distribution of com-
ponent microstates) should be proportional to the
quantity of free energy released. That quantity of
free energy released upon information compres-
sion should prompt a shift in membrane poten-
tial. Specifically, cortical neurons which have gained
uncertainty during the computation should lose free
energy to entropy and fire an action potential, while
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cortical neurons which have gained certainty dur-
ing the computation will restore their resting poten-
tial. In short, the contribution of quantum inform-
ation processing to signaling outcomes should be
measurable.

3.3.2. Cortical neurons should demonstrate exceptional
energy efficiency
In this new theoretical model, a cortical neural net-
work selects an optimal system state in the present
context from a large probability distribution, in a pro-
cess of non-deterministic computation. This natur-
ally leads to the compression of information entropy
and the release of free energy. If cortical neurons are
indeed able to recover the energy that is normally dis-
sipated irreversibly toward the production of entropy,
their net entropy production should be well below
classical expectations for the amount of work being
completed. If cortical neurons do undergo a phys-
ical process of non-deterministic computation, then
empirical studies should confirm these cells to be
significantly more energy-efficient than neurons in
spinal reflex circuits, which have purely deterministic
signaling outputs. This prediction can be tested by
comparing ATP turnover in cells of similar size, with
similar firing rates and similar levels of gene expres-
sion, protein turnover, and intracellular transport.
If cortical neurons are classical computational units,
obeying the null hypothesis, then these cells should
exhibit purely classical energy efficiency.

3.3.3. Engineered neural networks with the physical
properties of a cortical neural network should achieve
spontaneous unprogrammed exploratory behavior
One challenge for both organisms and robotics is
spontaneously exploring the local environment in
search of predictive value, without being explicitly
programmed to do so [58]. Recent advances in state-
of-the-art robotics have involved introducing a lib-
rary of robot action primitives, parameterized by
arguments which are gradually adopted under a rein-
forcement learning policy [59]. Yet current robotics
rely on classical computing architecture; these are not
generalized intelligence systems, and they must be
programmed for certain tasks. Even if these systems
are programmed to continuously improve their beha-
vior on a given task, through learning and remodel-
ing, they are unable to spontaneously try new tasks.
In these classical systems, there is simply no spon-
taneous acceleration from rest without programmed
priors and policies. For example: a robot which has
effectively learned how to navigate complex envir-
onments with careful steps will not spontaneously
search inside a box without explicit prompting, nor
will it observe and imitate humans or other robots
who do so. There is no curiosity, no spontaneous
exploration, and no novel approaches to problem
solving. Such generalized intelligent abilities remain
out of reach for today’s robotics. By contrast, in this

model of quantum computing architecture, energy
is periodically redistributed around the system, to
achieve highly energy-efficient work at the molecular
level in service of goals at the systems level. For this
reason, far-from-equilibrium systems that trap heat
to do work can spontaneously explore their envir-
onment and gain knowledge about it through this
method of non-deterministic computation, by updat-
ing the internal state to match the external state.
This theoretical framework predicts that computa-
tional energy efficiency is deeply tied to generalized
intelligence, and one cannot exist without the other.
For this reason, computational hardware with similar
anatomical and physiological properties to our own
brains should exhibit both exceptional energy effi-
ciency and an ability to creatively solve problems.

3.3.4. Engineered neural networks with the physical
properties of a cortical neural network should require
fewer time and energy resources to solve
computationally complex problems
Another challenge for both organisms and robot-
ics is minimizing the time and energy resources
utilized while solving decision problems. The sys-
tem must encode the most likely state of the sur-
rounding environment, using one or more sensory
modalities impinging on a layered neural network
architecture, then make a decision on the appro-
priate response in that context. In classical com-
puting architecture, computationally complex prob-
lems can be solved through brute force methods
[60] or cascading classifiers [61]. Alternatively a large
solution space can be explored, with a minimiza-
tion of energy expenditure achieved through gradi-
ent descent [25, 26]. In this model of quantum
computing architecture, time and energy are uncer-
tain until these variables are resolved into a mutu-
ally compatible state for all computational units
within the system. For this reason, this theory pre-
dicts that fewer time and energy resources should be
needed to solve computationally complex problems
using this method of thermodynamic computation.
Once again, engineered hardware with similar ana-
tomical and physiological properties should exhibit
biologically-comparable time and energy efficiency
during decision problems, if the Hamiltonian can be
effectively redistributed.

4. Discussion

4.1. Modeling noise in complex systems
Environmental noise and random fluctuations are
fundamental components of any complex system,
from the microscopic to the macroscopic scale. One
of the earliest and most often studied examples is the
current-biased Josephson junction, which is a meta-
stable system activated by current fluctuations, with
non-monotonic temporal dynamics and supercon-
ducting properties [62]. In Josephson junctions, a
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cumulative distribution function of switching cur-
rents supplies sufficient information to extract a sig-
nal from the noise [63]. These findings may be gener-
alizable; the speed and direction of molecular motors
depend on the characteristics of noisy inputs, with
any changes in the parameters prompting spontan-
eous flux reversals [64]. By formally extending these
models into quantum theory, noise induced stability
may be exploited to improve quantum computation
and superconductivity at ambient temperatures [65,
66].

General formulations of noise-enhanced stabil-
ity in complex systems has aided the modeling of
biological systems [67] and financial markets [68].
Unsurprisingly, decades of modeling complex sys-
tems using inherently probabilistic methods have also
uncovered a critical role for noise in cortical neuron
dynamics. The effects of random noise contribute
to the highly variable inter-spike interval observed
in cortical neurons [69]. Noise not only prompts
thresholding dynamics (including phase transitions)
in individual computational units, but also leads to
stochastic resonance, noise-induced synchronization
and large-scale oscillations at the systems level [70].
Interestingly, noise-induced resonant activation and
noise-enhanced stability is observed in both neural
network models [71] and in memristive neural net-
work architecture [72]. External stimuli contribute
to these internal dynamics within the human brain;
the regularity of spike trains recorded in the auditory
system, triggered by the frequency ratio of sinusoidal
input signals, correlates with the reported feeling of
harmony or disharmony during sound perception
[73]. Importantly, the entropy of the cortical neural
network is shown to be highwith discordant informa-
tion and low with harmonious information, in agree-
ment with the present model, which proposes that
our brains identify correlations within a dataset to
drive synchronous signaling outcomes.

Simplemodels discovered and researched over the
past century have also proven to be highly valuable in
articulating the fundamental physics underlying self-
organization and spontaneous dynamics. The Ising
model has been particularly informative. In these lat-
tice structures, the magnetic dipole moment or spin
state can be+1 or−1, with neighboring atoms inter-
acting to settle into the lowest entropy state. Any
impurities in the ideal lattice structure will spoil this
orderly behavior, but only within narrow time and
temperature intervals. As dimensionality increases, or
time and temperature are scaled, these phase trans-
itions become less predictable, due to the emergence
of an exponential error. Yet crucially, these exponents
are transitory, permitting error correction during the
computation [74].

Exact solutions can be found for Ising models in
one or two dimensions. However, Ising models of
three dimensions or more, with mixed component
structures, are not self-averaging and are therefore

numerically unsolvable [75]. However, these mod-
els demonstrate the emergence of a dominant ran-
dom fixed point, giving rise to stable attractor dynam-
ics through stochastic resonance [76]. So, although
no exact solutions can be found for Ising models in
three dimensions or more, these systems can be pro-
ductively described by a locally varying mean field
which gives rise to these stable attractor dynamics
[77]. The parallels between this literature and the
present model are notable; in both, the instantiation
of a low-entropy system state is paired with spontan-
eous rotational symmetry emerging across the sys-
tem, as the Hamiltonian is resolved and eigenvalues
for all component pure states are realized. Indeed,
the new model asserts that the resolution of (inher-
ently uncertain) atomic states (provided by the von
Neumann entropy of the system) will be paired with
the resolution of each neuronal membrane potential.

4.2. Relationship between this model and the free
energy principle
While prior efforts used statistical methods to model
the inherently probabilistic patterns of cortical neural
network activity [1–3, 18], the present model com-
bines the computational and thermodynamic prop-
erties of the mean field approach to provide a mech-
anistic basis for energy-efficient non-deterministic
computation in cortical neural networks. This model
of neural computation both vindicates and elaborates
Friston’s free energy principle [21–24], providing a
thermodynamic basis for the reduction of ‘surprise’
during predictive processing.

The minimization of free energy is a general prin-
ciple that underlies many of the techniques that are
commonly used in signal processing and machine
learning, particularly for the key tasks of model selec-
tion, inference, and local optimization. Similarly, the
constrained maximum entropy principle provides a
standard approach for the selection of a probabil-
istic model when the only information available on
the quantity of interest consists of statistical averages.
Indeed, the maximum entropy principle favors the
system to select a probability distribution q which
solves an optimization problem. This optimization
problem involves minimizing the variational density
over external states, parameterized by the distribution
of internal states. The constrainedmaximum entropy
principle is therefore equivalent to the free energy
principle which posits that, as a system approaches
a nonequilibrium steady-state, one can describe its
dynamics as minimizing the self-information, or the
von Neumann entropy, of its internal states. This
model is compatible with the present report.

4.3. A comparison with empirical evidence of
entropy production in the brain
A recent study usefully provided data on empir-
ical measures of entropy in the human brain during
various tasks. These data can be compared against
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the present study’s prediction that higher uncer-
tainty is associated with greater numbers of neur-
ons firing synchronously across the cerebral cortex
[78]. Notably, the authors of this paper show that
entropy increases with cognitive demand; a restful
state is associated with low entropy, while gambling
and motor tasks are associated with high entropy.
This finding fits perfectly with the findings of the
present study, which demonstrate that high levels of
uncertainty should be associated with larger quant-
ities of neurons synchronously firing across the
cortex.

Importantly, the authors also demonstrate that a
non-equilibrium system will still break detailed bal-
ance (thereby producing entropy S> 0) even if the
state probabilities remain constant in time, as is the
case in the Ising system. Furthermore, this study
demonstrates there is no need to assume the system is
Markovian, as in many neural network models. And
indeed, the system under consideration—a cortical
neural network engaging in probabilistic coding—is
not Markovian, with a stationary transition matrix.
It is a continuous stochastic process, with any state
change prompted by an exponential random variable:
the U-matrix. This system has a finite or countable
state space, with dimensions equal to the transition
matrix; it has some initial state j and it has some non-
negative number of computational unitsN, each hav-
ing some probability of transitioning from j to k. The
posterior probability, at the completion of a com-
putation, is dependent on the state of the environ-
ment, the amount of time that has passed, and the
history of system states. It is not independent of its
environment, it is not independent of the amount of
time that has passed; and it is not memoryless, as in a
Markovian process. In short, theory and experiment
are well in agreement here.

4.4. A comparison with empirical evidence of
energy efficiency in the brain
Another recent study presents valuable data on
empirical measures of energy use in the human
brain, which can be compared against the estim-
ates of the present study [48]. Critically, this study
supports the conclusions of the present study, by
empirically demonstrating through quantitative ima-
ging techniques that the human brain is nearly 100%
energy efficient. Their conclusion is worth citing at
length here: ‘An enormous amount of ATP molecules
(approx. 5.7 kg) is produced and utilized by the
human cortical GM and WM in a single day, which
is equivalent to the complete oxidative combustion of
56 g glucose per day (assuming an ATP/glucose ratio
of 36); and this ATP consumption amount is almost
five times of the total weight of human cortical GM
and WM (approx. 1.2 kg). It is clear that the ATP
turnover rate in a normal brain has to be extremely
high and the majority of the energy generated in the

process is used by the cortical GM with a large pop-
ulation of neuronal cell bodies, dendrites and syn-
apses and high densities of mitochondria and capil-
lary. Such a high energy demand can be only satisfied
by extremely efficient ATP production through oxid-
ative phosphorylation in the mitochondria and rapid
balance between ATP utilization and production.’

At the cellular level too, the authors’ quant-
itative measures line up reasonably well with the
present study. Zhu et al state: ‘The energy expendit-
ure of a single human cortical neuron was calcu-
lated to be 4.7 billion ATPs per second (i.e. 4.7×
109 ATPs/neuron/s) after correcting the glia cell
energy contribution to the total energy expendit-
ure. This value is substantially higher than that of
3.3× 109 ATPs/neuron/s indirectly estimated for the
rat brain [45].’ This amount includes all energy
expenditure, not just energy expended on signal-
ing processes, but it does not account for white
matter. With 86 billion neurons in the human cor-
tex, the authors of this previous study estimate that
0.67mmol of ATP are used each second. This quant-
ity is substantially higher than our present estimate
of 0.27mmol of ATP used each second (based largely
on rat data from Attwell lab). Since the human brain
is not expected to accomplish more work (in J) than
energy entering the system (in J), these empirical data
are likely to converge on a central value with addi-
tional measurements and further careful analysis. In
any case, theory and experiment are again well in
agreement. All published studies indicate the human
brain is far more energy efficient than is possible
under classical assumptions.

5. Conclusions

The extraordinary energetic efficiency of the central
nervous system has been noted, particularly among
theorists who query whether this competence is
intrinsically linked to the production of information
entropy [79, 80] or the exascale computing capacity
of the brain [81, 82]. In this report, energy is indeed
being expended on the production of information—
but rather than being an abstract quantity, or a quant-
ity that is irreversibly lost, this quantity is released
back into the system as free energy as informa-
tion is physically compressed, in accordance with the
Landauer principle.

This approach models how cortical neural net-
works produce entropy in a thermodynamic sense,
then evaluates whether information processing
emerges from such a lean assumption. Indeed, all
thermodynamic systems must create entropy, with
that quantity related to the pressure, temperature,
density, and volume of the system. If a hot, dense,
non-heat-dissipating system appears to be nearly
100% energy-efficient, and also exhibits extraordin-
ary computational power, the sensible logic is not that
entropy is not being produced at all, but rather that
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correlations are being extracted and entropy is being
compressed, in accordance with physical laws.

This report demonstrates that information gen-
eration and compression can occur in far-from-
equilibrium systems, with the system naturally
encoding the likely state of its surrounding envir-
onment, as it takes on a more ordered state over time.
As encoding system A interacts with its surround-
ing environment, system B, the trial Hamiltonian is
resolved through a unitary change in basis. Entropy
is additive if the systems are uncorrelated, but sub-
tractive if the systems are correlated (that is, if the
internal state matches the external state). And so, as
the encoding system becomes correlated with its sur-
rounding environment, the total entropy of the com-
bined system is compressed. Yet some uncertainty
or entropy will always remain at the completion of
each thermodynamic computing cycle, respecting
the second law of thermodynamics: the quantity of
energy entering the system places a hard limit on the
amount of entropy that can be generated, and the
quantity of entropy generated places a hard limit on
the amount of compression that can occur. Perfect
energy efficiency would imply a perfect correlation
with the surrounding environment, and so continued
operation of the system within a changing environ-
ment requires continued uncertainty. However, the
quantity of entropy is minimized during the compu-
tation, as signals are extracted from the noise and an
optimal system state is selected from a large probab-
ility distribution.

This study shows a mechanistic connection
between probabilistic coding and computational
energy efficiency in cortical neural networks. Moving
forward, exploring the exact relationship between
energetic efficiency and non-deterministic computa-
tion may prove useful to the fields of neuroscience,
machine learning, and physics.
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